
5.3 Overloaded Functions

An overloaded function appears to perform different activities

depending on the kind of data sent to it. It performs one operation on

one kind of data but another operation on a different kind.

5.3.1 Different Numbers of Arguments Example:

The starline() function printed a line using 45 asterisks.

The repchar() function used a character and a line length that were

both specified when the function was called.

The charline() function that always prints 45 characters but that allows

the calling program to specify the character to be printed.

These three functions—starline(), repchar(), and charline()—perform

similar activities but have different names.

For programmers using these functions, that means three names to

remember and three places to look them up if they are listed

alphabetically in an application‟s.

It would be better to use the same name for all three functions, even

though they each have different arguments.

Here‟s a program, OVERLOAD, that makes this possible:

#include <iostream.h>

void repchar(); //declarations

void repchar(char);

void repchar(char, int);

int main()

{ repchar();

 repchar(„=‟);

 repchar(„+‟, 20);

 return 0;

}

void repchar()

{

for(int j=0; j<45; j++)

cout << „*‟; // always prints asterisk

cout << endl;

}

void repchar(char ch)

{

for(int j=0; j<45; j++) // always loops 45 times

cout << ch; // prints specified character

cout << endl;

}

// repchar()

// displays specified number of copies of specified character

void repchar(char ch, int n)

{for(int j=0; j<n; j++) // loops n times

cout << ch; // prints specified character

cout << endl;

}

This program prints out three lines of characters. Here‟s the output:

**

===============================

++++++++++++++++++++

The compiler, seeing several functions with the same name but

different numbers of arguments. Which one of these functions will be

called depends on the number of arguments supplied in the call.

 Figure below shows this process:

5.3.3 Different Kinds of Arguments

In the OVERLOAD example we created several functions with

the same name but different numbers of arguments. The compiler can

also distinguish between overloaded functions with the same number of

arguments, provided their type is different. Here‟s a program, that uses

an overloaded function to display a quantity in feet-and-inches format.

The single argument to the function can be either a structure of type

Distance or a simple variable of type float. Different functions are used

depending on the type of argument.
#include <iostream.h>

struct Distance

{ int feet; float inches; };

void engldisp(Distance);

void engldisp(float);

int main()

{

Distance d1; float d2;

cout << “\nEnter feet: “;

cin >> d1.feet;

cout << “Enter inches: “;

cin >> d1.inches;

cout << “Enter distance in inches:“;

cin >> d2;

cout << “\nd1 = “;

engldisp(d1);

cout << “\nd2 = “;

engldisp(d2);

cout << endl;

return 0;

}

void engldisp(Distance dd) //parameter dd of type Distance

{ cout << dd.feet << “\‟-” << dd.inches << “\””; }

void engldisp(float dd) //parameter dd of type float

{

int feet = static_cast<int>(dd / 12);

float inches = dd - feet*12;

cout << feet << “\‟-” << inches << “\””;

}

Here‟s some sample interaction with the program:

Enter feet: 5

Enter inches: 10.5

Enter entire distance in inches: 76.5

d1 = 5‟-10.5”

d2 = 6‟-4.5”

5.4 Scope and Storage Class

The scope of a variable determines which parts of the program

can access it, and its storage class determines how long it stays in

existence. Two different kinds of scope are important here: local and

file.

• Variables with local scope are visible only within a block.

• Variables with file scope are visible throughout a file.

A block is the code between an opening brace and a closing brace. Thus

a function body is a block.

There are two storage classes: automatic and static.

• Variables with storage class automatic exist during the lifetime of the

function in which they‟re defined.

• Variables with storage class static exist for the lifetime of the program.

5.4.1 Local Variables

All the variables we‟ve used in example programs have been

defined inside the function in which they are used: (That is, the

definition occurs inside the braces that delimit the function body).

void somefunc()

{ int somevar; //variables defined within the function body

 float othervar;

}

Variables may be defined inside main() or inside other functions; the

effect is the same, since main() is a function. Variables defined within a

function body are called local variables

because they have local scope. However, they are also sometimes called

automatic variables, because they have the automatic storage class.

5.4.2 Scope

A variable‟s scope, also called visibility, describes the locations

within a program from which it can be accessed. It can be referred to in

statements in some parts of the program; but in others, attempts to

access it lead to an unknown variable error message. The scope of a

variable is that part of the program where the variable is visible.

Variables defined within a function are only visible, meaning they can

only be accessed, from within the function in which they are defined.

Suppose you have two functions in a program:
void somefunc()

{

int somevar; //local variables

float othervar;

somevar = 10; //OK

othervar = 11; //OK

nextvar = 12; //illegal: not visible in somefunc()

}

void otherfunc()

{

int nextvar; //local variable

somevar = 20; //illegal: not visible in otherfunc()

othervar = 21; //illegal: not visible in otherfunc()

nextvar = 22; //OK

}

The variable nextvar is invisible in function somefunc(), and the

variables somevar and othervar are invisible in otherfunc().

5.4.3 Global Variables

The next kind of variable is global. While local variables are

defined within functions, global variables are defined outside of any

function. A global variable is visible to all the functions in a file. More

precisely, it is visible to all those functions that follow the variable‟s

definition in the listing. Usually you want global variables to be visible

to all functions, so you put their declarations at the beginning of the

listing.

Here‟s a program, in which three functions all access a global variable.

// demonstrates global variables

#include <iostream.h>

#include <conio.h> //for getch()

char ch = „a‟; //global variable ch

void getachar();

void putachar();

int main()

{ while(ch != „\r‟) //main() accesses ch

{ getachar();

 putachar();

}

cout << endl;

return 0;

}

void getachar() //getachar() accesses ch

{ ch = getch();}

void putachar() //putachar() accesses ch

{ cout << ch; }

5.5 Fundamentals

This program, REPLAY, creates an array of four integers

representing the ages of four people. It then asks the user to enter four

values, which it places in the array. Finally, it displays all four values.

// replay.cpp

// gets four ages from user, displays them

#include <iostream.h>

int main()

{

int age[4]; //array „age‟ of 4 int

for(int j=0; j<4; j++) //get 4 ages

{cout << “Enter an age: “;

cin >> age[j]; //access array element}

for(j=0; j<4; j++) //display 4 ages

cout << “You entered “ << age[j] << endl;

return 0;}}

Here‟s a sample interaction with the program:

Enter an age: 44

Enter an age: 16

Enter an age: 23

Enter an age: 68

You entered 44

You entered 16

You entered 23

You entered 68

5.5.1 Defining Arrays

Syntax of array definition

5.5.2 Array Elements

The items in an array are called elements (in contrast to the items

in a structure, which are called members). As we noted, all the elements

in an array are of the same type; only the values vary. Figure bellow

shows the elements of the array age.

Array elements.

5.5.3 Accessing Array Elements

In the REPLAY example we access each array element twice. The

first time, we insert a value into the array, with the line

cin >> age[j];

The second time, we read it out with the line

cout << “\nYou entered “ << age[j];

In both cases the expression for the array element is age[j].This consists

of the name of the array, followed by brackets delimiting a variable j.

Which of the four array elements is specified by this expression depends

on the value of j; age[0] refers to the first element, age[1] to the second,

age[2] to the third, and age[3] to the fourth. The variable (or constant)

in the brackets is called the array index.

5.5.4 Averaging Array Elements
Here‟s another example of an array at work. This one, SALES,

invites the user to enter a series of six values representing widget sales

for each day of the week (excluding Sunday), and then calculates the

average of these values. We use an array of type double so that

monetary values can be entered.

// sales.cpp

// averages a weeks‟s widget sales (6 days)

#include <iostream.h>

int main()

{

const int SIZE = 6; //size of array

double sales[SIZE]; //array of 6 variables

cout << “Enter widget sales for 6 days\n”;

for(int j=0; j<SIZE; j++) //put figures in array

cin >> sales[j];

double total = 0;

for(j=0; j<SIZE; j++) //read figures from array

total += sales[j]; //to find total

double average = total / SIZE; // find average

cout << “Average = “ << average << endl;

return 0;}

Here‟s some sample interaction with SALES:

Enter widget sales for 6 days

352.64

867.70

781.32

867.35

746.21

189.45

Average = 634.11

A new detail in this program is the use of a const variable for the array size and loop

limits. This variable is defined at the start of the listing: const int SIZE

= 6;

