
1.1 Structures in C++

A structure is a collection of simple variables. The variables in a

structure can be of different types: int, float, and so on. The data items

in a structure are called the members of the structure. In fact, the syntax

of a structure is almost identical to that of a class. A structure is a

collection of data, while a class is a collection of both data and functions.

Structures in C++ similar to records in Pascal.

1.2 A Simple Structure (user-defined data types)

The company makes several kinds of widgets, so the widget model

number is the first member of the structure.

The number of the part itself is the next member, and the final

member is the part‟s cost. The next program defines the structure

part, defines a structure variable of that type called part1. Assigns

values to its members, and then displays these values.

#include <iostream.h>

struct part //declare a structure

{

 int modelnumber; //ID number of widget

 int partnumber; //ID number of widget part

 float cost; //cost of part

};

int main()

{

part part1; //define a structure variable

part1.modelnumber = 6244; //give values to structure members

part1.partnumber = 373;

part1.cost = 217.55F;

//display structure members

cout << “Model “ << part1.modelnumber;

cout << “, part “ << part1.partnumber;

cout << “, costs $” << part1.cost << endl;

return 0; }

The program‟s output looks like this:

Model 6244, part 373, costs $217.55

1.2.1 Syntax of the Structure Definition

1.2.1 Use of the Structure Definition

The structure definition serves only as a blueprint for the creation

of variables of type part. It does not itself create any structure variables;

that is, it does not set aside any space in memory or even name any

variables.

 This is unlike the definition of a simple variable, which does set aside

memory. A structure definition is specification for how structure

variables will look when they are defined. This is shown in Figure

below:

1.2.2 Defining a Structure Variable

The first statement in main() part part1; defines a variable, called

part1, of type structure part. This definition reserves space in memory

for part1. Figure below shows how part1 looks inmemory.

1.2.3 Accessing Structure Members

members can be accessed using the dot operator.

part1.modelnumber = 6244;

The structure member is written in three parts:

 1- the name of the structure variable (part1);

 2- dot operator, which consists of a period (.);

 3- member name (modelnumber).

The first component of an expression involving the dot operator is the

name of the specific structure variable (part1 in this case), not the name

of the structure definition (part).

The variable name must be used to distinguish one variable from

another, such as part1, part2, and so on, as shown in Figure below:

Structure members are treated just like other variables. In the

statement

 part1.modelnumber = 6244.

 The member is given the value 6244 using a normal assignment

operator.

The program also shows members used in cout statements such as

 cout << “\nModel “ << part1.modelnumber;

These statements output the values of the structure members.

1.2.4 Initializing Structure Members

The next example shows how structure members can be initialized

when the structure variable is defined. It also demonstrates that you can

have more than one variable of a given structure type

#include <iostream.h>

struct part //specify a structure

{ int modelnumber; //ID number of widget

 int partnumber; //ID number of widget part

 float cost; //cost of part };

int main()

{ //initialize variable

part part1 = { 6244, 373, 217.55F };

part part2; //define variable

//display first variable

cout << “Model “ << part1.modelnumber;

cout << “, part “ << part1.partnumber;

cout << “, costs $” << part1.cost << endl;

part2 = part1; //assign first variable to second

//display second variable

cout << “Model “ << part2.modelnumber;

cout << “, part “ << part2.partnumber;

cout << “, costs $” << part2.cost << endl;

return 0;

}

Here‟s the output:

Model 6244, part 373, costs $217.55

Model 6244, part 373, costs $217.55

1.5 A Measurement Example
Suppose you want to create a drawing or architectural program

that uses the English system. It will be convenient to store distances as

two numbers, representing feet and inches. The next example, gives an

idea of how this could be done using a structure.

This program will show how two measurements of type Distance can be

added together.

#include <iostream.h>

struct Distance //English distance

{int feet;

float inches;

};

int main()

{Distance d1, d3; //define two lengths

 Distance d2 = { 11, 6.25 }; //define & initialize one length

 //get length d1 from user

 cout << “\nEnter feet: “; cin >> d1.feet;

 cout << “Enter inches: “; cin >> d1.inches;

 //add lengths d1 and d2 to get d3

 d3.inches = d1.inches + d2.inches; //add the inches

 d3.feet = 0; //(for possible carry)

 if(d3.inches >= 12.0) //if total exceeds 12.0,

{ //then decrease inches by 12.0

d3.inches -= 12.0; //and

d3.feet++; //increase feet by }

d3.feet += d1.feet + d2.feet; //add the feet

//display all lengths

cout << d1.feet << “\‟-” << d1.inches << “\” + “;

cout << d2.feet << “\‟-” << d2.inches << “\” = “;

cout << d3.feet << “\‟-” << d3.inches << “\”\n”;

return 0;}

Here‟s some output:

Enter feet: 10

Enter inches: 6.75

10‟-6.75” + 11‟-6.25” = 22‟-1”

Notice that we can‟t add the two distances with a program

statement like d3 = d1 + d2; // can‟t do this in previous program. Why

not? Because there is no routine built into C++ that knows how to add

variables of type Distance. The + operator works with built-in types like

float, but not with types we define ourselves, like Distance.

1.6 Structures Within Structures

You can nest structures within other structures. In the next

program we want to create a data structure that stores the dimensions

of a typical room: its length and width.

#include <iostream.h>

struct Distance //English distance

{

 int feet;

float inches;

};

struct Room //rectangular area

{

Distance length; //length of rectangle

Distance width; //width of rectangle

};

int main()

{Room dining; //define a room

dining.length.feet = 13; //assign values to room

dining.length.inches = 6.5;

dining.width.feet = 10;

dining.width.inches = 0.0;

//convert length & width

float l = dining.length.feet + dining.length.inches/12;

float w = dining.width.feet + dining.width.inches/12;

//find area and display it

cout << “Dining room area is “ << l * w << “ square feet\n” ;

return 0;

}

1.7 Accessing Nested Structure Members

Because one structure is nested inside another, we must apply the

dot operator twice to access the structure members.

dining.length.feet = 13;

In this statement, dining is the name of the structure variable, as

before; length is the name of a member in the outer structure (Room);

and feet is the name of a member of the inner structure (Distance). The

statement means “take the feet member of the length member of the

variable dining and assign it the value 13.” Figure below shows how this

works.

Once values have been assigned to members of dining, the

program calculates the floor area of the room, as shown in Figure

below. To find the area, the program converts the length and width

from variables of type Distance to variables of type float, l, and w,

representing distances in feet. The values of l and w are found by adding

the feet member of Distance to the inches member divided by 12.

 The feet member is converted to type float automatically before

the addition is performed, and the result is type float. The l and w

variables are then multiplied together to obtain the area.

1.7.1 User-Defined Type Conversions

Note that the program converts two distances of type Distance to

two distances of type float: the variables l and w. In effect it also

converts the room‟s area, which is stored as a structure of type Room

(which is defined as two structures of type Distance), to a single floating-

point number representing the area in square feet.

Here‟s the output:

Dining room area is 135.416672 square feet

Converting a value of one type to a value of another is an

important aspect of programs that employ user-defined data types.

1.7.2 Initializing Nested Structures

How do you initialize a structure variable that itself contains

structures? The following statement initializes the variable dining to

the same values it is given in the program:

Room dining = { {13, 6.5}, {10, 0.0} };

Each structure of type Distance, which is embedded in Room, is

initialized separately. Remember that this involves surrounding the

values with braces and separating them with commas.

 The first Distance is initialized to: {13, 6.5}

 and the second to: {10, 0.0}

Exercises

1. A phone number, such as (212) 767-8900, can be thought of as

having three parts: thearea code (212), the exchange (767), and the

number (8900). Write a program that uses a structure to store these

three parts of a phone number separately. Call the structure phone.

Create two structure variables of type phone. Initialize one, and have

the user input a number for the other one. Then display both numbers.

The interchange might look like this:

Enter your area code, exchange, and number: 415 555 1212

My number is (212) 767-8900

Your number is (415) 555-1212

Solutions to Exercises

1.

#include <iostream.h>

struct phone

{

int area; //area code (3 digits)

int exchange; //exchange (3 digits)

int number; //number (4 digits)

};

int main()

{

phone ph1 = { 212, 767, 8900 }; //initialize phone number

phone ph2; //define phone number

// get phone no from user

cout << “\nEnter your area code, exchange, and number”;

cout << “\n(Don‟t use leading zeros): “;

cin >> ph2.area >> ph2.exchange >> ph2.number;

cout << “\nMy number is “ //display numbers << „(„ << ph1.area

<< “) “ << ph1.exchange << „-‟ << ph1.number;

cout << “\nYour number is “<< „(„ << ph2.area << “)

“<<ph2.exchange << „-‟ << ph2.number << endl;

return 0;

}

