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Preface to the Third Edition - May 24, 2013

This set of notes is now undergoing its third iteration. The mathematical content
outside of the appendices is mostly stabilized, and now begins the long and lonely
hunt for typos, poor grammar, and awkward sentence constructions.

Please feel free to contact me if you find any mistakes — mathematical or other-
wise — in these notes.

Preface to the Second Edition - December 1, 2010

This set of notes has now undergone its second incarnation. I have corrected as
many typos as I have found so far, and in future instalments I will continue to add
comments and to modify the appendices where appropriate. The course number for
the Functional Analysis course at Waterloo has now changed to PMath 753, in case
anyone is checking.

The comment in the preface to the “first edition” regarding caution and buzz
saws is still a propos. Nevertheless, I maintain that this set of notes is worth at least
twice the price' that I'm charging for them.

For the sake of reference: excluding the material in the appendices, and allowing
for the students to study the last section on topology themselves, one should be able
to cover the material in these notes in one term, which at Waterloo consists of 36
fifty-minute lectures.

My thanks to Xiao Jiang and Ian Hincks for catching a number of typos that I
missed in the second revision.

f you were charged a single penny for the electronic version of these notes, you were robbed.
You can get them for free from my website.



Preface to the First Edition - December 1, 2008

The following is a set of class notes for the PMath 453/653 course I taught at the
University of Waterloo in 2008. As mentioned on the front page, they are a work in
progress, and - this being the “first edition” - they are replete with typos. A student
should approach these notes with the same caution he or she would approach buzz
saws; they can be very useful, but you should be thinking the whole time you have
them in your hands. Enjoy.

I would like to thank Paul Skoufranis for having pointed out to me an embar-
rassing number of typos. I am glad to report that he still has both hands and all of
his fingers.



THE REVIEWS ARE IN!

From the moment I picked your book up until I laid it down I was
convulsed with laughter. Someday I intend reading it.

Groucho Marx

This is not a novel to be tossed aside lightly. It should be thrown with
great force.

Dorothy Parker

The covers of this book are too far apart.
Ambrose Bierce

I read part of it all the way through.
Samuel Goldwyn

Reading this book is like waiting for the first shoe to drop.
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Stanislaw J. Lec
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1. Normed Linear Spaces

I don’t like country music, but I don’t mean to denigrate those who do.
And for the people who like country music, denigrate means ‘put down’.

Bob Newhart

1.1. It is expected that the student of this course will have already seen the
notions of a normed linear space and of a Banach space. We shall review the
definitions of these spaces, as well as some of their fundamental properties. In both
cases, the underlying structure is that of a vector space. For our purposes, these
vector spaces will be over the field K, where K =R or K = C.

1.2. Definition. Let X be a vector space over K. A seminorm on X is a map
v:X—NR

satisfying
(i) v(x) >0 for allz € X;
(i) v(A\x) = || v(x) for allz € X, X € K; and
(iii) v(z +y) <v(z)+v(y) for all z,y € X.
If v satisfies the extra condition:
(iv) v(z) =0 if and only if v =0,

then we say that v is a norm, and we usually denote v(-) by || - ||. In this case, we
say that (X, || - ||) (or, with a mild abuse of nomenclature, X) is a normed linear
space.

1.3. A norm on X is a generalisation of the absolute value function on K. Of
course, equipped with the absolute value function on K, one immediately defines a
metric d : K x K — R by setting d(x,y) = |z — y|.

In exactly the same way, the norm || - || on a normed linear space X induces a
metric

d: XxX — R
(z,y) = lz—yl
The norm topology on (X, || - ||) is the topology induced by this metric. For each
x € X, a neighbourhood base for this topology is given by

B, ={D.(x):e > 0},

where D, (z) = {y € X : d(y,z) < €}. We say that the normed linear space (X, | - ||)
(or informally X) is complete if the corresponding metric space (X, d) is complete.
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1.4. Example. Define
o (N) = {(zp)%, : &, € K,n > 1,2, = 0 for all but finitely many n > 1}.

For ¢ = (za)a € cy(N), set [afloc = sup,s |val. Then (cy(N), | - o) is
normed linear space. It is not, however, complete.
The space

CH0<(N) ={(zn)pzy txn € K;n > l,nli_{go z, = 0},

equipped with the same norm ||z[|oc = sup,,> |2n| does define a complete normed
linear space.

1.5. Remark. We pause to make a comment about the terminology which we
shall be using in these notes. A vector subspace of a vector space V over K is
a non-empty subset W for which x,y € W and k € K implies that kx +y € W.
When the vector space V' does not carry a topology, there is no confusion in this
terminology. When dealing with normed linear spaces (X, || - ||), and more generally
with the topological vector spaces (V,T) we shall deal with later in the text, and of
which normed linear spaces are an example, one needs to distinguish between those
vector subspaces which are definitely closed sets in the underlying topology from
those which may or may not be closed. For this reason, we shall refer to vector
subspaces of a topological vector space (V,7) which may or may not be closed as
linear manifolds in )V, whereas subspaces will be used to denote closed linear
manifolds. As a pedagogical tool, we shall also refer to these as closed subspaces,
although strictly speaking, in our language, this is redundant.

Thus ¢ (N) is a linear manifold in cf (N) under the norm || - ||, but it is not a
subspace of ci (N), because it is not closed. In fact, it is dense in i (N).

1.6. Example. Consider
Pr([0,1])) = {p=po +p1z +p2z® + -+ pu2" 10> 1,p; € K,0<i <n}.
Then
Iplloo = sup{lp(2)] : z € 0, 1]}
defines a norm on Pk([0,1]). The Stone-Weierstral Theorem states that Pg([0,1])
is a dense linear manifold in the normed linear space C(]0,1],K) of continuous, K-
valued functions on [0, 1] with the supremum norm.

If we select zp € [0, 1] arbitrarily, then it is straightforward to check that v(f) :=
| f(z0)| defines a seminorm on Pk([0, 1]) which is not a norm.

1.7. Example. Let n > 1 be an integer. If 1 < p < oo is a real number, then
n
1
|z, za)llp = (3 lel?)
k=1

defines a norm on K", called the p-norm. We often write ¢, for (K™, || - ||,), when
the underlying field K is understood. We may also define

|(x1, 22, ..., Tn) |loo = max(|z1], |z2], ..., [2n])-
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Observe that (K", | - ||oc) is a normed linear space. We abbreviate this to £5° when
K is understood.

1.8. Example. For 1 < p < oo, we define

BN) ={(zn)pZ; t2n €EK,n>1and Y |a,|P < oo},

n=1

For (z,,)22; € (i (N), we set

[ (Zn)nllp = (Z |$n|p)1/p‘
n=1

Then || - ||, defines a norm, again called the p-norm. on ¢} (N).
As above, we may also define

RE(N)={(zn)py i zp € Kin > 1, sup |x,| < oo}

The co-norm on (g (N) is given by

[[(Zn)nlloo = sup [zn].
n

In most contexts, the underlying field K is understood, and we shall write only
(P(N), or even P, 1 < p < o0.

The last two examples have one especially nice property not shared by ck(N)
and Pk([0,1]), namely: they are complete.

1.9. Definition. A Banach space is a complete normed linear space.

1.10. Example. Let C([0,1],K) = {f : [0,1] — K : f is continuous}, equipped
with the uniform norm

[flloo = max{|f(2)] : 2 € [0, 1]}.
Then (C([0,1],K), | - |s) is a Banach space.

1.11. Definition. Let ‘H be an inner product space over K; that is, there exists
a map

<‘7 > - K
which, for all x,x1,x2,y € H and A € K, satisfies:
(1) <$1 + 2, > = <.I1,y> + <l’2,y>;
(ii) (z,y) = (y, z);
i

) (z,
(i) (Ar.y) = A, y):
(iv) (z,x) >0, with equality holding if and only if x = 0.
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(Of course, when K =R, the complex conjugation in (ii) is superfluous.) Recall
that the canonical norm on H induced by the inner product is given by

|z = (z,z)'/2.

If H is complete with respect to the corresponding metric, then we say that H is a
Hilbert space. Thus every Hilbert space is a Banach space.

1.12. Example. Recall that ¢%(N) is a Hilbert space with inner product

<<33n ny yn anyn

More generally, let (X, u) be a measure space. Then H = L?(X,u) is a Hilbert
space with
9) = / fgdp.
X

1.13. It is easy to see that if X is a normed linear space, then the vector space
operations

oc: XxX — X q nw: KxX — X
(x,y) = z+y o (\a) = Az
of addition and scalar multiplication are continuous (from the respective product
topologies on X x X and on K x X to the norm topology on X). The proof is left
as an exercise for the reader. In particular, therefore, if 0 %2 A € K, y € X, then
oy : X — X defined by oy(x) = v +y and py : X — X defined by py(x) = Az are
homeomorphisms.
As a simple corollary to this fact, a set G C X is open (resp. closed) if and only
if G+ y is open (resp. closed) for all y € X, and AG is open (resp. closed) for all
0 # A € K. We shall return to this in a later section.

1.14. New Banach spaces from old. We now exhibit a few constructions
which allow us to produce new Banach spaces from simpler building blocks.
Let (X5, || ||n)32; denote a countable family of Banach spaces. Let X = [[,, X,.

(a) For each 1 < p < oo, define

Z ©pXn = {(zn)n € X+ [[(@n)nllp = (Z EN AR

Then Z _, ®pX, is a Banach space, referred to as the fP-direct sum of
the (Xp)n.
(b) With p = o0,

D @ocn = {(an)n € X: [ n)nlloo = sup |l < o).

n=1
Again, > > | @ X, is a Banach space - namely the (*°-direct sum of the
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(c) We also define

co(X) ={(xn)n € X:2p € Xp,n>1and lim ||z,|, =0}
n—oo

The norm on co(X) is |[(Zn)nllcc = sSup,>1 ||n|ln, and equipped with this
norm, co(X) is easily seen to be a closed subspace of >~>7 | oo Xp.

1.15. Definition. Let X be a vector space equipped with two norms || - || and

[l - ll|. We say that these norms are equivalent if there exist constants k1, ka > 0
so that

rillzll < ]| < mollz|l for all x € X.

We remark that when this is the case,
1 1
— [zl < flf| < —[l[l,
K2 K1
resolving the apparent lack of symmetry in the definition of equivalence of norms.

1.16. Example. Fixn > 1 an integer, and let X = C". For x = (21, 22, ..., p) €

X,
n n n
Izl =D laal <Y (maxayl) = D [[#lloo = 2]l
k=1 =1 7 k=1
Moreover,
n
l2]loo = max | < |zk] = |21,
J
k=1
so that
[2lloo < llzfly < 72| co-
This proves that || - || and || - ||cc are equivalent norms on X. As we shall later see,

all norms on a finite dimensional vector space are equivalent.

1.17. Example. Let X = C([0,1],C), and consider the norms
[flloo = sup{|f(z)] - = € [0, 1]}

and

1
17 = /0 ()| da

on X. If, for each n > 1, we set f, to be the function f,(z) = 2", then || fu|c = 1,

while || fulli = fol 2"dr = n%rl Clearly || - |l1 and || - ||oo are inequivalent norms on
X.
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1.18. Proposition. Two norms ||-|| and|||||| on a vector space X are equivalent
if and only if they generate the same metric topologies.
Proof. Suppose first that || - || and ||| - ||| are equivalent, say x1||z|| < |||z||| < k2l|z]]

for all z € X, where k1, k2 > 0 are constants. If z € X and (z,), is a sequence in
X, then it immediately follows that

lim ||z, —z|| =0 if and only if lim |||z, —z[|| = 0.

That is, the two notions of convergence coincide, and thus the topologies are equal.

Conversely, suppose that the metric topologies 7. and 7)), induced by || - ||
and ||| - ||| respectively, coincide. Then G = {x € X : ||z|| < 1} is an open nbhd of 0
in (X,]]] - |||), and so there exists § > 0 so that H = {z € X : |||z||| < 6} € G. That

is, |||z||] < 0 implies ||z|| < 1. In particular, therefore, |||z||| < 6/2 implies ||z| < 1,
so that that ||y|| < (2/0)]||y||| for all y € X. By symmetry, there exists a constant
k2 > 0 so that |||y||| < ke|ly|| for all y € X.

Thus || - || and ||| - ||| are equivalent norms.

1.19. Corollary. Equivalence of norms is an equivalence relation for norms on
a vector space X.

1.20. Definition. Let (X, | - ||) be a normed linear space. A series Y -2, &y in
X is said to be absolutely summable if Y 7 ||z,| < .

The following result provides a very practical tool when trying to decide whether
or not a given normed linear space is complete. We remark that the second half of
the proof uses the standard fact that if (y,,), is a Cauchy sequence in a metric space
(Y, d), and if (y, ), admits a convergent subsequence with limit g, then the original
sequence (yy ), converges to yo as well.

1.21. Proposition. Let (X,| - ||) be a normed linear space. The following
statements are equivalent:

(a) X is complete, and hence X is a Banach space.
(b) Ewvery absolutely summable series in X is summable.

Proof.

(a) implies (b):  Suppose that X is complete, and that »_ x, is absolutely
summable. For each k > 1, let y, = Z]:L:1 ZTpn. Given € > 0, we can find
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N > 0 so that m > N implies > > ||zn| <e. If k> m > N, then
k

lye = ymll =1 > @nll

IA IA
NEEIN
¥R

so that (yg)r is Cauchy in X. Since X is complete, y = limg oo yr =
limy, o0 22:1 Ty =D o0 Ty exists, i.e. Y 7 x, is summable.

(b) implies (a): Next suppose that every absolutely summable series in X is
summable, and let (y;); be a Cauchy sequence in X. For each n > 1 there
exists N,, > 0 so that k,m > N, implies ||yr —ym|| < 1/2"FL. Let 21 = yp,

and for n > 2, let x, = yn,, — yn,_,. Then ||z,| < 1/2" for all n > 2, so

that
(e.) o 1
S ol < ol + 3 o
n=1 n=2
1
< || + 3 < 0.
By hypothesis, v = > 7 z, = limp . ZI:L:1 x, exists.  But

Zﬁzl Tn = YN,, so that lim; .o yn, = y € X. Recalling that (y;); was
Cauchy, we conclude from the remark preceding the Proposition that (y;);
also converges to y. Since every Cauchy sequence in X converges, X is
complete.

a

1.22. Theorem. Let (X,| - ||) be a normed linear space, and let M C X be a
linear manifold. Then
p(z + M) ;= inf{||x + m| : m € M}

defines a seminorm on the quotient space X /9.
This formula defines a norm on X/9M if and only if M is closed.
Proof. First observe that the function p is well-defined; for if z + 9 = y 4+ 9N, then
x —y € M and so
p(y +M) = inf{ ||y +ml| : m € M}
=inf{lly+m+ (z—y)ll = [z +m| : m € M}
= p(z +M).
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Clearly p(x 4+ 9t) > 0 for all z + 9 € X/M. If 0 # k € K, then m € M if and
only if %m € M and so
p(k(z + M) = p(kx + M)
= inf{||kx + m|| : m € M}
1
= inf{||k(x + %m)H :m e M}
= k| inf{|lx + mgl| : mo € M}
= |k|p(z + M).
If K =0, then p(0 4+ 9M) = 0, since m =0 € M.
Finally,
p((z +9M) + (y +M)) = p(z +y + M)
inf{|[(x + y) + m|| : m € M}
inf{||(z + m1) + (y + m2)|| : m1, mo € M}
inf{||lz +ma|l + [ly + ma|| : m1,mo € M}
= p(x + M) + p(y + M).

IN

In the case where 91 is closed in X, suppose that p(z + 9t) = 0 for some z € X.
Then

inf{||z + m| : m € M} =0,

so there exist m,, € M, n > 1, so that —x = lim,,_,oc Mm,,. Since M is closed, —z € M
and so z + M =z + (—x) + M = 0+ M, proving that p is a norm.
The converse statement is left as an exercise.

1.23. Let X be a normed linear space and 91 be a linear manifold in X. We shall
denote the canonical quotient map from X to X/9 by ¢ (or ggn if the need to be
specific arises). When 91 is closed in X, we shall denote the norm from Theorem 1.22
once again by || - || (or || - [[£/on), so that

la()ll = [z + M| = inf{{lz +m]| : m € M}

It is clear that ||g(z)|| < ||z|| for all z € X, and so ¢ is continuous. Indeed, given
e > 0, we can take 0 = € to get ||z — y|| < ¢ implies ||¢(z) — q(v)|| < [z —y|| < e.
We shall see below that q is also an open map - i.e. it takes open sets to open sets.

1.24. Theorem. Let X be a normed linear space and I be a closed subspace

of X.

(a) If X is complete, then so are M and X /M.
(b) If M and X/9M are complete, then so is X.

Proof.
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Suppose that X is complete. We first show that 91 is complete.

Let (my)52, be a Cauchy sequence in 9. Then it is Cauchy in X and
X is complete, so that z = lim,,_.o, m,, € X. Since M is closed in X, x € M.
Thus 91 is complete.

Note that this argument shows that any closed subset of a complete
metric space is complete.

Next we show that X/90t is also complete.

Let >, q(x,) be an absolutely summable series in X/9. For each
n > 1, choose m,, € M so that ||z, + my|| < [lg(zn)|| + 5. Then

1
5 o+l < 3l + 5 ) < ¢

so Y, (xn +m,) is summable in X since X is complete. Set

T 1= Z(l‘n +my).

n

By the continuity of ¢,

q(zo) = Q(Z(xn +mn))

n

= q(Tp +my)

= q(xn).
n

Thus every absolutely summable series in X/9 is summable, and so by
Proposition 1.21, X/9 is complete.
Suppose next that 9t and X/9 are both complete.

Let (z,,)52; be a Cauchy sequence in X. Then (¢(z,))5; is Cauchy in
X/ and thus q(y) = lim,—o g(x,,) exists, by the completeness of X /9.
For n > 1, choose m,, € 9 so that

Iy = (o -+ m)| < lay) — a(ea)ll + 5

Since (zp + my)5, converges to y in X, it follows that it is a Cauchy
sequence. Since both (z,,)2%, and (x, +my,)o2, are Cauchy, it follows that
(my)o% is also Cauchy — a fact that follows easily from the observation

that
lmj —mal| < |[(zj +my) — (@i + ma)|| + [lzj — @il
But 91 is complete and so m := lim,,_,, m,, € 9. This yields
y—m = lim (z, + my) —m = lim z,,
n—oo n—oo

so that (x,)5%; converges to y —m in X. That is, X is complete.
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1.25. Proposition. Let X be a normed linear space and M be a closed subspace
of X. Let q : X — X/9M denote the canonical quotient map.
(a) A subset W C X/9 is open if and only if ¢~ (W) is open in X.
(b) The map q is an open map - i.e., if G C X is open, then q(G) is open in
Proof.
(a) If W C X/9M is open, then ¢~ (W) is open in X because ¢ is continuous.
Suppose next that W C X/9 and that ¢~ '(W) is open in X. Let
q(x) € W. Then x € ¢~'(W), and so we can find § > 0 so that Vs(x) C
g "W). If |lq(y) — q(2)|] < 4, then |ly —z +m]| < § for some m € M, and
thus q(y) = q(y +m) € q(Vs(x)) € W. That is, Vs(q(z)) € W, and W is
open.
(b) Let G C X be an open set. Observe that ¢~ !(¢(G)) = G+ = Upeqn G+m
is open, being the union of open sets. By (a), ¢(G) is open.
OJ

1.26. Let 9 be a finite-dimensional linear manifold in a normed linear space
X. Then 9 is closed in X. The proof of this is left as an assignment exercise.

1.27. Proposition. Let X be a normed linear space. If M and 3 are closed
subspaces of X and dim 3 < oo, then MM + 3 is closed in X.
Proof. Let ¢ : X — X/9 denote the canonical quotient map. Since 3 is a finite
dimensional vector space, so is ¢(3). By the exercise preceding this Proposition,
q(3) is closed in X/9M. Since q is continuous, M + 3 = ¢~ *(¢(3)) is closed in X.
O
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Appendix to Section 1.

1.28. This course assumes that the reader has taken at least enough Real Anal-
ysis to have seen that (¢ (N), | - ||,) is a normed linear space for each 1 < p < .
Having said that, let us review Holder’s Inequality as well as Minkowski’s Inequality
in this setting, since Holder’s Inequality is also useful in studying dual spaces in the
next Section. The reader will recall that Minkowski’s Inequality is the statement
that the p-norm is subadditive; that is, that the p-norm satisfies condition (iii) of
Definition 1.2. We remark that both inequalities hold for more general LP-spaces.
Our decision to concentrate on fP-spaces instead of their more general counterparts
is an attempt to accommodate the background of the students who took this course,
as opposed to a conscious effort to avoid LP-spaces.

Before proving Hélder’s Inequality, we pause to prove the following Lemma.

1.29. Lemma. Let a and b be positive real numbers and suppose that
1<p,g<oo satz’sfy%—i—%:l. Then

11 _a b
ar bs < — 4 —.

b q

Proof. Let 0 < ¢t < 1 and consider the function

flx) =o' —tx+t -1,
defined on (0, 00). Then
flx) =tz —t = (a1 = 1).

Thus f(1) =0 = f/(1). Since f'(z) > 0 for z € (0,1) and f'(x) < 0 for z € (1, 00),
it follows that
f(z) < f(1) =0 for all x # 1.
That is, ' < (1 —t) + tz for all x > 0, with equality holding if and only if z = 1.
Letting = a/b, t = 1/p yields
1 1

1.1 4 1 =1
arba —qarbr

—~
S
—
S |

1 1 a

§(1_§)+§(b)
1 a 1
:E(g)‘i‘g-

Multiplying both sides of the equation by b yields the desired inequality.
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1.30. Theorem. Hdélder’s Inequality
Let 1 < p,q < oo, and suppose that % +% = 1. Let x = (xn)n € P and

Y= Yn)n € 19. If 2 = (23)n, where z, = Ty, for alln > 1, then z € /' and

121l < {2y llyllg-

Proof. The cases where p = 1 or p = oo are routine and are left to the reader.
First let us suppose that ||z|, = ||y|l; = 1. Applying the previous Lemma to
our sequences x and y yields, for each n > 1,

1 1

[Znyn| = (lznl?)? (lyn|®)
1

|xn|p + 7|yn|q7
q

so that

n n
1 py 1 g
S S

1 1
= Sl + vl
=1.
In general, if x € # and y € (9, let u = z/(||z|p), v = v/(||yllq) so that

[ull, =1 = [lv]ly and so
1
Z |Jjnyn| = Z ‘unvn|

lllp lylle 4 ;

<1.

Thus
2]l < [lzlp [[yllq-

Holder’s Inequality is the key to proving Minkowski’s Inequality.

1.31. Theorem. Minkowski’s Inequality.
Let 1 < p < o0, and suppose that © = (xn), and y = (yn)n are in P. Then
x+y=(n+ Yn)n € P and

12+ yllp < llzllp + [lyllp-

Proof. Again, the cases where p = 1 and where p = oo are left to the reader.
Suppose therefore that 1 < p < co. Observe that if a,b > 0, then

p
(5 s
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so that (a + b)P < 2P(aP + bP). It follows that

Z |xn + yn|p < 2pz<|xn|p + ‘yn|p) <00
n n

which proves that x + y € /P,
By Holder’s Inequality,

Sl + 9l el < el 120+ yalP )l
n

and similarly

Z |z + yn’p_l [Yyn| < ”pr | (| + yn’p_l)n”(z'

n

Now
1
[0+ vl nlly = <Z|wn~|—y o m)
1
q
= <Z |xn +ynp>
= [[(zn + yn)u B/
Hence

|z + y||§ = Z |Zn + Yn| |20 + yn|p_1

n

< Z ([zn| =+ ynl) [2n + yn|p_1
n

< (lzllp + lyllp) Iz + gl allq
= (Il + 19llp) Il(@n + yu)ul”,

from which we get

lz +yllp = e+ ylp /7 < llally + [yl

Let us now examine a couple of examples of useful Banach spaces whose defi-
nitions require a somewhat better background in Analysis than we are assuming in
the main body of the text.
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1.32. Example. Let z = (z,), be a sequence of complex (or real) numbers.
The total variation of x is defined by

V(z):= Z |Trt1 — Tnl.
n=1

If V(z) < oo, we say that = has bounded variation. The space
bv :={(zp)n:2n e K,n>1,V(z) < 0o}

is called the space of sequences of bounded variation. We may define a norm
on bv as follows: for x € bv, we set

%)
[(@n)nllby == 21|+ V(2) = |21 + Y |@nt1 — zal.
n=1

It can be shown that bv is complete under this norm, and hence that bv is a
Banach space.

If we let bvg = {(x,)n € bv : lim, . x, = 0}, then

[(@n)nllbve ==V ((zn)n)
defines a norm on bvg, and again, bvg is a Banach space with respect to this norm.

1.33. Example. The geometric theory of real Banach spaces is an active and
exciting area. For a period of time, the following question was open [Lin71]: does
every infinite-dimensional Banach space contain a subspace which is linearly home-
omorphic to one of the spaces P, 1 < p < 0o or cg? In 1974, B.S. Tsirel’son [Tsi74]
provided a counterexample to this conjecture. In this example, we shall discuss
the broad outline of the construction of the Tsirel’son space, omitting the proofs of
certain technical details.

We begin by considering the space cg of Example 1.4. For each n > 1, let e, € ¢g
denote the sequence (0,0, ...,0,1,0,0,...), with the unique “1” occurring in the n'?
coordinate. Given x = (zy,), € cp, we may write z = ) >~ | Tpey. Let us also define
the map P, : co — ¢o via Py (xg)g := (0,0, ...,0, Tpi1, Tnio, Tnis, ...

Given a finite set {v1, va, ..., v, } of vectors in ¢y, we shall say that they are block-
disjoint for consecutively supported — written v; < vo < --- < v, — if there exist
a1, 09, ..., Qp, B1, B2, ..., Br € N with

ar<Bi<aa< < ---<ap <Gy
so that supp(v;) C [ay, 55], 1 < j < r. Here, for = (z,,)n € co,
supp(z) :={j € N:z; # 0}.
We shall write (vy, v, ..., v,) for Z;Zl vj when vy <wy < --- < v

For a subset B C ¢y, we consider the following set of conditions which B may or
may not possess:

(a) = € B implies that |||l < 1;i.e. B is contained in the unit ball of co.
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(b) {en}pz, S B.

() fz =307 anen € B, y = (Yn)n € co and |y,| < |z,| for all n > 1, then
y € B. (This is a hereditary property.)

(d) If v <wy < -+ <y lie in B, then %PT((vl,vg,...,vr)) € B.

(e) For every x € B there exists n € N for which 2P,(z) € B.

Our first goal is to construct a set K which has all five of these properties.
Let L1 = {rej : =1 <r <1,j > 1} and for n > 1, set

1
Lpy1 =L, U {§Pr((vl,vg, ) ir >l <wvg <o <wp € Ly}

Let K denote the pointwise closure of U,>1L,. It can be shown that K C ¢y. We
set D = ¢o(K) denote the closed convex hull of K (with the closure taking place in
Co).

The Tsirel’son space T is then defined as spanD. The norm on T is given by
the Minkowski functional which we shall encounter later when studying locally
convex spaces. It is given by ||z||r = inf{r € (0,00) : € rD}, where 7D = {ry :
y € D}. As we shall later see, the definition of this norm ensures that D is precisely
the unit ball of T'.

Although we shall not prove it here, (7, || - ||7) is a Banach space which does not
contain any copy of ¢y or /P, 1 < p < oo.

1.34. Example. Another Banach space of interest to those who study the
geometry of said spaces is James’ space.

For a sequence (x,), of real numbers, consider the following condition, which
we shall call condition J: for all k£ > 1,

sup [(xnl - xnz)Q + ($n2 - xn3)2 +eet (‘Tnkfl - xnk)Q} < 0.
ni<ng<---<ng

The James’ space is defined to be:

~

J=A{(zn)n € co : (@), satisfies condition J}.

The norm on J is defined via:

=

||($n)n||3 = sup [($n1 - xnz)Q + ($n2 - $n3)2 et (:I"nk—l - xnk)Q]
np<ng<---<ng

It can be shown that J is a Banach space when equipped with this norm.

1.35. Example. Let X be a locally compact topological space and let 5 denote
the o—algebra of Borel subsets of X. Let u be a positive measure on X, so that

p:B—RU{co}

satisfies

(a) p(2) = 0;
(b) p(B) > 0 for all B € B;
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(c) if {Bn}n is a sequence of disjoint, measurable subsets from B, then
1(UnBn) = ZN(BH)'
n

The measure p is said to be finite if u(X) < oo, and it is said to be regular if
(i) pu(K) < oo for all compact subsets K € B;

(ii) pu(B) =sup{u(K): K C B, K compact} for all B € B; and

(iii) u(B) = inf{u(G) : B C G,G open} for all B € B.

A complex-valued, Borel measure on X is a function

v:B—C
satisfying:

(a) v(@) =0, and

(b) if {By}n is a sequence of disjoint, measurable subsets from B, then

v(UnBy) =Y v(By).
n
Let v be a complex-valued Borel measure on X. For each B € B, a measurable
partition of B is a finite collection {Ey, E», ..., B} of disjoint, measurable sets
whose union is B. We define the variation |v| of v to be the function defined as
follows: for B € B,

k
|V|(B) == sup{z lv(E;)| : {Ej};?:l is a measurable partition of B}.
j=1

It is routine to verify that |v| is then a finite, positive Borel measure on X. We
say that v is regular if |v| is.

It is clear that every complex-linear combination of finite, positive, regular Borel
measures yields a complex-valued, regular Borel measure on X. A standard result
from measure theory known as the Hahn-Jordan Decomposition Theorem
states that the converse holds, namely: every complex-valued, regular Borel measure
can be written as a complex-linear combination of (four) finite, positive, regular
Borel measures.

Let Mc(X) denote the complex vector space of all complex-valued, regular Borel
measures on X. Then the map

-1 Mc(X) — [0,00)
v e (X)

defines a norm on M¢(X), and Mc(X) is complete with respect to this norm.
1.36. In Theorem 1.24, we showed that if X is a Banach space and 91 is a closed

subspace, then X/91 is complete. Our proof there was based upon Proposition 1.21.
This result also admits a direct proof in terms of Cauchy sequences:

Theorem. Let X be a Banach space and suppose that M is a closed subspace of
X. Then X/9M is complete.
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Proof.

Let (¢(xn))22; be a Cauchy sequence in X/9t. For each n > 1, there exists
kn > 1 so that 4,5 > k, implies ||q(z;) — q(z;)|| < 27". Without loss of generality,
we may assume that k, > k,_1 for all n > 2.

Set zy, := xg,, n > 1 and let m; = 0. For n > 1, choose m,, € 9 so that

”(Zn—1 +mp—1) — (zn +my)|| < 9—(n—1)

That this is possible follows from the definition of the quotient norm along with the
inequality of the second paragraph. If we now define y, := 2z, + m,, n > 1, then
q(yn) = q(zn) = q(xg, ), and for ny > ny,
ng—mni
[Yn1 = Yno |l < Z Yn1+5 — Yni+i—ll
j=1

n2—mni

from which it follows that (y,)5>; is Cauchy in X. Since X is complete, y =
lim,, o yn, € X, and since the quotient norm is contractive, q(y) = lim,,—o q(yn) =
limy, 00 (2, ). Since (q(z,))52; is Cauchy, ¢(y) = lim, o ¢(xy), which proves
that every Cauchy sequence in X/9t converges - i.e. that X/9 is complete.

a

I have the body of an eighteen year old. I keep it in the fridge.
Spike Milligan
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2. An introduction to operators

Some people are afraid of heights. Not me, I'm afraid of widths.
Steven Wright

2.1. The study of mathematics is the study of mathematical objects and the
relationships between them. These relationships are often measured by functions
from one object to another. Of course, when both objects belong to the same
category (be it the category of vector spaces, groups, rings, etc), it is to be expected
that the most important maps between these objects will be morphisms from that
category. In this Section we shall concern ourselves with bounded linear operators
between normed linear spaces. These bounded linear maps, as we shall soon discover,
coincide with those linear maps which are continuous in the norm topology. Since
normed linear spaces are vector spaces equipped with a norm topology, the bounded
linear operators are the natural morphisms between them.

It should be pointed out that Banach spaces can be quite complicated to analyze.
For this reason, many people working in this area often study the structure and
geometry of these spaces without necessarily emphasizing the study of the linear
maps between them. In the next Section we shall examine the notion of a Hilbert
space. These are amongst the best-behaved Banach spaces, and their structure
is relatively well understood. For this reason, fewer people study Hilbert spaces
alone; Hilbert space theory tends to focus on the theory of the bounded linear maps
between them, as well as algebras of such bounded linear operators.

We would also be remiss if we failed to point out that not everyone on the planet
restricts themselves to bounded (i.e. continuous) linear operators. Differentiation
has the grave misfortune of being an unbounded linear operator, but nevertheless
it is hard to avoid if one wishes to study the world around one - or around one’s
friends, acquaintances, enemies, and every other one. Indeed, in applied mathemat-
ics and physics, it is often the case that the unbounded linear operators are the more
interesting examples. Having said that, we shall leave it to the disciples of those
schools to wax poetic on these topics.

2.2. Definition. Let X and ) be normed linear spaces, and let T : X — )
be a linear map. We say that T is a bounded operator if there exists a constant
k>0 so that ||Tz| < k||z|| for all x € X. When T is bounded, we define

1T = inf{k > 0 [[Tz|| < kl[z]| for all z € X}

We shall refer to ||T|| as the operator norm of T.

It is, of course, understood that the norm of Tz is computed using the )-norm,
while the norm of x is computed using the X-norm. As we shall see below, the
operator norm does define a bona fide norm on the vector space of bounded linear
maps from X to ), thereby justifying our terminology.
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Our interest in bounded operators stems from the fact that they are precisely
the continuous operators from X to ).

2.3. Theorem. Let X and ) be normed linear spaces and T : X — ) be a
linear map. The following are equivalent:

(a) T is continuous on X.
T is continuous at 0.

(1) s = sup{ [Tzl /2] : 0 # 2 € X} < oo,
Furthermore, if any of these holds, then k1 = ko = k3 = ||T|.
Proof.

(a) implies (b): This is trivial.

(b) implies (c): Suppose that T is continuous at 0. Let ¢ = 1 and choose § > 0
so that ||z — 0| < ¢ implies that [|Tz —T0|| = |Tz| <e=1. If |ly|| < J/2,
then ||Ty|| < 1, and so [|z[| < 1 implies |T(3z)|| < 1, ie. ||Tz| < 2/.
Thus ||T|| < 2/6 < 0o, and T' is bounded.
(c) implies (d): This is trivial.
(d) implies (e): This is trivial.
) implies (f): Again, this is trivial.

) implies (a): Observe that for any x € X, ||Tz|| < ko|z|. (For x # 0, this
follows from the hypothesis, while the linearity of 7" implies that 70 = 0, so
the inequality also holds for = 0.) Thusife > 0 and ||z —y|| < &/(k2+1),
then

IT2 - Tyl = IT(@ - )] < malle — ]| < &
The proof of the final statement is left as an exercise for the reader.
O

2.4. Computing the operator norm of a given operator 7' is not always a simple
task. For example, suppose that H = (C% || - [|]2) is a two-dimensional Hilbert
space with standard orthonormal basis {e; = (1,0),e2 = (0,1)}. Let T': H — H

be the map whose matrix with respect to this basis is so that T'(z,y) =

1 2
3 4|’
(z + 2y, 3z + 4y). By definition,

IT|l = sup{||T2|| : = € C, |[2|| < 1}

= sup{\/|z + 2y[2 + [3z + 4y : 7,y € C, /|22 + |y[2 < 1},

which involves non-linear equations. For Hilbert spaces of low dimension — say,
less than dimension 5 — alternate methods exist (but won’t be developed just yet).
Instead, we turn our attention to special classes of operator which are simple enough
to allow us to obtain interesting results.

So as to satisfy the curious reader, we mention that the norm of T"is v/ 15 + v/221.
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2.5.
(a)

Example. Multiplication operators.
Let X = (C([0,1],C), || - ls0), and suppose that f € X. Define
Mf X - X
g — fg°
It is routine to check that My is linear. If ||g|loc < 1, then

IMfglloc = [ falloo = sup{|f(z)g(z)] : x € [0,1]} < [|flloo l|glloo-

Thus [|[M¢]|co < || fllec < 00, and M} is bounded.

Setting g(z) = 1, = € [0,1], we have g € X, [|g||oc = 1 and || M¢g| =
[/ lloc, so that || M| > [|f[|oc and therefore ||M[| = || fl|oc-

For (hopefully) obvious reasons, My is referred to as a multiplication
operator .
We now consider a similar operator acting on a Hilbert space. Let H =
L?(X,du), where du is a positive, regular Borel measure. Suppose that
f € L>®(X,du) and let

Mf X - X
g — fg°

Once again, it is easy to check that M/ is linear, while for g € H,

1 1
Mgl = ( [ 1f@at@)Pd)?

1 1
< ([ 11 lg()Pdn)?

= [I£lloe llgll2,

so that ||M]| < ||f|lec, and hence My is bounded. As for a lower bound on
the norm of My, for each n > 1, let ), = {z € X : [f(x)| > || f|lc — 1/n}.
Then F}, is measurable and p(F},) > 0 by definition of || f||c. Let E, C F,
be a measurable set for which 0 < p(E,) < oo, n > 1. The existence of
such sets F,, n > 1 follows from the regularity of the measure p. Let
gn = XE,, the characteristic function of E,. Then g, € L*(X,pu) for all
n > 1 and

1 1
Mpgulle = ([ 1£@n(e)Pd)’*
— ([ I@)Pdu)?

n

> ([ (Ul = 1/nPa

N|=

N|=

(11l = 1/m) ([ lou(a)dn)
(1fllo0 = 1/m) llgalz
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From this we see that ||M¢|| > ||fllcc — 1/n. Since n > 1 was arbitrary,
1M > [[flloe, and 50 [|My]] = || flloc.

Observe that the computation of the norm of the operator depended
very much upon the underlying norms of the spaces involved.

(c) As a special case of this phenomenon, let X = N and suppose that du is
counting measure. Then H = (2(N) and f € (*°(N). As we are wont to
do when dealing with sequences, we denote by d,, the value f(n) of f at
n € N, so that f = (dn)52; € £>°(N). It follows that M¢(zn)n = (dnZn)n
for all (zy,), € ¢*(N). By considering the matrix [My] of My with respect
to the standard orthonormal basis (ey), for H, we see that

dq
do
[My] = ds

Thus, My, often denoted in this circumstance as D = diag{dy, }n, is referred
to as a diagonal operator. The above calculation shows that

DI} = [[My|l = [ flloo = sup{[f(n)] : n = 1} = sup{|dn| : n > 1}.

2.6. Example. Weighted shifts. With H = ¢2(N) and (wy), € £*°(N),
consider the map W : H — H defined by

W (2n)n = (0, wi1, woxe, wsxs, ...) for all (z,), € (2(N).
We leave it as an exercise for the reader to show that W is a bounded linear operator
on H, and that
W] = sup{|wn| : n > 1}.
Such an operator is referred to as a unilateral forward weighted shift.
If (vy)n € £°°(N) and we define the linear map V : H — H via

V(Jjn)n = (U1$2, V223, V324, ) for all (xn)n € H,

then once again V' is bounded, ||V|| = sup{|vn| : n > 1}, and V is referred to as a
unilateral backward weighted shift.

Finally, consider H = ¢?(Z), and with (uy), € ¢*(Z), define the linear map
U:H—"Hvia

U(zn)n = (Un—1Tp—1)n.

Again, U is bounded with ||U|| = sup{|un| : n € Z}, and U is referred to as a
bilateral weighted shift. The reader should ask himself/herself why we do not
refer to “forward” and “backward” bilateral shift operators.
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2.7. Example. Differentiation operators. Consider the linear manifold
P(D) = {p: p apolynomial} C (C(D),| - ||cc). Define the map
D: PD) — P
p = 7,
the derivative of p. Then if p,(z) = 2", ||pn]lec = 1 for each n > 1 and Dp,, =

npn—1, whence ||D|| > n for all n > 1. In particular, D is not bounded. That is,
differentiation is not continuous on the linear space of polynomials.

2.8. Notation. The set of bounded linear operators from the normed linear
space X to the normed linear space 9) is denoted by B(X,92)). If X = 2), we abbreviate
this to B(X). We now fulfil an earlier promise by proving that the map T — ||T|
does indeed define a norm on B(X,9)).

2.9. Proposition. Let X and Q) be normed linear spaces. Then B(X,9)) is a
vector space and the operator norm is a norm on B(X,9)).
Proof. Since linear combinations of continuous functions between topological spaces
are continuous, B(X,92)) is a vector space.

As to the second assertion: for R, T € B(X,%) and k € K,

(i) [Tl = sup{[[T] : [l«]| <1} > 0;
(ii) [|7)| = 0 if and only if ||Tz||/||z|| = 0 for all x # 0, which in turn happens
if and only if Tx = 0 for all z € X; i.e. if and only if T'= 0.

(iit)

IET|| = sup{[[Tz[| : ||| <1}
= sup{[k| || Tz[| : [|lz] <1}
= [k] sup{[|Tz| - [[«]| <1}
= [k[IT]-

IR+ T = sup{[[(R+T)x| : [l«f| <1}
sup{||Rz|| + [|T|| : ||| < 1}
sup{|| Rz || + | Ty « =[], [lyll < 1}
= | Bl + [T
This completes the proof.
O

2.10. Theorem. Let X and %) be normed linear spaces and suppose that ) is
complete. Then B(X,2)) is complete, and as such it is a Banach space.
Proof. Suppose that > > T;, is an absolutely summable series in B(X,9)). Given

T € X,
(e.0) (o) (o ¢]
S Tl < SNl 2l = 21 1Tnll) < oo,
n=1 n=1 n=1
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and thus, since 9) is compete, > > | T,z € Y exists. Moreover, the linearity of each
T, implies that the map T : X — 9 defined via Tz = > 7 | T,z is linear, while

|lz|| <1 implies from above that ||Tz| <> >, ||T,|. Hence

[e%S)
ITI <> Tl < oo,
n=1

implying that T' is bounded.
Finally,

N S)
|Tx =Y Tz =1 > Tl
n=1 n=N-+1
[e%s)

<l Y ITall,

n=N+1

from which it easily follows that T' = limy _.so Zivzl T,. That is, the series 2?21 T,
is summable. By Proposition 1.21, B(X,9)) is complete.

a

As a particular case of Theorem 2.10, consider the case where ) = K, the base
field.

2.11. Definition. Let X be a normed linear space. The dual of X is B(X,K),
and it is denoted by X*. The elements of X* are referred to as continuous linear
Junctionals or — when no confusion is possible — as functionals on X.

Since K is complete, Theorem 2.10 implies that X* is again a Banach space.
As such, we may consider the dual space of X*, namely X2 = x** .= (X*)*,
known as the double dual of X, and more generally, the ntP-iterated dual spaces
XM = (x(»=D)* 5 > 3. All of these are Banach spaces.

Before proceeding to some examples, let us first introduce some notation and
terminology which will prove useful.

2.12. Definition. A collection {e,}5°, in a Banach space X is said to be
a Schauder basis if every x € X can be written in a unique way as a norm

convergent series
)
T = E Tn€n
n=1

for some choice x, € K, n > 1.

2.13. Example.
(a) For each n > 1, let e, denote the sequence e, = (0,0, ...,0,1,0,0,...) € KN,
where the unique “1” occurs in the n'* position. Then {e,}, is a Schauder

basis for ¢y and for P, 1 < p < co. Observe that it is not a Schauder basis
for £°°.
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We shall refer to {e,}, as the standard Schauder basis for ¢y and
for ¢P.
(b) It is not as obvious what one should choose as the Schauder basis for
(C[0,1],R). It was Schauder [Sch27] who first discovered a basis for this
space. The description of such a basis is non-trivial.

2.14. Example. Consider the Banach space
co = {(zn)pzy € KN : lim xn = 0},
n—oo

equipped with the supremum norm ||(z)n|lcc = sup{|z,|: n > 1}. We claim that
¢ is isometrically isomorphic to ¢! = ¢1(N). To see this, consider the map

O: o —
z2:=(zp)n — @z’

where ¢, ((p)n) = Y ney Tnzn for all (z,)n € cp. That O is linear is readily seen.
That the sum converges absolutely is also easy to verify.
If ||(zn)nlloo < 1, then |x,| <1 for all n > 1, so that

o0 oo
o= ((zn)n)| = |Z$nzn| < Z |Tn2n| < Z 2| = []]1-
n=1 n=1

Hence ||¢z]| < ||z|li- On the other hand, if we set v[n] = (w1, w2, w3, ..., wy, 0,0,0,...)
for each n > 1 (where w; = Zj/|z;| if z; # 0, while w; = 1 if z; = 0), then v[n] € ¢,
|lv[n]|loc = 1 for all n > 1, and

px(vln]) =) Iz,
j=1

From this it follows that ||| > ||z]|1. Combining these two estimates yields ||¢.| =
ER

Thus O is an isometric injection of ¢! into ¢y. There remains to prove that © is
surjective.

To that end, suppose that ¢ € ¢f. Let {e,}, denote the standard Schauder
basis for ¢y, and for each n > 1, let w,, = ¢(e,). Observe that if 3, := w,/|w,| for
wy #£ 0, and B, := 0 if w,, = 0, then

v[n] = Zﬁnen € ¢
k=1
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and |[v[n]||cc = 1. Since, for all n > 1,

n
D> lwal =
k=1

n
Z ﬁnwn
k=1

Z ©(Bnen)
k=1

= le(v[n])|
< [l flo[n]lloo
= lleell;

we see that w := (w1, ws, ws, ...) € 1. A routine computation shows that oy, =
©lego- Since ¢, ¢y, are both continuous and since ¢y is dense in ¢y, ¢ = @, = O(w).
Thus © is onto.

2.15. Example. Let 1 < p < co. Recall from your Real Analysis courses that
there exists an isometric linear bijection © : 7 — (¢?)*, where — as always — ¢ is the
Lebesgue conjugate of p satisfying 1/p+1/q = 1.

The map is defined via:

O: (1 — (P)*

Z = Pz

where for z = (2,)n € €9, we have ¢, ((Tn)n) = Y, TnZn-

We normally abbreviate this result by saying that the dual of 2 is ¢4, when
1 < p < 0o. We refer the reader to the Appendix to Section 2 for a proof of this
result.

2.16. Example. The above example can be extended to more general measure
spaces. Let 1 < p < oo, and suppose that u is a o-finite, positive, regular Borel
measure on LP(X, ). Again, the map

©: LI(X,p) — LP(X,p)
g = Pg>s
where ¢g4(f) = [y fgdp defines a linear, isometric bijection between L?(X, u) and
LP(X, 1)
If we drop the hypothesis that p is o-finite, the result still holds for 1 < p < oc.
For reasons we shall discuss in the next Section, when p = 2, we often consider
the related map
QO L2(X,p) — LA(X,p)*
Y = Pgs
where ¢4(f) = [ x Jgdp defines a conjugate-linear, isometric bijection between
L2(X,u) and L?(X, u)*.
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2.17. Example. A function f : [0, 1] — K is said to be of bounded variation
if there exists £ > 0 such that for every partition {0 =ty < t; <ty <---<t, =1}

of [0,1],
Z|f fltic1)] < k.

The infimum of all such x’s for which the above inequality holds is denoted by
| fllv, and is called the variation of f.

Recall from your earlier courses in Analysis that if f is a function of bounded
variation, then for all z € (0,1], f(z~) := lim;_,,— f(¢) exists, and for all z € [0,1),
f(z™) := limy_,,+ f(t) exists (though they might not be equal, of course). We set
F(07) = f(0) and f(17) = f(1). It is known that a function of bounded variation
admits at most a countable number of discontinuities in the interval [0,1], and for
g € C(]0,1],K), the Riemann-Stieltjes integral
exists.

1
/ gdf
0
Let

BV[0,1] ={f:[0,1] = K: || f]lv < o0, f is left-continuous on (0,1) and f(0) = 0}.

Then (BV[0,1],] - ||») is a Banach space with norm given by the variation.
Indeed, the dual of (C([0,1]), ]| - [loc) is isometrically isomorphic to BV[0,1]. For
fe BV[O.l] and g € C([0,1]), we define a functional ¢ € (C([0,1],K) by

1
vr(9) ::/0 g df.

2.18. Proposition. Let X be a normed linear space. Then there exists a con-
tractive linear map J : X — X**.
Proof. Let z € X and define a map z: X* — K via z(z*) = z*(z). It is routine to
check that Z is linear, and if ||z*|| < 1, then |Z(z*)| = |z*(2)| < ||z*|| ||z]|, so that
IZIl < |lz||; in particular, Z € X**.
It is also easy to verify that the map
J: X — X
z =z
is linear, and the first paragraph shows that J is contractive.
O

2.19. The map J is referred to as the canonical embedding of X into X**. It
is not necessarily the only embedding of interest, however. Once we have proven the
Hahn-Banach Theorem, we shall be in a position to show that J is in fact isometric.

We point out that if J is an isometric bijection from X onto X**, then X is said
to be reflexive. These are in some sense amongst the best behaved Banach spaces.
We shall return to the notion of reflexivity of Banach spaces in a later section.
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Appendix to Section 2.

2.20. Although norms of operators can be difficult to compute, there are cases
where useful estimates can be obtained.
Consider the Volterra operator

V: C([0,1],K) — (([0,1],K)
f = Vi

where V f(z) = [ f(t)dt for all z € [0,1]. (Since all functions are continuous, it
suffices to consider Riemann integration.)
Then

[V fIl = sup{|V f(z)| : = € [0, 1]}
= Sup{|/0 f(®)dt| - z € [0,1]}

Swﬁé\mbﬁrﬁemﬂ}

= sup{(z = 0) | flloo - « € [0, 1]}
= [ flloo-
Thus ||V]| < 1. If 1(z) := 1 for all z € [0,1], then 1 € C([0,1],K), || 1] =1,

and V1 = j, where j(z) = z, x € [0,1]. But then [|[V1||s = [|j||lcc = 1, showing
that ||[V|| > 1, and hence ||V = 1.

Far more interesting (and useful) is the computation of ||V"|| for n > 2.
Let us first general the construction of the operator V. We may consider the

function k : [0, 1] x [0, 1] — C defined by

] 0 ifxz<y,
k(m,y)—{l if x> y.

Then
T 1
V@ = [ s = [ ke s
The function k = k(x,y) is referred to as the kernel of the integral operator V.

This should not be confused with the notion of a null space of a linear map, also
referred to as its kernel.
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Now
(V2 )(@) = (V(V)(z)
1
= [ wen v
1 1
= [ kwt) [ blty) fo)dyae
0 0
1 1
= [ 1) [ btk g)dedy
0 0
1
= [ fw) ket
where ko(x,y) fo k(t,y)dt is a new kernel for the integral operator V2.
Note that

1
ka(e,y)| = | / ke, 1) k(t, y)d|

:]/ (x,t) k(t,y)dt]

= y) for z >y,

while for x < y, ka(z,y) = 0.
In general, since v —y <1 -0 =1, we get

V" f)(x) = /f n(z,y)dy, where

kn(z,y) = /Ok(x,t)kn_l(t,y)dt, and where

[k (2, 9)]

It follows that

IN

V= s IVl

= o | / F() bl ) dyloc

< sup || flloc [l5n (2, y)lloo
Ifl=1
< 1/(n—1).

A simple consequence of these computations is that
lim V"% = lim 1/(n—1)! = 0.
n—oo n—oo

We shall have more to say about this in the Appendix to Section 3.
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2.21. Example. Let {e1,e9,...,e,} denote the standard basis for K", so that
e; =(0,0,...,0,1,0,...,0), where the 1 occurs in the 4t position, 1 < j < n. Suppose
that 1 < p < 0o, and that K" carries the p-norm from Example 1.7.

Let [t;;] € M,,(K), and define the map

T: Kt — K"
r = [t

It is instructive, while not difficult, to prove that if every row and every column
of [t;;] has at most one non-zero entry, then

1T = 123);”““"

We leave this as an exercise for the reader.

2.22. Example. Let n > 1 be an integer and consider M,, = M, (C). For
T € X, T*T is a hermitian matrix, and as such, has positive eigenvalues. Denote by
S1, 82, ..., Sy, the square roots of these eigenvalues (counted according to multiplicity)
and for 1 < p < oo, set

n

1T, = (D sh)7.

k=1

Sl

For p = o0, set
IT]|co = max{si,s2,...,Sn}
It can be shown that || - ||, is indeed a norm on M, for all 1 < p < co. Let us
denote the space M, equipped with the norm || - ||, by C;. We shall refer to it as

the n-dimensional Schatten p-class of operators on C™. Then we shall leave it as an
exercise for the reader to prove that C;* =~ C/, where ¢ is the Lebesgue conjugate

q )
of p, i.e., %—F % =1.
The above identification can be realized via the map:
. Cp — CF
R — g
where pp : C)) — C is the map ¢r(T) = tr(RT), and where tr[z;] = Y| 2
denotes the standard trace functional on M,.

The above result has a generalisation to infinite-dimensional Hilbert spaces. We
refer the reader to [Dav88] for a more detailed treatment of this topic.

2.23. Example. We now return to the proof of the fact that the dual of /7 is
7 when 1 < p < o0, as stated in Example 2.15.

Given z = (2zp)n € 09, we define

B,: AP — K

(Zn)n = D, TnZn.
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Note that by Holder’s Inequality, Theorem 1.30, for x = (xy,), € ¢, we have
1B (x)] = anzn

n
< Z ‘mnzn‘

n

= [lzzh

< ||zl [l=llg,

so that indeed f.(z) € K. Clearly (3, is linear, and so the above argument also
shows that ||3.] < |24
q—1 q/p

Furthermore, if we set x, = anz = anzy ", where «, € K is chosen so that
|an| = 1 and 2,2, > 0 for all n > 1, then

() (o)
(&)

= |z,

so that x € /P, and

|B:(z)| = an'zn
= Z |Zn‘q

=121/ |Izllq
= llzllp 2,
so that ||3.] > ||2|l4, and therefore ||3.| = ||z||¢-

Consider the map © defined via:

O: (1 — (P)*
z = B

with (3, defined as above. Then O is easily seen to be linear, and from above, it is
isometric (hence injective). There remains only to show that © is surjective.

To that end, let ¢ € (¢P)*. For each n > 1, let z, := ¢(e,), where {e,}, is the
standard Schauder basis for 7. Set z[n] := Y ) _; zkex, and z[n] := > p_, akzg_l,

where — as before — ay; is chosen so that |ag| = 1 and 2z, > 0 for all £ > 1. Then
z[n] € £9 and z[n] € (P for all n > 1.
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Observe that if y = (y,,)n € ¢P, then by the continuity of ¢,

=@ <Z ynen) = ZynSO(en) = Zynzn

Now

where

Thus
lp(@[n])| = [[z[n]llp [I2[n]llq

< [lz[lllp [lell  for all n > 1.

It follows that ||z[n]||q < ||| for all n > 1, so that if z := (2,),, then z € £? with

1llg < llell-
Finally, o(y) = B.(y) for all y € ¢P, so that ¢ = §, = ©(z), proving that © is

surjective, as required.

*

I handed in a script last year and the studio didn’t change one word.
The word they didn’t change was on page 87.

Steve Martin
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3. Hilbert space

You should always go to other people’s funerals; otherwise, they won’t
come to yours.

Yogi Berra

3.1. In this brief Chapter, we shall examine a class of very well-behaved Banach
spaces, namely the class of Hilbert spaces. Hilbert spaces are the generalizations
of our familiar (two- and) three-dimensional Euclidean space. There are two basic
approaches to studying Hilbert spaces. If one is interested in Banach space geometry
— and many people are — then one often tries to compare other Banach spaces to
Hilbert spaces. As an example of such a phenomenon, we mention the calculation
of the Banach-Mazur distance between Banach spaces, which we define in the
Appendix to this Section.

In the second approach, one decides that because Hilbert spaces are so well-
behaved, they are in some sense “understood”, and for this reason they are “less
interesting” to study than the set of bounded linear operators acting upon them.
One can then study the operators individually or in sets which have no algebraic
structure — this kind of analysis belongs to Single Operator Theory. Alternatively,
one can various Operator Algebras, of which there are myriads of examples. The
literature dealing with operators and operator algebras is vast.

3.2. Recall that a Hilbert space H is a vector space equipped with an inner
product (,-) so that that the induced norm ||z|| := (z, z)'/? gives rise to a complete
normed linear space, i.e. a Banach space. [When the corresponding normed linear
space is not complete, we refer only to inner product spaces.|

In any inner product space we have the Cauchy-Schwarz Inequality:

[, ) P < Nzl [y,
for all z,y € H. We say that x and y are orthogonal if (z,y) = 0, and we write
Ly

3.3. Example.

(a) If (X,p) is a measure space, then L%(X,pu) is a Hilbert space, with the
inner product given by

(f.g) = /X F(@)g@)du(z).

() 2 ={(zn)n:2n € K,n>1and Y 07, |z,|? < oo} is a Hilbert space, with
the inner product given by

(Zn)ns Yn)n) = Z T Un -
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The reader with a background in measure theory will recognize that the second
example is merely a particular case of the first. While these are the canonical inner
products on these spaces, they are not the only ones.

For example, if (r,), is any sequence of strictly positive integers, one can define
a weighted ¢? space relative to this sequence by setting

E?rn)n = {(zn)n € KV Zrn\xn\z < oo}

with inner product

<($n)na (yn)n> = Z TnZnYn-

n

3.4. Theorem. Let H be a Hilbert space and suppose that x1,x2, ..., T, € H.
(a) [The Pythagorean Theorem)| If the vectors are pairwise orthogonal, then

n n
1>zl =Dl
j=1 j=1

(b) [The Parallelogram Law]
21+ wal* + [lz1 = z2l* = 2 (fla | + fJ22]|?) -
Proof. Both of these results follow immediately from the definition of the norm in

terms of the inner product.
O

The Parallelogram Law is a useful tool to show that many norms are not Hilbert
space norms.

3.5. Theorem. Let H be a Hilbert space, and K C 'H be a closed, non-empty
convez subset of H. Given x € H, there exists a unique point y € K which is closest
to x; that 1is,

|z — y|| = dist(z, K) = min{||z — z|| : z € K}.

Proof. By translating K by —z, it suffices to consider the case where z = 0.
Let d := dist(0, K), and choose ky, € K so that |0 — k|| < d+ 1, n > 1. By the
Parallelogram Law,
i~ o 2

1 1 kn+E
= 2|k 2 Nk 2 n m (2

1 1

n m

VAN

1 1
~(d 24+ - 22
2(+ )+2(+ ) ,

ko, +Ek .
s ™ ¢ K because K is assumed to be convex.

We deduce from this that the sequence {k,}>° ; is Cauchy, and hence converges
to some k € K, since K is closed and H is complete. Clearly lim,_ . k, = k implies
that d = limy,— ||kn] = ||%].
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As for uniqueness, suppose that z € K and that ||z|| = d. Then
k—z kE+z 4
0< —_
<15 "2
1 1
< sd 4 sdP—d* =0
S gd + 5 )

1 1
12 = SHER + 5 0s0 = |

and so k = z.
Od

3.6. Theorem. Let H be a Hilbert space, and let M C H be a closed subspace.
Let x € H, and m € M. The following are equivalent:

(a) [z —m| = dist(z, M);
(b) The vector & —m is orthogonal to M, i.e., (x —m,y) =0 for all y € M.
Proof.

(a) implies (b): Suppose that ||z — m|| = dist(x, M), and suppose to the
contrary that there exists y € M so that k := (x —m,y) # 0. There is no
loss of generality in assuming that |ly|| = 1. Consider z = m + ky € M.
Then

lz — 2||* = l|lz —m — ky|?
=(x—m—ky,z —m—ky)
= |l —ml® = k{y,x —m) — k(z —m,y) + [k]* |y
= [l —m|® — |k|?
< dist(z, M),
a contradiction. Hence z — m € M.

(b) implies (a): Suppose that * —m € ML, If 2z € M is arbitrary, then
y =z —m € M, so by the Pythagorean Theorem,

lz = 217 = [z = m) — y|* = |z = m|* + lyl|* > [l — m],
and thus dist (z, M) > ||z — m||. Since the other inequality is obvious, (a)
holds.
g
3.7. Remarks.

(a) Given any non-empty subset S C H, let
Sti={yeH:(x,y) =0forall z €S}
It is routine to show that ST is a norm-closed subspace of H. In particular,
e
(S ) D span S,

the norm closure of the linear span of S.
(b) Recall from Linear Algebra that if V is a vector space and W is a (vector)
subspace of V), then there exists a (vector) subspace X C V such that
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(i) WnNnX = {0}, and

M) V=W+X ={w+z:weW,yec X}
We say that W is algebraically complemented by X. The existence of
such a X for each W says that every vector subspace of a vector space is
algebraically complemented. We shall write V = W + X to denote the fact
that X is an algebraic complement for W in V.

If X is a Banach space and ) is a closed subspace of X, we say that )
is topologically complemented if there exists a closed subspace 3 of X
such that 3 is an algebraic complement to ). The issue here is that both )
and 3 must be closed subspaces. It can be shown that the closed subspace
cg of £%° is not topologically complemented in ¢°°. This result is known as
Phillips’ Theorem (see the paper of R. Whitley [Whi66| for a short but
elegant proof). We shall write X =) @ 3 if 3 is a topological complement
to Y in X.

Now let ‘H be a Hilbert space and let M C H be a closed subspace
of H. We claim that H = M & M™*. Indeed, if 2 € M N M=, then
2| = (2,2) =0, so z = 0. Also, if z € H, then we may let m; € M be
the element satisfying

|z — mq|| = dist(z, M).

The existence of m; is guaranteed by Theorem 3.5. By Theorem 3.6,
mo := x —my lies in M*, and so z € M + M*. Since M and M+
are closed subspaces of a Banach space and they are algebraically comple-
ments, we are done.

In this case, the situation is even stronger. The space M may admit
more than one topological complement in H - however, the space M- above
is unique in that it is an orthogonal complement. That is, as well as
being a topological complement to M, every vector in M= is orthogonal
to every vector in M.

With M as in (b), we have H = M @& M, so that if x € H, then we may
write £ = mj + mo with m; € M, mg € M= in a unique way. Consider
the map:

P: H - MaoMt

x mi,

relative to the above decomposition of x. It is elementary to verify that P
is linear, and that P is idempotent, i.e., P = P2. We remark in passing
that mo = (I — P)x, and that (I — P)? = (I — P) as well.

In fact, for x € H, ||x||? = ||m1|*+||m2]||? by the Pythagorean Theorem,
and so ||Pz| = [[mi|| < ||z||, from which it follows that ||P| < 1. If
M # {0}, then choose m € M with ||m| # 0. Then Pm = m, and so
||P|| > 1. Combining these estimates, M # 0 implies | P|| = 1.

We refer to the map P as the orthogonal projection of H onto M.
The map @ := (I — P) is the orthogonal projection onto ML, and we leave
it to the reader to verify that ||Q| = 1.
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(d) Let @ # S C ‘H. We saw in (a) that S*+ D spanS. In fact, if we let
M =span S, then M is a closed subspace of H, and so by (b),

H=Meo ML

It is routine to check that S+ = M. Suppose that there exists 0 # z €
Stz & M. Then x € H, and so we can write x = m1+msg with m; € M,
and my € M+ =St (mg # 0, otherwise x € M). But then 0 # mg € S+
and so

(ma, z) = (M2, m1) + (M2, m2)
=0+ [lma|®
# 0.
This contradicts the fact that z € ST+, Tt follows that S+ = span S.
(e) Suppose that M admits an orthonormal basis {ey}}_;. Let x € H, and let

P denote the orthogonal projection onto M. By (b), Pz is the unique
element of M so that & — Pz lies in M*. Consider the vector w =

> p_q(z, eg)ex. Then

NE

(# —w,ej) = (z,¢j) = ) ((z,ex)er,e))

k=1
= <x7€j> - Z<x7ek><€kvej>
k=1
= (z,¢;) — (z,¢5) [|ej]|
=0.

It follows that z—w € M+, and thus w = Px. That is, Px = > 1_, (z, ex)ex.

3.8. Theorem. The Riesz Representation Theorem Let {0} # H be a
Hilbert space over K, and let ¢ € H*. Then there exists a unique vector y € H so
that

o(x) = (z,y) for allxz € H.

Moreover, [l = llyl.

Proof. Given a fixed y € H, let us denote by 3, the map §,(z) = (x,y). Our goal
is to show that H* = {8, : y € H}. First note that if y € H, then g,(kz1 + x2) =
(kx14x2,y) = k(z1,y)+(z2,y) = kBy(z1)+5y(x2), and so Gy is linear. Furthermore,
for each x € H, |By(x)| = [{z,y)| < ||z|/||y]| by the Cauchy-Schwarz Inequality. Thus
1Byl < llyll, and hence 3, is continuous - i.e. 3, € H*.

It is not hard to verify that the map

O: H — H*

y — By
is conjugate-linear (if K = C), otherwise it is linear (if K = R). From the first
paragraph, it is also contractive. But [O(y)|(y) = 8y(y) = (y,y) = lly||?, so that
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19(y)|| > |ly|| for all y € H, and © is isometric as well. It immediately follows that
O is injective, and there remains only to prove that © is surjective.
Let ¢ € H*. If ¢ = 0, then ¢ = ©(0). Otherwise, let M = ker ¢, so that
codim M = 1 = dim M, since H/M ~ K ~ M=. Choose e € M+ with |le]| = 1.
Let P denote the orthogonal projection of H onto M, constructed as in Re-
mark 3.7. Then, as I — P is the orthogonal projection onto M=, and as {e} is an
orthonormal basis for M+, by Remark 3.7 (d), for all z € H, we have

x=Px+ (I — P)x = Pz + (x,e)e.

Thus for all z € H,

p(x) = p(Px) + (z,e)p(e) = (z, p(e)e) = By(w),

where y := p(e)e. Hence ¢ = (3, and © is onto.

3.9. Remark. The fact that the map © defined in the proof the Riesz Rep-
resentation Theorem above induces an isometric, conjugate-linear automorphism of
‘H is worth remembering.

3.10. Definition. A subset {ex}ren of a Hilbert space H is said to be or-
thonormal if ||ex|| =1 for all A\, and X\ # a implies that (e, eq) = 0.

An orthonormal set in a Hilbert space is called an orthonormal basis for H if
it is maximal in the collection of all orthonormal sets of H, partially ordered with
respect to inclusion.

If E = {e)}, is any orthonormal set in H, then an easy application of Zorn’s
Lemma implies the existence of a orthonormal basis in H which contains E. The
reader is warned that if H is infinite-dimensional, then an orthonormal basis for H
is never a vector space (i.e. a Hamel) basis for H.

3.11. Example.

(a) If H = £2 then the standard Schauder basis {e,}°°; for ¢2 as defined in
Example 2.13 is an orthonormal basis for H.

(b) If H = L*(R,dm), where T = {z € C : |z| = 1} and dm represents
normalised Lebesgue measure, then {f,},cz is an orthonormal basis for
L?(T,dm), where f,(z) = 2" for all z € T and for all n € Z.

We recall from Linear Algebra:
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3.12. Theorem. The Gram-Schmidt Orthogonalisation Process
If H is a Hilbert space over K and {x,}2 is a linearly independent set in H,
then we can find an orthonormal set {yn}°2, in H so that span{zi,za, ..., T} =
span{y1,y2, ..., yx } for all k > 1.
Proof. We leave it to the reader to verify that setting y; = z1/||z1||, and recursively
defining
T — S0 @k )y
Y 1= y=) , k>1
ek — 2251 (s i)

will do.

3.13. Theorem. Bessel’s Inequality
If {en}o2 is an orthonormal set in a Hilbert space H, then for each x € H,

)
D e < ).
n=1

Proof. For each £k > 1, let P, denote the orthogonal projection of H onto
span{e,}¥_;. Given z € M, we have seen that |[Py|| < 1, and that Pur =
Sk (&, en)en. Hence [|z]|2 > ||Pez]|> = S2F_, |(2, e0)|? for all k > 1, from which
the result follows.

O

3.14. Before considering a non-separable version of the above result, we pause
to define what we mean by a sum over an uncountable index set.

Given a Banach space X and a set {z)}xcp of vectors in X, let F denote the
collection of all finite subsets of A, partially ordered by inclusion. For each F' € F,
define yp = >\ cp @, so that (yr)rer is a net in X. If y = limpe 7 yp exists, then
we say that y = > ., 7, and we say that {z)}, is unconditionally summable
to y.

In other words, >, xy = y if for all € > 0 there exists Fy € F so that F' D Fj
implies that || Y\ pzx —yl| <e.

3.15. Corollary. Let H be a Hilbert space and £ C H be an orthonormal set.
(a) Given x € H, the set {e € £ : (x,e) # 0} is countable.
(b) Forallz € H, > ¢ [z, e)* < ||z]?.
Proof.

(a) Fix © € H. For each k > 1, define F;, = {e € £ : [(z,€)| > +}. Suppose
that there exists kg > 1 so that Fj, is infinite. Choose a countably infinite
subset {e,}5° ; of Fi,. By Bessel’s Inequality,

m 1 -

=2 S ) e <
0 —1 "0 =
n=1 n=1
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for all m > 1. This is absurd. Thus |Fj| < oo for all £ > 1. But then
{e€ & :(z,e) #0} = Up>1Fp

is countable.
(b) This is left as a (routine) exercise for the reader.

a

3.16. Lemma. Let H be a Hilbert space, £ C H be an orthonormal set, and

x € H. Then
Z(x, e)e

ecf
converges in H.
Proof. Since H is complete, it suffices to show that if F as in Paragraph 3.14
denotes the collection of finite subsets of £, partially ordered by inclusion, and if for
each FF € F, yr = ) cp(z,e)e, then {yr}rer is a Cauchy net.

Let € > 0. By Corollary 3.15, we can find a countable subcollection {e,, }*>, C &
so that e € £\{e,}52; implies that (x,e) = 0. Moreover, by Bessel’s Inequality, we
can find N > 0 so that Y27 v [(z,ex)|* < e Let Fy = {er, e2,...,en}.

If F,Ge F and Fy < F, Fy <G, then

lyr —yal® =1 Y (z.ede= Y (we)el?

e€eF\G e€eG\F

= > el

e€(F\G)U(G\F)

o

< > laen)l?

kE=N+1
<&

Thus (yr)rer is Cauchy, and therefore convergent, as required.
O

3.17. Theorem. Let £ be an orthonormal set in a Hilbert space H. The fol-
lowing are equivalent:
(a) The set € is an orthonormal basis for H. (That is, £ is a maximal or-
thonormal set in H.)
(b) The set span& is norm-dense in H.
(c) Forallz e H, x =) c(z,e)e.
(d) For allz € H, ||z[|* = X3 ce [{z, €)]?. [Parceval’s Identity]
Proof. Let £ = {ex}xeca be an orthonormal set in H.
(a) implies (b): Let M = span&. If M # H, then M* # {0}, so we can find
z € ML, ||zl = 1. But then £ U {2} is an orthonormal set, contradicting
the maximality of £.
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(b) implies (c): Let y = > yca(7,ex)ex, which exists by Lemma 3.16. Then
(y —x,en) =0 for all A € A, so y — z is orthogonal to M = spané = H.
But theny — o 1 y —z, so that y — 2 =0, i.e. y = z.

() implies (A): 2l = (Sseetms €)e, e (0 F)F) = Doce 1@ €)P- [Check]

(d) implies (a): If e L ey for all A € A, then

lel* = > [(e;en)* =0,
NeA

so that € is maximal.

a

3.18. Proposition. If H is a Hilbert space, then any two orthonormal bases
for H have the same cardinality.

Proof. We shall only deal with the infinite-dimensional situation, since the finite-
dimensional case was dealt with in linear algebra.

Let £ and F be two orthonormal bases for H. Given e € &, let F, = {f € F :
(e, f) # 0}. Then |F.| < Ng. Moreover, given f € F, there exists e € £ so that
(e, f) # 0, otherwise f is orthogonal to span& = H, a contradiction.

Thus F = U.Fe, and so |F| < (supecg | Fel) €] < Rol€| = |€]. By symmetry,
I€] < |F], and so |E] = |F].

O

The above result justifies the following definition:

3.19. Definition. The dimension of a Hilbert space H is the cardinality of
any orthonormal basis for H, and it is denoted by dim H.

The appropriate notion of isomorphism in the category of Hilbert spaces involve
linear maps that preserve the inner product.

3.20. Definition. Two Hilbert spaces Hi and Hay are said to be isomorphic
if there exists a linear bijection U : Hi — Ha so that

(Uz,Uy) = (z,y)
for all x,y € H1. We write H1 ~ Ho to denote this isomorphism.

We also refer to the linear maps implementing the above isomorphism as unitary
operators. Note that

IUz|* = (Uz,Uz) = (z,2) = ||z||*

for all x € H1, so that unitary operators are isometries. Moreover, the inverse map
U~!:Hy — Hj defined by U~} (Ux) := z is also linear, and

(U Ux)U™H(Uy)) = (2,y) = (Uz,Uy),

so that U~ is also a unitary operator. Furthermore, if £ C H; is a closed subspace,
then L is complete, whence UL is also complete and hence closed in Hs.
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Unlike the situation in Banach spaces, where two non-isomorphic Banach spaces
can have Schauder bases of the same cardinality, the case of Hilbert spaces is as nice
as one can imagine.

3.21. Theorem. Two Hilbert spaces H1 and Ho over K are isomorphic if and
only if they have the same dimension.
Proof. Suppose first that H; and Ho are isomorphic, and let U : Hy — Hso be
a unitary operator. Let {e)}xca be an orthonormal basis for H;. We claim that
{Uex}xen is an orthonormal basis for H.

Indeed, (Ueqn,Ueg) = (ea,e3) = a3 (the Kronecker delta function)), |[Ue| =
llea]| =1 for all a € A, and

Hy = UHy = U(span {ex}aca) = span {Uen}aea,

by the continuity of U.
Hence dim Hy = [{Uey}rea| = |[A] = dim H;.

Conversely, suppose that dim Ho = dim H;. Then we can find a set A and
orthonormal bases {e) : A € A} for Hy, and {f) : A € A} for Hy. Consider the map

U: Hi —  2(A)
r = (<$7 6A>)>\EA5
where ((A) := {f: A - K: > o5 |f(A)]* <oo}. This is an inner product space
using the inner product (f,g) = > ca f(A)g(A). The proof that £2(A) is complete

is essentially the same as in the case of £2(N).
It is routine to check that U is linear. Moreover,

<U$, Uy> = Z(Ia 6)\> <ya €>\>

A

= Z(@:,m)ex, (y,ex)en)

A

= <Z<$a 6)\>€,\, Z<ya e’y>e’y>

A vy
= (z,y)

for all z,y € H, and so ||Uz|]? = (Uz,Ux) = (x,z) = ||z|? for all z € H;. Tt follows
that U is isometric and therefore injective.

If (ry)a € €(A) has finite support, then z := >, ., raex € Hy and Uz = (r)).
Thus ranU is dense. But from the comment above, UH; is closed, and therefore
UHi = F2(A).

We have shown that U is a unitary operator implementing the isomorphism of
Hi and £2(A). By symmetry once again, there exists a unitary V : Hy — £2(A).
But then VU : H; — Haz is unitary, showing that H; ~ Ha.

O
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3.22. Corollary. The spaces (*(N), £2(Q), (2(Z) and L?([0,1],dx) (where dx
represents Lebesgue measure) are all isomorphic, as they are all infinite dimensional,
separable Hilbert spaces.
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Appendix to Section 3.

3.23. When dealing with Hilbert space operators and operator algebras, one
tends to focus upon complez Hilbert spaces. One reason for this is that the spectrum
provides a terribly useful tool for analyzing operators. For X a normed linear space,
let I (or Iy if we wish to emphasize the underlying space) denote the identity map
Iz =z for all x € X.

3.24. Definition. Let X and 2 be Banach spaces, and let T € B(X,9). We
say that T is invertible if there exists a (continuous) linear map R € B(Y, X) such
that RT = Ix and TR = Iy.

If T € B(X), we define the spectrum of T to be:

o(T)={X € K: (T — XI) is not invertible}.

3.25. When X is a finite-dimensional space, the spectrum of T' coincides with
the eigenvalues of T'. The reader will recall from their Linear Algebra courses that
eigenvalues of linear maps need not exist when the underlying field is not alge-
braically closed. When K = C, it can be shown that the spectrum of an operator
T € B(X) is a non-empty, compact subset of C, and a so-called functional calculus
which allows one to naturally define f(7") for any complex-valued function which is
analytic in an open neighbourhood of ¢(7"). This, however, is beyond the scope of
the present notes.

If X is a Banach space, an operator @) € B(X) is said to be quasinilpotent if
0(Q) = {0}. The argument of Paragraph 2.20 says that the Volterra operator is
quasinilpotent.

A wonderful theorem of A. Beurling, known as Beurling’s spectral radius
formula relates the spectrum of an operator T to a limit of the kind obtained in
Paragraph 2.20.

Theorem. Beurling’s Spectral Radius Formula.
Let X be a complex Banach space and T € B(X). Then

spr(T) := max{|k| : k € o(T)} = lim ||T" .

The quantity spr(7") is known as the spectral radius of T'. It is worth pointing
out that an implication of Beurling’s Spectral Radius Formula is that the limit on
the right-hand side of the equation exists! A priori, this is not obvious.
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3.26. As mentioned in paragraph 3.1, Hilbert spaces arise naturally in the study
of Banach space geometry. In this context, much of the literature concerns real
Hilbert spaces.

For example, for each n > 1, let Q,, denote the set of n-dimensional (real)
Banach spaces. Given Banach spaces X and 9) in Q,,, we denote by GL(X,2)) the
set of all invertible operators from X to ). We can define a metric § on Q,, via:

0(%,9) = log (inf{| T | T : T € GL(X,)}).
It can be shown that (Q,,J) is a compact metric space, known as the Banach-
Mazur compactum. One also refers to the quantity
d(X,9) = f{|T| |77 : T € GL(X,9)}

as the Banach-Mazur distance between X and %), and it is an important problem
in Banach space geometry to calculate Banach-Mazur distances between the n-
dimensional subspaces of two infinite-dimensional Banach spaces, say U and 20.
Typically, one is interested in knowing something about the asymptotic behaviour
of these distances as n tends to infinity.

We mention without proof two interesting facts concerning the Banach-Mazur
distance:

(a) If X, 9 and 3 are n-dimensional Banach spaces, then
4(x,3) < d(X,9) d. 3)
(b) A Theorem of Fritz John shows that (with (2 := (R", || - [|2)),
d(%,02) < y/nforall n > 1.
It clearly follows from these two properties that d(X,9) < n for all X,9 € Q,.

3.27. We mentioned earlier in this section that the Parallelogram Law is useful
in determining that a given norm is not induced by an inner product. In fact, in
can be shown that a norm on a Banach space X is the norm induced by some inner
product if and only if the norm satisfies the Parallelogram Law.

My friends tell me I have an intimacy problem. But they don’t really
know me.

Garry Shandling
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4. Topological Vector Spaces

Someday I want to be rich. Some people get so rich they lose all
respect for humanity. That’s how rich I want to be.

Rita Rudner

4.1. Let H be an infinite-dimensional Hilbert space. The norm topology on
B(H) is but one example of an interesting topology we can place on this set. We are
also interested in studying certain weak topologies on B(H) generated by a family of
functions. The topologies that we shall obtain are not induced by a metric obtained
from a norm. In order to gain a better understand of the nature of the topologies we
shall obtain, we now turn our attention to the notion of a topological vector space.

4.2. Definition. Let W be a wvector space over the field K, and let T be a
topology on W. We say that the topology T is compatible with the vector space
structure on W if the maps

oc: WxW — W
(z,y) = z+y

and
pw: KxW —W
(k,x) —  kx

are continuous, where K x W and W x W carry their respective product topologies.

A topological vector space (abbreviated TVS) is a pair (W, T) where W is
a vector space with a compatible Hausdorff topology. Informally, we refer to W as
the topological vector space.

4.3. Remark. Not all authors require 7 to be Hausdorff in the above definition.
However, for all spaces of interest to us, the topology will indeed be Hausdorff.
Furthermore, one can always pass from a non-Hausdorff topology to a Hausdorff
topology via a natural quotient map. (See Appendix T.)

4.4. Example. Let (X, - ||) be any normed linear space, and let 7 denote the
norm topology. Suppose (z,y) € X x X and € > 0. Choose a net (4, Ya)acr € XXX
so that limy (24, Ya) = (z,y). Then there exists ag € A so that @ > g implies
|z — x| < €/2, |lya — yl| < /2. But then a > ag implies ||z4 + yo — (z +y)|| <
|lza — x| + |lya — yl| < &. In other words, o(xq,ya) tends to o(x,y) and so o is
continuous.

Similarly, if (k,z) € K x X, then we can choose a net (kq,Zq)aca so that
limy (Ko, zoa) = (K, ). But then we can find ag € A so that o > o implies |ky — k| <
1, and so |kq| < |k|+1. Next we can find o so that a > oy implies |k, —k| < &/2]z]|,
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and ag so that a > ay implies ||zq — z|| < €/2(]k| +1). Choosing a > a, @1 and
o we get

ko, za) — p(k,2)| = |kata — kx|l
< koo — kaz|| + [[kaz — k||
< kalllza — =l + |ka — K[| 2]
< g/2+4¢/2=c¢.

This proves that p is continuous. Hence X is a TVS with the norm topology.

4.5. Example. As a concrete example of the situation in Example 4.4, let
n > 1 be an integer and for (x1, xo, ..., z,) € C", set ||(x1, z2, ..., Tn)||co = max{|zy| :
1 <k <n}. Then C" is a TVS with the induced norm topology. Of course, in this
example, the norm topology coincides with the usual topology on C" coming from

the Euclidean norm |[(z1, 2, ..., zn)ll2 = (X p_; lzk]?) 2, since || - | and || - |2 are
equivalent norms on C™.

4.6. Remark. In the assignments we shall see how to construct a TVS which is
not a normed linear space. See also the discussion of Fréchet spaces in the Appendix
to Section 5.

4.7. Remark. Let (W, 7) be a TVS, and let U € Uy be a nbhd of 0 in W. The
continuity of o : W x W — W implies that o~ (U) is open in W x W. As such,
o~ 1(U) contains a basic nbhd N7 x Ny of (0,0), where N1, No € Uy are open (see
Appendix T). But if N = Ny N Na, then N € Uy and N x N C N7 x Ny C o~ 1(U).
Thus for all U € Uy there exists N € Uy so that o(N X N) = N+ N :={m+n:
m,ne€ N} CU.

Similarly, we can find a nbhd Vz(0) of 0 in K and N € U}" open so that V.(0) x
N C p~Y(U), or equivalently,

{kn:ne N,0<|k|<e} CU.
4.8. Definition. A nbhd N of 0 in a TVS W is called balanced if kN C N
for all k € K satisfying |k| < 1.

4.9. Example. Let (X, - ||) be a normed linear space. For all § > 0, V5(0) =
{z € X : ||z|| < d} is a balanced nbhd of 0.
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4.10. Proposition. Let (W, T) be a TVS. Every nbhd of 0 contains a balanced,
open nbhd of 0.
Proof. By Remark 4.7, given U € Uy, we can find € > 0 and N € Uy open such
that k € K, 0 < |k| < e implies kN C U. Since multiplication by a non-zero scalar
is a homeomorphism, each kN is open.

Let M = Upc|g|<ckN. Then M C U and M 2 §N, so M € Up. A routine
calculation shows that M is balanced. It is also open, being the union of open sets.

a

4.11. Suppose (W, T) is a TVS, wy € W and ko € K. Define
Two : W —=W via 7y, (z) = wo + .

By continuity of addition, we get that 7, is continuous, and clearly 7, is a bijection.
But 7,1 = 7_u, is also a translation, and therefore it is continuous by the above
argument. That is, 7, is a homeomorphism.

This simple observation underlies a particularly useful fact about TVS’s, namely:

N € U} if and only if wy + N € qu\g.
That is,

the nbhd system at any point in W is determined
by the nbhd system at 0.

If ko # K, then Ag, : W — W defined by Mg, () = koz is also a continuous bijection
(by continuity of scalar multiplication) and has continuous inverse )\’fgl' Thus

N e U}V if and only if koN € U}V for all 0 # ko € K.

The following result shows that the assumption that a TVS topology be Haus-
dorff may be replaced with a weaker assumption - namely that points be closed (i.e.
that 7 be T}) - from which the Hausdorff condition follows.

4.12. Proposition. Let V be a vector space with a topology T for which

(i) addition is continuous;
(ii) scalar multiplication is continuous; and
(iii) points in V are closed in the T -topology.

Then T is a Hausdorff topology and (V,T) is a TVS.

Proof. Let 2 # y € V. Then {y} is closed (i.e. V\{y} is open) and so we can
find an open nbhd U € U, of x so that y & U. As above, by continuity of addition,
translation is a homeomorphism of V and so U = z+ Uy for some open nbhd Uy of 0.
Also by continuity of addition, there exists an open nbhd V of 0 so that V+V C U,.
By continuity of scalar multiplication, —V" is again an open nbhd of 0, and hence
W =V N (=V) is an open nbhd of 0 as well, with W + W CV +V C U,.

Suppose that (z + W) N (y + W) # @. Then there exist wy,ws € W so that
T4+ w; =y + wo, le. x+w; —we =y. But wg —wy € W+ W, so that y €
z+ (W+W) Cax+Uy=U, a contradiction. Hence (x +W) € U, (y+ W) € U,
are disjoint open nbhds of z and y respectively, and (V,7) is Hausdorff.
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a

4.13. Proposition. Let (W, T) be a TVS and Y be a linear manifold in W .
Then

(a) YV is a TVS with the relative topology induced by T ; and
(b) Y is a subspace of W.
Proof.

(a) This is clear, since the continuity of o|y and p|y is inherited from the
continuity of ¢ and p.

(b) Suppose ¥,z € Y and k € K. Choose a net (ya,24) € Y x Y so that
limy, (Yas 2a) = (y,2). By continuity of ¢ on W x W, yo + 24 — y + 2.
But y, + 24 € Y for all a, and so y + 2z € Y. Similarly, if we choose a net
(kas Yo) in K x Y which converges to (k,y), then the continuity of x4 implies
that koY — ky. Since kqyo € Y for all a, ky € Y.

Od

4.14. Exercise. Let (V,7) be a TVS. Prove the following.

(a) If C C V is convex, then so is 6.7
(b) If E CV is balanced, then so is E.

4.15. Definition. Let (V,T) be a TVS, and let (x))x be a net in V. We say
that (x))x is a Cauchy net if for all U € Uy there exists \g € A so that A\1, Ay > Ao
implies that xy, —xx, € U.

We say that a subset K C V is Cauchy complete if every Cauchy net in K
converges to some element of K.

We pause to verify that if (x))) is a net in V which converges to some x € V,
then (z)), is a Cauchy net. Indeed, let U € Uy and choose a balanced, open nbhd
N € Uy so that N+ N =N — N C U. Also, choose Ay € A so that A > \g implies
that x) € o+ N. If A\;, A2 > Ao, then zy, —x), = (z), —2) —(z),—2) E N—N CU.
Thus (x))y is a Cauchy net.

4.16. Example. If (X, ||-||) is a normed linear space, then X is Cauchy complete
if and only if X is complete. Indeed, the topology here being a metric topology, we
need only consider sequences instead of general nets.

4.17. Lemma. Let V be a TVS and K CV be complete. Then K is closed in

V.
Proof. Suppose that z € IC. For each U € U,, there exists yy € K so that yy € U.
The family {U : U € U,} forms a directed set under reverse-inclusion, namely:
Uy < Uy if Uy CU;y. Thus (yy)uew, is a net in K. By definition, this net converges
to the point z, i.e. limyyy = z. (Since V is Hausdorff, this is the unique limit
point of the net (yy)y.) From the comments following Definition 4.15, (yu)uey. is
a Cauchy net. Since K is complete, it follows that z € K, and hence that I is closed.
O
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4.18. Let (V,7) be a TVS and W be a closed subspace of V. Then V/W exists
as a quotient space of vector spaces. Let ¢ : V — V/W denote the canonical quotient
map.

We can establish a topology on V/W using the 7 topology on V by defining a
subset G C V/W to be open if ¢~!(G) is open in V.

o If {G\}» € V/W and ¢ 1(G,) is open in V for all \, then ¢ (U \G)) =
Uxg *(Gy) is open, and thus UyG, is open in V/W.

o If G1,Go C V/W and ¢~ 1(G;) is open in V, i = 1,2, then ¢~1(G1 N Gq) =
¢ 1 (G1) Ng Y(Gs) is open in V, when G1 N G2 is open in V/W.

e Clearly o = ¢ }(@) and V = ¢~ *(V/W) are open in V, so that @,V/W
are open in V/W and the latter is a topological space.

We refer to this topology on V/W as the quotient topology. The quotient
map is continuous with respect to the quotient topology, by design. In fact, the
quotient topology is the largest topology on V/W which makes ¢ continuous.

We begin by proving that ¢ is an open map. That is, if G C V is open, then
q(G) is open in V/W.

Indeed, for each w € W, the set G + w is open in V, being a translate of the
open set G. Hence G+ W = UyewG + w is open in V, being the union of open sets.
But

G+W=q"(q(q)),

so that ¢(G) is open in V/W by definition.

To see that addition is continuous in V/W, let c+W, y+)WV and let E be a nbhd
of (x+y)+ W in V/W. Then ¢ }(E) is open in V and (z +y) € ¢ }(E). Choose
nbhds U, of x and Uy of y in V so that r € U,, s € U, implies that 7 + s € ¢71(E).
Note that  + W € q(U,),y + W € q(Uy) and that ¢(Uy,),q(U,) are open in V/W
by the argument above. If a+W € q(Uy), b+ W € ¢q(Uy), then a+W = g+ W and
b+W = h+W for some g € U, h € U,. Thus

(a+b)+W=(g+h)+Weqlg(E)CE

Hence addition is continuous.

That scalar multiplication is continuous follows from a similar argument which
is left to the reader.

Finally, to see that the resulting quotient topology is Hausdorff, it suffices (by
Proposition 4.12) to show that points in V/W are closed. Let x +W € V/W. Then
¢z +W) ={x+w:w e W} is closed in V, being a translation of the closed
subspace W. Hence the complement C' = V\{z + w : w € W} of = + W is open in
V. But then ¢(C) is open, since ¢ is an open map, and ¢(C) is the complement of
z+W.

Finite-dimensional topological vector spaces. Our present goal is to prove
that there is only one topology that one can impose upon a finite-dimensional vector
space V to make it into a TVS. We begin with the one dimensional case.
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4.19. Lemma. Let (V,7T) be a one dimensional TVS over K. Let {e} be a
basis for V. Then V is homeomorphic to K via the map

7: K — VY
k — ke’

Proof. The map 7 is clearly a bijection, and the continuity of scalar multiplication
in a TVS makes it continuous as well. We shall demonstrate that the inverse map
77(ke) = k is also continuous. To do this, it suffices to show that if limy kye = 0,
then limy ky = 0. (Why?)

Let 6 > 0. Then de # 0, and as V is Hausdorff, we can find a nbhd U of 0 so
that de € U. By Proposition 4.10, U contains a balanced nbhd V of 0. Obviously,
de € V. Since limy kye = 0, there exists Ao so that A > A9 implies that kye € V.

Suppose that there exists 8 > A\g with |kg| > . Then

e = (6> kge € V,
ks

as V is balanced. This contradiction shows that A > )¢ implies that |ky| < ¢. Since
0 > 0 was arbitrary, we have shown that limy k) = 0.

a

4.20. Proposition. Letn > 1 be an integer, and let (V,T) be an n-dimensional
TVS over K with basis {e1, €2, ...,en}. The map

T K™ — V
(k?l,kg,...,kn) [ ad Z;‘L:lkjej

18 a homeomorphism.
Proof. Lemma 4.19 shows that the result is true for n = 1. We shall argue by
induction on the dimension of V.

It is clear that 7 is a linear bijection, and furthermore, since V is a TVS, the
continuity of addition and scalar multiplication in V implies that 7 is continuous.
There remains to show that 7! is continuous as well.

Suppose that the result is true for 1 < n < m. We shall prove that it holds for
n = m as well. To that end, let F' = {e;,, ey, ..., €, } for some 1 < r < m, and let
E ={e1,ea,...,em}\F = {ep,,€py, ..., €p, }-

Now Y = span{e; : j € E} is an s-dimensional space with s < m. By our
induction hypothesis, the map (k1, ko, ..., ks) — ijl kjep,; is a homeomorphism. It
follows that ) is complete (check!) and therefore closed, by Lemma 4.17. By the
arguments of paragraph 4.18, V/) is a TVS and the canonical map gy : V — V/Y
is continuous. Moreover, {q(ey, ), q(es,), ..., q(es,)} is a basis for V/Y. Since r < m,
our induction hypothesis once again shows that the map

Py V/y — K"
Z§:1ka(etj) — (k1 ko, ..., k)
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is continuous. Thus
vi=pyoq: V — K"
Z?:l kiei — Py(zyﬂ qu(el)) = (ktl7kt27 SR ktv‘)
is also continuous, being the composition of continuous functions.
To complete the proof, we first apply the above argument with F' = {e,,} to get
that
v % —- K
Yy kiei = km
is continuous, and then to F' = {ey, ea, ..., en—1} to get that
Yo ! 1% — Km—1
Z?:l kiei — (kl, kQ, cony km—l)

is continuous. Since 77! = (y1,72), it too is continuous, and we are done.

The previous result has a number of important corollaries:

4.21. Corollary. Let V be a TVS and W be a finite-dimensional subspace of
V. Then W is closed in V.
Proof. This argument is embedded in the proof of the previous result; W is com-
plete because of the nature of the homeomorphism between W and K", where n is
the dimension of W. Then Lemma 4.17 implies that W is closed.

a

4.22. Corollary. Let n > 1 be an integer and V be an n-dimensional vector
space. Then there is a unique topology T which makes V a TVS. In particular,
therefore, all norms on a finite dimensional vector space are equivalent.
Proof. Since any topology on ¥V which makes it a TVS is determined completely
by the product topology on K", it is unique. If || - ||; and || - ||2 are two norms on V,
then they induce metric topologies which make V into a TVS. But these topologies
coincide, from the above argument. By Proposition 1.18, the norms are equivalent.

a

4.23. Definition. Let (V,7y) and (W, Tyw) be topological vector spaces and
suppose that f :V — W is a (not necessarily linear) map. We say that f is
uniformly continuous if, given U € L{(}/V there exists N € Z/I(}/ so thatx —y € N

implies that f(x) — f(y) € U.

4.24. The definition of uniform continuity given here derives from the fact that
the collection B = {B(U) = {(z,y) : x —y € U} : U € UV} defines what is
known as a uniformity on the TVS (W, 7yy) whose corresponding uniform topology
coincides with the initial topology 7. The interested reader is referred to the book
by Willard [Wil70] and to the books of Kadison and Ringrose [KR83] for a more
complete development along these lines. We shall focus only upon that part of the
theory which we require in this text.
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4.25. Let us verify that in the case where (X, || - ||x) and (9, | - [|y) are normed
linear spaces, our new notion of uniform continuity coincides with our metric space
notion.

Observe first that if (Z, || - ||) is a general normed linear space and ¢ > 0, then
x —y € V3(0) if and only if ||z — y|| < 6.

Suppose f : X — 9) is uniformly continuous in the sense of Definition 4.23.
Given e > 0, VA(0) = {y € D : lyllpg < e} € L{(? and so there exists N € Uz such
that z —y € N implies f(z) — f(y) € V22(0). But N € UF implies that there exists
§ > 0 so that V(0) € N. Thus ||z — y||x < § implies that 2 — y € N, and thus
flz) = fly) € V2(0), ie. | f(z)— f()|lp < e. Thus is the standard (metric) notion
of uniform continuity in a normed space.

Conversely, suppose that f : X — ) is uniformly continuous in the standard
metric sense. Let U € UOQJ. Then there exists ¢ > 0 so that V22(0) C U. By
hypothesis, there exists § > 0 so that ||z —y||x < ¢ implies ||f(z) — f(y)||y < €, and
hence z —y € V3¥(0) implies that f(z)— f(y) € V2(0) C U. That is, f is continuous
in the sense of Definition 4.23.

It is useful to extend our notion of uniformly continuous functions between
topological vectors spaces to functions defined only upon a subset (not necessarily
a subspace) of the domain space V.

4.26. Definition. If (V,7y) and (W, Ty) are topological vector spaces and
C CV, then f: C — W is uniformly continuous if for all U € Z/{(‘)/V there exists
N €Uy such that z,y € C and x —y € N implies f(z) — f(y) € U.

4.27. Example. Now (R, |-|) is a normed linear space, and so the comments of
paragraph 4.25 apply. The function f : (0,1) — R defined by f(x) = 22 is therefore
uniformly continuous, whereas g : R — R defined by g(x) = 22 is not.

Another way in which uniform continuity in the TVS setting extends the notion
of uniform continuity in the metric setting is evinced by the following:

4.28. Proposition. Let (V,7y) and (W, Ty) be topological vector spaces and
[V —= W be uniformly continuous. Then f is continuous on V.

Proof. Let zp € V. Let U € U}/E}ZO). Then by paragraph 4.11, U = f(xq) + Up

where Uy € U&”V. By hypothesis, there exists Ny € Ugj so that x — xy € Ny implies
that f(x) — f(zo) € Up. That is, x € x¢ + Ny implies f(z) € f(xz¢) + No = U. Since
N :=x9+ Ny € Z/I;)O, we see that f is continuous at zg. But xg € V was arbitrary,
and so f is continuous on V.

a

4.29. Theorem. Let (V,7Ty) and (W, Tyy) be topological vector spaces over K.
Suppose that T : YV — W is linear. The following are then equivalent:

(a) there exists xog € V so that T is continuous at xo; and
(b) T is uniformly continuous on V.
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Proof. By Proposition 4.28, it suffices to prove that (a) implies (b). To that end,
suppose that T' is continuous at x¢ and let Uy € Ug)/v . Then U :=Tzg+ Uy € Z/{TV,\;O.
By continuity of T" at g, there exists N € Z/l;)o so that T(N) C U. But N = xo+ Ny
for some Ng € Ll(}}. Now if z € Ny, then xg+ 2z € N, and so T'(zg+2) = Txo+ Tz €
Txo+ Uy. That is, Tz € Uy.

In particular, if x—y € Ny, then T'(x—y) = Tz —Ty € Uy, and so T is uniformly
continuous on V.

a

4.30. Given vector spaces V and W over C, denote by Vg and Wk the same
spaces of vectors, viewed as vector spaces over R. Observe that if (V,7y) and
(W, Tyy) are topological vector spaces over C and T : V — W is conjugate-linear
(i.e. T(kx) =ka for all z € V and k € C), then T : Vg — Wk is linear (over R).
That is, T'(kx+vy) = kTx+ Ty for all z,y € Vg and k € R. Moreover, the topologies
Ty and 7Ty are real-vector space topologies for Vg and Wy respectively (as well as
C-vector space topologies for V and W).

From this it follows that 7" : V — W is continuous if and only if 7" : (Vg,7y) —
(Wr, Tyy) is continuous, and by the above Theorem, this happens precisely when T
is uniformly conitnuous on V (or equivalently on Vg, since all scalars appearing in
the definition of uniform continuity are real).

In other words, Theorem 4.29 holds for as conjugate-linear maps too.

4.31. Corollary. Let (V,7y) and (W, Ty) be topological vector spaces over K
and suppose that dim V =n < oco. If T :V — W is linear, then T is continuous.
Proof. By Theorem 4.29 and Proposition 4.28, it suffices to prove that T' is con-
tinuous at 0. Let {ej,eg,...,e,} be a basis for V, and suppose that (x))xea is a net
in V which converges to 0. For each A € A we may express z) as a unique linear
combination of the e;’s, say

x\ = ky1e1 + kygea + -+ Ky pen.
By Proposition 4.20, limy ) = 0 implies that for 1 < j < n, lim, k) ; = 0.

Now Txy = Z}l:l kx;Tej, A € A. But scalar multiplication in (W, 7y) is
continuous, and limy &y ; = 0, so

n n
liinTx,\ = Z}liin kxjTe; = 20 Te; =0= T(li)I\n:c,\).
j= j=

It follows that T is continuous at 0, as was required.

If we restrict our attention to subsets of V we get:
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4.32. Proposition. Let V, W be topological vector spaces and T :V — W be
linear. Suppose that 0 € C' C 'V is balanced and convez. If T'|c is continuous at 0,
then T'|c is uniformly continuous.

Proof. Our assumption is that T'|¢ is continuous at 0, and thus for all U € U&/V ,
there exists N € U so that x € C N N implies Tz € %U.

By Proposition 4.10, every nbhd N € U} contains a balanced nbhd N, and so
by replacing N by Ny if necessary, we may assume that N is balanced. Note that
INeUuy.

Now suppose that z,y € C and that x —y € N. Then C balanced implies
that —y € C, and C convex implies that 3z + 2(—y) = 1(z —y) € C. Since N is
balanced, 3(z —y) € N and so T(3(z — y)) = 3(Tz — Ty) € U. Hence z,y € C,
x —y € N implies Tz — Ty € U. That is, T is uniformly continuous on C.

a

If A, B, and C are sets with A C B, and if f : A — C'is a map, the we say that
the map g : B — C extends f (or that g is an extension of f) if g|4 = f.

4.33. Proposition. Suppose that V and W are topological vector spaces and
that W is Cauchy complete. If X C V is a linear manifold and Ty : X — W is
continuous and linear, then Ty extends to a continuous linear map T : X — W.
Proof. Let # € X and choose (7))xea, in X so that limy z) = x. Clearly, if T is to
be continuous, we shall need Tx = limy Tx). The issue is whether or not this limit
exists and is independent of the choice of (xy)x.

Now (x))x is a Cauchy net. Take U € UJY. Since Tp is continuous, there exists
N € L{(j“/ such that w € N implies that Tow € U. Hence, there exists Ay such
that A\, A2 > Ao implies that zy, — z), € N and therefore that Tozy, — Tozy, =
To(xy, — xx,) € U. Thus (Tozy)y is also a Cauchy net. Our assumption that W is
Cauchy complete implies that there exists z (depending a priori upon (zy),) such
that z = lim)\ Tgx/\.

Suppose that (yg)ser, € X and that limgys = x. Arguing as above, there exists
29 € W so that 2o = limg Toyg. If we set

Yog) =Yg, AEN
w()\,ﬁ) =T, ﬂ € A27
and A = A1 X AQ, then

lim =z = lim = .
(LA)EA \B) x5 YxB8)



4. TOPOLOGICAL VECTOR SPACES 55

Also, limqy, ) Tox(x,6) = 21, lim 6) Toy(r,) = 22. Thus limoy 5 2(x5) = Y(r,8) =
0 € X and so by the continuity of Ty on X,

0=T,0=Tp(lim z —
0 O(Mﬂ) B — Yn8))

= lim Ty(x —
Jm To(@om) = Yos)

=21 — 22.
That is, we can set Tz = lim) Tox) and this is well-defined.

That 7T is linear on X is left as an exercise.

Finally, to see that T is continuous on X, let U € U}Y and choose U; € U}Y so
that Uy + Uy C U. Choose N € U(f( so that x € N implies Tz = Tyx € Uy. Then
N =GN X for some G € UY.

Let M = GN X so that M GZ/IOX. If z € M, then z = lim) ) for some x) € N,
A€ A. Now Tz = limy Tyzy, so that there exists A\g € A so that A > \g implies that
Tz —Tyxy € Uy.

But Tyxy € Uy for all A and so Tz = (Tz — Toxy) + Toxy € Uy + Uy C U. That
is, z € M implies that Tz € U. Hence T is continuous at 0, and consequently T is
uniformly continuous on X.

O

4.34. Corollary. Suppose that X and ) are Banach spaces and that 9 C X is
a linear manifold. If Ty : M — ) is bounded, then Ty extends to a bounded linear
map T : M — 9, and ||T| = ||To||-
Proof. Invoking Proposition 4.33, there remains only to show that ||T|| = ||To]|.
That ||T]| > ||To|| is clear.

Conversely, given z € 91 with ||z|| = 1 and ¢ > 0, there exists y € 9 so that
lyll =1 and ||z — y|| < e. Then

[Toy = Tz|| = [Ty — Tx|| < [|T[| ly — x|l < [T
(Recall that T' is bounded since T' is continuous!) Since € > 0 was arbitrary,
sup{|[Toy[l : y € M, [ly|| = 1} = sup{||Tz|| : [lz]| = 1},

so || To|| > ||T||, completing the proof.

Do you know what it means to come home at night to a woman who’ll
give you a little love, a little affection, a little tenderness? It means
you’'re in the wrong house, that’s what it means.

Henny Youngman
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5. Seminorms and locally convex spaces

The secret of life is honesty and fair dealing. If you can fake that,
you've got it made.

Groucho Marx

5.1. Our main interest in topological vector spaces is to develop the theory
of locally convex topological vector spaces, which appear naturally in defining cer-
tain weak topologies naturally associated with Banach spaces, including the Banach
space of all bounded operators on a Hilbert space. Locally convex spaces are also
the most general spaces for which (in our opinion) interesting versions of the Hahn-
Banach Theorem will be shown to apply. As we shall see in this section, there is an
intimate relation between locally convex topological vector spaces and separating
families of seminorms on the underlying vector spaces, a phenomenon to which we
now turn our attention.

5.2. Definition. Let V be a vector space over K. A seminorm onV is a map
p:V — R satisfying
(i) p(x) >0 for all x € V;
(ii) p(A\z) = [A|p(x) for all z € V, XA € K;
(iii) p(z +y) < p(z) +p(y) for all z,y € V.
It follows from this definition that a norm on V is simply a seminorm which
satisfies the additional property that p(z) = 0 if and only if z = 0.

5.3. Remark. A few remarks are in order. If p is a seminorm on a vector space
V, then for all x,y € V,
p(z +y) < p(x) + p(y)
implies that
p(x +y) —ply) < p(x).
Equivalently, with z = 2 4y, p(z) — p(z) < p(z — ). Thus p(z) —p(z) < p(x —2) =
p(z — z). Hence
Ip(z) — p(2)| < p(z — ).

5.4. Example. Let V = C([0, 1], C). For each z € [0, 1], the map
Pr VYV — R
defined by setting p.(f) = |f(z)| is a seminorm on V which is not a norm.
5.5. Example. Let n > 1 and consider ¥V = M,, = M,(C). Fix 1 < k,l < n.

The map i : V — R defined by i ([z5]) = |zki| defines a seminorm on V which,
once again, is not a norm.
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5.6. Convexity. Recall that a subset E of a vector space V is said to be convex
ifr,y € Fand 0 <t <1imply tx+ (1 —t)y € E. Geometrically, we are asking that
the line segment between any two points in £ must lie in F.

It is a simple but useful fact that any linear manifold of V is necessarily convex.

Note also that if pq, po,...., Py, is a family of seminorms on a V, zg € V, € > 0
and £ ={x €V :pj(x —x9) <e,1 <j<m}, then E is convex. Indeed, if z,y € E
and 0 <t <1, then forall 1 <j<m,

pj(te + (1 —t)y — mo) = tp;j(x — o) + (1 — t)p;(y — @o0)
<te+(1—-te=e.

Thus tz + (1 —t)y € E, and E is convex.

We leave it as an exercise for the reader to show that if V is a TVS and £ CV
is convex, then so is E.

Another elementary but useful observation is that if C' C V is convex and
T :V — W is a linear map (where W is a second vector space), then T'(C) is
convex as well. Finally, if £ C V is convex, then for all r,s > 0, rE+sE = (r+s)E.
Indeed, -—e; + =2-e5 € F for all e1,es € E, from which the desired result easily

? r+s T+s
follows.

5.7. The Minkowski functional. Let V be a TVS and suppose that E € Ugf
is convex. Now for any x € V, lim,_,orz = 0 (by continuity of multiplication), and
thus there exists 79 > 0 so that rqz € E. This allows us to define the map

pp: V — R
x — inf{r € (0,00):2 € rE},

which we call the gauge functional or the Minkowski functional for E.

Note: the name is misleading, since the map is clearly not linear - its range is
contained in [0,00). By convexity of E, if z € 7F and 0 < r < s, then z = re for
some e € I/, so v = (1 —2)0 + %(se) € co(sE) = sE. In particular, z € sE for all

s > pe(r).

5.8. Definition. Let V be a vector space over K. A function p : V — R is
called a sublinear functional if it satisfies:

(i) p(z +y) <p(z) +py) for allz,y €V, and
(ii) p(rz) = rp(x) for all0 < r € R.

5.9. It is clear from the definition that every seminorm (and hence every norm)
on a vector space is a sublinear functional on that space. The converse is false in
general.

For example, the identity map « : R — R is a sublinear functional on R. It is
not a seminorm since it is not even a non-negative valued function.
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5.10. Proposition. Let W be a TVS and E € Uy be convex. Then
(a) The Minkowski functional pg is a sublinear functional on W for E.
(b) If E is open, then
E={zxeW:pg(zx) <1}.
(¢) If E is balanced, then pg is a seminorm.
Proof.
(a) Suppose that z,y € E and that r, s € (0,00) with r > p(z), s > p(y). Then
rxerk,yeskandsox+ye€ (r+s)E. That is,
p(z+y) <r+sforalr>px)s>ply).

Thus p(z +y) < p(z) + p(y).
Also, if k > 0, then z € rF if and only if kx € krE, so that
p(kx) = inf{s: kx € sE'}
= inf{kr : kx € krE}
=kinf{r:z € rE&}
= kp(x).
Thus p is a sublinear functional, as claimed.

(b) Suppose that x € E and that E is open. Since the map f : R — W
given by f(t) = tz is continuous, 1 € f~!(E) is open in R and therefore
(1-46,146) C f7YE) for some § > 0. But then (1 + )z € E, or
equivalently, x € QZWE, implying that p(x) < 2% < 1.

Conversely, suppose that p(z) < 1. Then x = re for some p(x) <r < 1
and e € E. But then x = (1 —r)0+re € coE = E.

(¢) Suppose now that E is balanced. First observe that if k& # 0, then %E =F.

Note that p is subadditive since it is a sublinear functional by (a). Also,
p(z) > 0 for all z € W by definition of p.
Finally, if £ = 0, then p(kz) = p(0). But 0 € rE for all » > 0, and so
p(0z) =p(0) =inf{r >0: 2z € rE} =0 = Op(z).
If & # 0, then
p(kz) =inf{r > 0: kx € rE}
= inf{s|k| > 0: kx € s(|k|E)}
= inf{slk| > 0: kx € s(kE)}
= |k|inf{s > 0: 2 € sE}
= |klp(z).

Thus p is a seminorm.
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5.11. Proposition. Let W be a TVS and p be a seminorm on W. The following
are equivalent:

(a) p is continuous on W;
(b) there ezists a set U € UYY such that p is bounded above on U.

Proof.
(a) implies (b): It follows from our observations in paragraph 5.6 that the set

0e E:={zeW:px) <1}

is convex. Since p is assumed to be continuous and E = p~!(—o0, 1), E is
also open. Thus p is bounded above (by 1) on the open set E € L{&/V .

(b) implies (a): Suppose that p is bounded above, say by M > 0 on an open
set U €UV, Lete >0. Ifz,y e Wand o —y € (5)U, say v —y = Su
for some u € U, then

€ €

ip(x) —p(y)| <plx —y) = p(ﬁu) = —pu) <e.

Thus p is (uniformly) continuous on W.

5.12. Example. Recall from Example 5.4 that for each x € [0, 1],
pz: C([0,1,C) — R
f = [f(2)]
is a seminorm. Now B;(0) := {f € C([0,1],C) : || f]lcoc < 1} is open and f € B;(0)

implies that p,(f) = [f(2)] < [[fllec < 1.
Thus each such p, is continuous on C([0, 1], C).

5.13. Definition. A topology T on a topological vector space W is said to be
locally convex if it admits a base consisting of convex sets. We shall write LCS
for locally convex topological vector spaces, and for the sake of brevity, we shall refer
to them as locally conver spaces.

Since the topology on W is determined by the nbhds at a single point, it suffices
to require that W admit a nbhd base at 0 consisting of convex sets; that is, given
any nbhd U € Up, there exists a convex nbhd N € Uy so that N C U. In verifying
that a space is a LCS, we shall often only verify this condition.

5.14. Proposition. Let W be a TVS, and suppose that U € Uy is convex. Then
U contains a balanced, open, convex nbhd of 0.
Proof. By Proposition 4.10, U contains a balanced, open nbhd H of 0. Set N =
co(H). Then U convex and H C U implies that N C U. Since H is balanced, a
routine calculation shows that N is also balanced. For any choice of t1,ts,...,t;, €
[0,1] with Y ;" tx =1, and for any hy, ho, ..., hym € H we have

m—1
<Z tkhk> +t,H C N.

k=1
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Since H is open, so is <ZZL;11 tkhk) + tmH. Since N = co(H), it follows that N is
a union of open sets of this form, and hence N is also open.

Thus N is an open, balanced, convex nbhd of 0 contained in U, the existence of
which proves our claim.

a

As an immediate consequence we obtain:

5.15. Corollary. Let (V,7) be a LCS. Then V admits a nbhd base at 0 con-
sisting of balanced, open, convex sets.

5.16. Example. Let (X, | - ||) be a normed linear space. For each ¢ > 0, the
argument of paragraph 5.6 shows that B.(0) = {x € X : ||z|| < e} is convex. Since
{B:(0) : £ > 0} is a nbhd base at 0 for the norm topology, (X, | - ||) is a LCS.

More concretely, (K™, | - ||2) is a LCS, as is any Hilbert space H. So is B(H).

We have already seen that the quotient of a T'VS by one of its closed subspaces
is a TVS. Let us first obtain the same result for locally convex spaces.

5.17. Proposition. Let (V,7) be a LCS and W C V be a closed subspace.
Then V/W is a LCS in the quotient topology.
Proof. As mentioned above, that V/W is a TVS follows from paragraph 4.18.
There remains only to show that V/W admits a nbhd base at 0 consisting of convex
sets (see the remarks following Definition 5.13).

Let ¢ : V — V/W denote the canonical quotient map, and let U € L{(}; W Then
¢ t(U) € L[SJ, as ¢ is continuous. Since V is a LCS, we can find a convex nbhd
N €Uy so that 0 € N C ¢~ 1(U). Let M = g(N). Since g is an open map, we have

M e L{S//W. Since ¢ is linear, M is convex.
Finally, since N C ¢ 1(U), M = ¢(N) C U, and we are done.

5.18. Definition. A family I' of seminorms on a vector space W is said to be
separating if for all 0 # x € W there exists p € I' so that p(x) # 0.

5.19. Example. Let W = C([0, 1],C) and consider I' = {p, : x € QN [0, 1]},
where - as before - p,(f) = |f(x)| for all f € W.

If 0 # f € W, then there exists y € [0, 1] so that f(y) # 0. By continuity of f,
there exists a nbhd N of y such that f(y) # 0 for all y € N. Thus there exists a
rational number ¢ € N so that 0 # f(¢) and hence p,(f) # 0. Thus I' is a separating
family of seminorms.
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5.20. Let I' be a family of seminorms on a vector space W. For F' C I finite,
xz €W and € > 0, set

N(z,Fe)={yeW:p(x —y) <e,p€ F}.

Permitting ourselves a slight abuse of notation, we shall write N(z,p,¢) in the case
where F' = {p}.

5.21. Theorem. If I' is a separating family of seminorms on a vector space

W, then
B={N(z,F,e):x € W,e >0,F CT finite}
is a base for a locally convex topology T on W. Moreover, each p € T' is T -
continuous.
Proof.
STEP ONE: We begin by showing that B is a base for a Hausdorff topology 7 on
W.
e Let z € W and choose 0 # p € I'. (Such a p exists since I is assumed to
be separating.) Then x € N(x,p,1). Thus

U{B:Be B} DU{N(z,p,1):z e W} =W.
e Next suppose that By = N(z, F1,e1) and By = N(y, F3,¢e2) lie in B and
that z € B1 N By. We must find B3 € B so that z € B3 C B; N Bs.

To that end, let ¢ = min{e; — p(x — 2),e2 — q(y — 2) : p € F1,q € Fr},

so that € > 0. If w € N(z, F1 U Fy, ), then
plw—2a)<plw—2)+plz—x)<e+plz—2)<e

for all p € Fy, and so w € B;. An analogous argument proves that w € Bs.
That is, Bs := N(z, F1 U F3, ¢) satisfies the required condition.

It now follows from our work in the homework assignments that B is a
base for a topology on W.

o If x,y € W and z # y, then our assumption that I is separating implies

the existence of an element p € I' so that § := p(z —y) > 0. But then

N(z,p, g) and N (y, p, g) are disjoint nbhds of x and y respectively in the
T -topology, proving that 7 is Hausdorff.

STEP Two: That 7 is locally convex follows readily from the fact that B is a base
for T and each N (z, F,¢) is itself convex, as is easily verified.
STEP THREE: Next we verify that (W, 7T) is a TVS; namely, that the topology 7
is compatible with the vector space operations.
e Suppose that zg,yo € W and let U be a nbhd of z¢ + yo in the 7-topology.
Then there exists a basic nbhd B = N(xg+yo, F, ) of 29+ yo with B C U.
Let By = N(ﬂjo,F, %) and By = N(yo,F, %) If (x,y) € B1 X B, then
€ €
p((z+9) = (z0+w0)) <pl@—z0) +py—p) <5+5=¢

for all p € F, and thus o(B; x By) C B C U. This shows that addition is
continuous relative to 7.
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e As for scalar multiplication, let A\g € K, zg € W and U be a nbhd of Agxg
in the 7-topology. As before, choose a basic nbhd B = N(\gxg, F,e) C U.
Let § > 0. If K :=={A € C: A= X| <6} and B = N(xo,F,0), then
(A, z) € K x B implies that

p(Ax — Xozo) < p(Ax — Axg) + p(Azo — Aowo)
< [Ap(z — z0) + |A — Ao|p(0)
< (|Xo| +6)d + dp(wo)

for all p € F'. Since F is finite, it is clear that § can be chosen such that
p(Ax — Azg) < €, p € F, which proves that scalar multiplication is also
continuous relative to 7.

Together, these two observations prove that (W, 7) is a TVS.

STEP FOUR: Finally, let us show that each p is continuous relative to 7.
If p = 0, then clearly p is continuous relative to 7.
Otherwise, let B = N(0,p,1). Then B € 7, and for x € B,

p(x) = plz — 0) < 1,

so that p is bounded on some open set in W. It now follows from Proposition 5.11
that p is (uniformly) continuous on W.

a

5.22. The above result says that a separating family of seminorms on a vector
space W gives rise to a locally convex topology on W. Our next goal is to show that
all locally convex spaces arise in this manner.

5.23. Theorem. Suppose that (V,7Ty) is a LCS. Then there exists a separating
family T' of seminorms on V which generate the topology Ty .

Proof. By Corollary 5.15, (V, 7y,)) admits a nbhd base Cy at 0 consisting of balanced,
open, convex sets. By Proposition 5.10, for each E € Cy, the Minkowski functional
pE is a seminorm and E = {z € V : pg(z) < 1}.

Let I' = {pp : E € Cy}. We first show that I' is separating. Indeed, suppose
that 0 # x € V. Since 7y is Hausdorff by hypothesis, there exists G € Cy so that
x ¢ G (this is actually a bit weaker than the statement that 7y is Hausdorff, but
certainly implied by it). Since G € Cp, pg € I'. But « € G implies that pg(z) > 1,
and hence pg(z) # 0. Thus I' is separating. This is required before passing to the
next step.

By Theorem 5.21,

B={N(z,F,e):x€V,e>0,F CT finite}

is a base for a locally convex topology 7r on V. Our goal, of course, is to prove that
Ty =1Tr.

Let E € Cy be a Ty-open, balanced, convex nbhd of 0. Since F = N(0,pg,1) € B,
it follows that 7r contains a nbhd base at 0 for the topology 7y,. Since both topologies
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are TVS-topologies, they are determined by their nbhd bases at any point (for eg.,
at 0), and from this it follows that 7p D 7y.

On the other hand, each pg € I' is bounded above by 1 on E, and E is a 7y-
open nbhd of 0. By Proposition 5.11, pg is continuous on (V,7y). It follows that
N(0,pg,€) = pp'(—¢,e) € Ty for all e > 0. Thus 7y contains a nbhd subbase for
Tr at 0, and arguing as before, we get that 7p C 7y,.

Hence 7y = 7r, and the topology 7y is determined by the family I" of seminorms.

a

5.24. Example. Let (X,]-||) be a normed linear space. The norm topology on
X is the metric topology induced by the metric d(z,y) = ||« — y||. That is, a nbhd
base at xg € X for the norm topology is

on = {Vg(xo) LE> 0}
={{yeX:|ly—wol <e}:e>0}
= {N(zo,| - |l,&) : € > 0}.

Thus we see that the norm topology on X is exactly the locally convex topology
generated by I' = {|| - ||}. Observe that since || - || is a norm, 0 # = € X implies that
||lz|| # 0, and thus I is indeed separating, as required.

5.25. In Corollary 5.15, we saw that any LCS (V,7) admits a nbhd base at 0
consisting of open, balanced, convex sets.

In fact, each N (0, {p1,p2,...,Pm}, ) is balanced, open and convex for all choices
of m>1, p1,p2,...,pm € I' and € > 0, where I is a separating family of seminorms
which generate 7. It is clear from Theorems 5.21 and 5.23 that the collection of
such sets is a nbhd base at 0 for 7.

Having generated a topology on a vector space using a separating family of
seminorms, let us now examine what it means for a net to converge in this topology.

5.26. Proposition. Let V be a vector space and ' be a separating family of
seminorms on V. Let T denote the locally convex topology on V generated by T.
A net (zx)x in V converges to a point x € V if and only if

liinp(ac —x)) =0 forallp eT.

Proof.

e Suppose first that (x))) converges to x in the 7-topology. Given p € T’
and € > 0, the set N(z,p,e) C 7 and so there exists Ag so that A > g
implies that xy € N(z,p,e). That is, A > A¢ implies that p(z — z)) < €.
Thus limy p(x — x)) = 0.

Alternatively, one may argue as follows: suppose that (z))) converges
to x in the 7-topology. Given p € I', we know that p is continuous in the
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T-topology by Theorem 5.21. Since limy z — x) = 0,
li)r\np(ac —x)\) = p(li}r\n (x —zy)) = p(0) = 0.

e Conversely, suppose that limyp(x — x)) = 0 for all p € . Let U € U,
is the 7-topology. Then there exist pi,po,...,pm € I' and € > 0 so that
N(z,{p1,p2,--sPm},€) C U. For each 1 < j < m, choose \; so that A > A;
implies that p;(z)y — ) < e. Choose A\g > A1, Ag, ..., Ay If X > A, then
pj(xy —x) <eforall 1 <j<msothat xy € N(x,{p1,p2,....,pm},€) CU.
Hence limy z) =« in (V, 7).

O

5.27. Remarks. Let V be a vector space as above and let I be a separating
family of seminorms on V. Recall that if 7,, is the weak topology on V induced by I,
then 7, is the weakest topology for which each of the functions p € T" is continuous.
By Theorem 5.21, the LCS topology 7 generated by

B={N(z,F,e):x€V,e>0,F CT finite}

has the property that each p € T" is continuous on (V, 7). It follows, therefore, that
Tw € 7. In other words, if (), is a net in (V,7) which converges to x € V, then
(zx)x converges to x in (V,7y,); i.e. limy p(xy) = p(x) for all p € T.

That these two topologies do not, in general, coincide can be seen by examining
a simple example.

Let V = K and let I" = {p}, where p(z) = |z| for each x € K. The LCS topology
on K generated by I' is a TVS topology, and thus must agree with the usual topology
on K, since the latter admits a unique TVS topology, by Lemma 4.19. The weak
topology 7., on K generated by I' is the weakest topology for which p is continuous.
In particular, a net (z))x converges to x € K if and only if limy |z\| = |z|. For
example, the sequence (xy)n,, where z, = (=1)", n > 1 converges to x = 1 in
(K, 7). Since it clearly doesn’t converge in (K, 7'), the two topologies are necessarily
different, and again — by Theorem 5.21 — it follows that (K, 7;,) is not a TVS.

There is, however, a situation where we can say a bit more than this. Let V
be a vector space and let (X4, || - ||a)aca be a collection of Banach spaces (in fact,
normed linear spaces will do). For each such «, suppose that T, : V — X, is a
linear map. Suppose furthermore that the family {7, }, is separating in the sense
that if 0 £ x € V, then there exists a € A so that 0 # T,z € X,. Then each of the
functions

Pa: V — [0,00)
z —  ||Tazla
is easily seen to be a seminorm. It is routine to verify that the fact that {7} }q
is separating implies that I' = {p,}« is a separating family of seminorms. Let 7°
denote the LCS topology on V generated by I". By Proposition 5.26, a net (x))x
converges to x € (V,7) if and only if

liinpa(x —x)) = liin |To(x — ) |la = 0 for all a € A.
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That is, limy ) = « if and only if

liin Toxy = Tyx for all a € A.

Since this is nothing more than the statement that each T, is continuous, we find
that in this case, the 7 topology on V coincides with the weak topology generated
by the family {7, }aca. This is still not the same as the weak topology generated
by the family I', however.

5.28. Example. Let H = (*(N) and recall that H is a Hilbert space when
equipped with the inner product ((xy), (yn)) = > rey TnYn-

Recall also that B(H) is a normed linear space with the operator norm ||T|| :=
sup{||Tz| : € H, ||z| < 1}.

From above, we see that the norm topology on B(H) admits as a nbhd base at
T € B(H) the collection

{N(T,| - |l,e) : € >0} ={V(T) : ¢ > 0},

and that this is the locally convex topology generated by the separating family
I'={]| - ||} of (semi)norms.

Convergence of a net of operators (7)), in the norm topology is uniform con-
vergence - i.e. limy |7\ — T'|| = 0.

This is certainly not the only interesting topology one can impose upon B(H).
Let us first consider the topology of “pointwise convergence”.

THE STRONG OPERATOR TOPOLOGY (SOT) For each = € H, consider

pz: BH) — R
T — || Tz

Then

(i) po(T) >0 for all T € B(H);
(i) po(AT) = [|ATz|| = [A] [[T|| = |A] p2(T) for all A € K;
(iil) po(Ty + T2) = ||Tha + Tox|| < | Tral| + | T2z ]| = pa(T1) + poa(T2),

so that p, is a seminorm on B(H) for each = € H.

In general, p, is not a norm because we can always find T' € B(H) so that 0 # T
but p,(T') = 0. Indeed, let y € H with 0 # y and y L z. Define T}, : H — H via
T,(z) = (z,y)y. Then |Ty(2)| < ||z||[ly]|* by the Cauchy-Schwarz Inequality and
in particular T, (y) = ||y||*y # 0, but Ty(z) = (z,y)y = Oy = 0. Thus 0 # T, but
pz(Ty) = 0.

On the other hand, if 0 # T € B(H), then there exists x € H so that Tz # 0.
Thus p(T) = | Tx| # 0, proving that I'sor := {ps : © € H} separates the points
of B(H).

The locally convex topology on B(H) generated by I'sor is called the strong
operator topology and is denoted by SOT.
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By Proposition 5.26 above, we see that a net (T))x € B(H) converges to T €
B(H) in the SOT if and only if

liinpx(T)\ -T)= li/r\n |The —Tz||=0 for all z € H.

Thus the SOT is the topology of pointwise convergence. That is, it is the weakest
topology that makes all of the evaluation maps T +— Tz, € H continuous.
A nbhd base for the SOT at the point 7" € B(H) is given by the collection

{N(T,{z1,22, ..., xm},e) :m>1,z; e H,1 < j<m,e >0} =
{ReB(H): ||Rx; —Tzj|| <e,1<j<m}.

THE WEAK OPERATOR TOPOLOGY (WOT) Next, for each pair (z,y) € H x H,
consider the map
Quy: BH) — R
T = [(Tzy).

Again, it is routine to verify that each ¢, , is a seminorm but not a norm on B(H).

The locally convex topology on B(H) generated by I'wor = {quy : (z,y) €
H x H} is called the weak operator topology on B(H) and is denoted by WOT.

A net (7)) € B(H) converges to T' € B(H) in the WOT if and only if

lim (T = Tz, y)| = (Thz,y) — (Tz,y)| = 0

for all x,y € H. In other words, the WOT is the weakest topology that makes all
of the functions T' — (T'z,y), x,y € H continuous.
A nbhd base for the WOT at the point T' € B(H) is given by the collection

{N(T,{z1,22, ..., Tm, Y1, Y2, -, Ym },€) :m > Lzjy; € H,1 < j <m,e >0} =
{ReB(H): (Rxj — Txj,y;)| <e, 1 <j<m}.

5.29. Proposition. Let (V,7T) be a LCS, and let T' be a separating family
of seminorms on V which generate the locally convexr topology on V. Let p be a
seminorm on V. The following are equivalent:

(a) p is continuous on V;
(b) there exists a constant k > 0 and p1,p2,...,pm € I' so that

p(z) < kmax(p1(x), p2(x), ..., pm(T)) forall z € V.
Proof.

(a) implies [(b)] Suppose that p is continuous on V. Then M := p~1((—1,1)) =
p~1([0,1)) is a T-open nbhd of 0, and as such, it must contain a basic nbhd
N := N(0,{p1,p2,..;Pm},€) for some p1,p2,....,pm € I' and ¢ > 0. It
follows that if pj(z) < € for 1 < j < m, then € N C M, and hence
p(z) < 1.

More generally, let y € V and let » = max(p1(y), p2(y), ..., Pm(y))-
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o If r =0, then for all £ > 0, pj(ky) =0 < e, 1 < j < m, so that from
above, p(ky) = kp(y) < 1. But then

p(y) = 0 < Imax(p1(y), p2(y); -, Pm(y))-
o If r > 0, then x = ;—Ty satisfies pj(z) < e, 1 < j < m, and so
5-p(y) = p(z) < 1. That is,

2r 2

p(y) < ~ = gmaX(pl(y),pz(y), ey P (V)

We conclude that with £ = max(1, %),

p(y) < kmax(p1(y), p2(y), - Pm(y))

for all y € V.

(b) implies [(a)] Suppose that (b) holds. Now N := N(0,{p1,p2,...,Pm}, 1) is
an open nbhd of 0 in the 7-topology. If z € N, then p;(z) < 1 for all
1 <j <m, and so p(z) < k. But then p is bounded above on the 7-open
nbhd N of 0, and hence is continuous by Proposition 5.11.

a

5.30. Proposition. Let (V,7y) and (W, Ty) be locally convex spaces. Let T'y
and T'yy denote separating families of seminorms which generate the corresponding
locally convex topologies on V and W respectively. Finally, let T :'V — W be a
linear map.

The following are equivalent:

(a) T is continuous.
(b) For all q € Ty there exists kK > 0 and p1,p2,...,pm € 'y so that

q(Tz) < kmax(p1(z),p2(x),....pm(z))  for allz € V.
Proof.

(a) implies (b): Suppose that T is continuous and that ¢ € T')y. Clearly ¢ is
continuous as well. It is routine to verify that goT is a seminorm on V. Since
the composition of continuous functions is continuous, goT is a continuous
seminorm on V, and the result now follows from Proposition 5.29.

(b) implies (a): Conversely, suppose that for all ¢ € I'yy there exists £ > 0 and
D1, P2, -, Pm € I'y so that

q(Tz) < kmax(pi(z),p2(z), ..., pm(x)) for all z € V.

As before, we observe that goT is a seminorm on V for all ¢ € W. Moreover,
by Proposition 5.29, each such q o T" is continuous.

Let U € U&/V and choose gqi1,¢2,...,q, € Ty so that
N(0,{q1,92,....,qn},€) C U. Since each gj o T is continuous on V', we have
that N(0,{q1oT,q20T,...,q, 0 T},¢) is a nbhd of 0 in V. Moreover,

x € N0,{q10T,q20T,...,qn, 0 T},¢)
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implies that
Tz e N(0,{q1,q92,.-,qn},e) C U.

It follows that T is continuous at 0.
By Theorem 4.29 and paragraph 4.30, 7" is continuous on V.

We shall require the following special case of the above result.

5.31. Corollary. Let (V,T) be a LCS. A linear functional f on'V is continuous
if and only if there exists a continuous seminorm q on V such that

|f(2)] < q(x) for all z € V.

Proof. Observe that if f is a continuous linear functional on V, then ¢(z) := | f(x)|,
x €V defines a continuous seminorm on V; indeed, that ¢ is continuous follows from
the fact that f is continuous on V and |-| is continuous on K respectively. Obviously

lf(x)] <qg(z) forallzeV.

Conversely — and more interestingly — suppose that there exists a continuous
seminorm ¢ on V such that |f(x)| < ¢(x) for all z € V. As before, we may choose
a separating family I' of seminorms on V, and without loss of generality, we may
assume that ¢ € I'. (Otherwise we replace I' by I" U {¢}.). The result now follows
immediately from Proposition 5.30.

a
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Appendix to Section 5.

5.32. In the assignment questions we exhibited an example of a TVS which is
not normable, i.e. it is not a normed linear space with respect to any norm. The
technique for constructing that example can be extended to produce a large variety
of such examples. The spaces we have in mind are called Fréchet spaces, and we
define them now.

5.33. Definition. A metric d on a vector space V is said to be translation

invariant if
dz,y) =d(x + z,y + 2)
forall z,y,z € V.

We shall also say that a metric d on'V is complete if (V,d) is a complete metric
space.

Finally, let us say that a countable family {pn}n of pseudo-metrics on V is
complete if, whenever (xy) is a sequence in YV which is Cauchy relative to each py,
(i.e. for allm > 1 and ¢ > 0 there exists N = N(g,n) > 0 so that j,k > N implies
pn(xj,xr) <€), there exists x € V so that limg_.o pn(zk,x) =0 for each n > 1.

5.34. Example. Most, but certainly not all metrics we deal with are translation
invariant. For example, if d(x,y) = |z—y| for z,y € R, then d is obviously translation
invariant.

On the other hand, the metric d on R defined via:

d(z,y) = |* —y’|
for all z,y € R is not translation invariant, since d(0,1) =1 # 7 = d(1, 2).

5.35. Definition. Let (V,7) be a LCS. If the topology T on V is induced by
a translation invariant, complete metric d, then we say that (V,7T) is a Fréchet
space.

5.36. Constructing Fréchet spaces. We know from Theorem 5.21 that if
I' is a separating family of seminorms on a vector space V, then I' generates a
LCS topology 7 on V. Suppose now that the family I'" possesses the following two
additional properties, namely:

e the set I' = {p, }, is countable, and
e the family {p,}, of pseudo-metrics defined on V via p,(z,y) = pn(x —y)
is a complete family.

Then the metric

R S 2 et DI o S C )
d(x,y)—Z@m_zfnm

n=1 n=1
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is easily seen to be translation-invariant. It is not too difficult to verify that a
sequence (xp)r in V converges to x € V relative to the metric topology induced
by d if and only if limg_ o pp(zx — ) = 0 for all n > 1. That is, the d-metric
topology coincides with the LCS topology induced by I'. Furthermore, observe that
(zx)g is Cauchy in the d-metric topology if and only if (zj)x is Cauchy relative to
each pseudo-metric p,, n > 1. By the second item above, it follows that (V,d) is
complete, and hence that (V,7) is a Fréchet space.

5.37. Example.

(a) Let V = C*(R) denote the vector space of all functions f : R — R which
are infinitely differentiable at each point € R. Let I = {py, 1} k>0, Where
for f €V,

Pugi(f) = sup{|f" (@) : @ € [k, K]}
Let 7 denote the LCS topology on V generated by the separating family I

of seminorms. Then (V,7) is a Fréchet space.
A sequence (fi)r in V converges to f € V if and only if

timsup{|f;" (z) = f*) ()] < w € [k, K]} =0

foralln >0, k> 0.
(b) If (X,]| - ||) is @ normed linear space, then with I' = {|| - ||}, X becomes a
Fréchet space.

5.38. Many authors define a Fréchet space as a LCS with a translation-invariant
metric which is complete as a uniform topological space. The definition of a
uniform space is rather long, and instead we refer the interested reader to the book
of Willard [Wil70] for a development of this concept.

*

I once spent a year in Philadelphia. I think it was on a Sunday.
W.C. Fields
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6. The Hahn-Banach theorem

When I wake up in the morning, I just can’t get started until I've had
that first, piping hot pot of coffee. Oh, I've tried other enemas...

Emo Philips

6.1. It is somewhat of a misnomer to refer to the Hahn-Banach Theorem. In
fact, there is a large number of variations on this theme. These variations fall into
two groups: the separation theorems, and the extension theorems. The crucial rela-
tion between these two classes of theorems is that they all refer to linear functionals.
Having said this, when one wishes to apply a version of the Hahn-Banach Theorem,
one tends to say only: “by the Hahn-Banach Theorem...”, usually leaving it to the
reader to determine which version of the Theorem is being applied.

The importance of these theorems in Functional Analysis can not be overstated.

6.2. Definition. Let W be a vector space over K. A linear functional on
W is a linear map f : W — K. The vector space of all linear functionals on W is
denoted by W# and is referred to as the algebraic dual of W.

If W is a TVS, the (vector) space of continuous linear functionals is denoted
by W*, and is referred to as the (topological) dual of W. Obviously W* C W#.

6.3. Example. Let n > 1 be an integer and consider W = K" equipped with
the norm ||(z1,22,...,24)|lc = max|z;|. For any choice of ki,ks,...,k, € K, the
map

f: w — K
(1,22, ..., xn) — Doy ki

is a continuous linear functional.

6.4. Remarks.

(a) Recall from basic linear algebra that every linear functional on K" is of this
form for some choice of ki, ko, ..., k, € K. As such, every linear functional
on K" is continuous.

(b) Recall from Proposition 4.20 that if V is an n-dimensional TVS with basis
{e1,€2,...,en}, then V is homeomorphic to K" via the map
Yoy kie; — (k1, k2, ..., kyn). Since the product topology on K" is in turn
equivalent to the norm topology induced by the infinity norm, it follows
from (a) above that every linear functional on a finite-dimensional TVS is
continuous.
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6.5. Example. Let us next consider coo(K) = {(2,)22; : x, € K for all n >
1 and x,, = 0 for all but finitely many n’s}. Recall that this forms a normed linear

space when equipped with the norm
[[(@n)nlloo = sup |zs|.
n

Define

f: Coo(K) —
(G P D D

Then f is a non-continuous linear functional on ¢go(K). Indeed, if

Yn:( ’

11 1
— =y, —0,0,0,...)
n'n n

(where the % term is repeated n times), then ||y,|lco = %, and so limy, oo yn = 0,
while f(y,) =1 for all n, and hence lim,,_, f(y») # 0 = f(0).

For a number of the results we shall obtain below, we shall assume that the
underlying field is R. In order to translate the results to the case of complex vector
spaces, the following Lemma will be useful.

6.6. Lemma. Let V be a vector space over C.

(a) If f:V — R is an R-linear functional, then the map

fe(@) := f(z) —if(ix)

is a C-linear functional on V, and f = Re fc.
(b) If g : V — C is C-linear, f = Reg and fc is defined as in (a), then g = fc.
(c) Ifpis a C-seminorm onV and f, fc are as in (a) above, then |f(x)| < p(x)
for all x € V if and only if | fc(x)| < p(x) for all x € V.
(d) IfV is a NLS and f, fc are as in (a), then || f| = || fc]|-

Proof.

(a) This is routine and is left to the reader.
(b) Let x € V and write g(z) = a + ib, where a = Reg(z) = f(z) and b =
Img(x) are real. By C-linearity of g, g(iz) = ig(x) = —b + ia, and so

Img(z) =b= —Reg(iz) = —f(iz).
That is, g(z) = f(z) +i(=f(ix)) = f(z) —if(iz) = fe(z).

i(—f
(c) First suppose that |fc(x)| < p(z) for all z € V. Then |f(z)| = |Re fc(x)|
|fe(z)] < p(z) for all x € V.

IN
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Next suppose that |f(z)| < p(x) for all z € V. Given z € V, choose
0 € C, |0| =1 so that |fc(x)| = 0 fc(z). Then

|[fe(x)] = O fc(x)
= fc(0x)
= Re fc(fz)  (as this quantity is non-negative)
= f(0z)
< p(0x)
= |0[p(z) = p().
(d) It is routine to verify that ||f|| < || fc||, and this step is left to the reader.
Conversely, given = € V with ||z| = 1, we can find 6, so that |fc(z)| =
0. fc(x) = fe(Ozx) = Re fe(bx) = f(fx). Note that [|0,x| = 1 because
V is a C-vector space and ||0,x| = |0, ||z|| = ||z|| = 1. Thus
/el = sup{lfc(2)] - |[=] = 1}
= sup{[f(0-2)] : [|z]| = 1}
sup{[f()| : llyll = 1}
1/l

IN

6.7. Proposition. Let V be a vector space over K and let f € V#.
(a) If g € V¥* and glxer =0, then g =kf for some k € K.
() If g, f1, fo,s fn € V* and g(x) = 0 for all x € ﬂf[:lker fj, then
g S Span{fla f2a ceey fN}
Proof.

(a) If g =0, then set kK = 0 and we are done.
Otherwise, choose z € V so that g(z) # 0. By hypothesis, f(z) # 0.
Let k = g(z)/f(z). Now ker f has codimension 1 in V, and so if z € V,
then x = az 4+ y for some y € ker f and o € K. Hence

9(x) = ag(z) + g(y) = ag(z) + 0
=akf(z)
= k(af(2) + f(y))
=kf(z).
Since z € V was arbitrary, g = kf.

(b) We may assume that {f1, f2, ..., fy} are linearly independent. Let N' =
ﬂjy:Lker fj- Then dim (V/N) < N. For 1 < j < N,ﬁdeﬁne fi VN =K
via f;(x +N) = fj(z). Since N' C ker f;, each f; is well-defined, and
fie (VIN)#. -

We claim that {f, f5,..., fx} is also linearly independent. Otherwise,
we can find ki, ko, ..., kxy € K so that Zjvzl |kj| # 0, but Z;V:1 kif; = 0.
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But then Zjvzl kjf; # 0, so we can find z € V with 0 # Z;V:1 kifi(z) =
Z;y:l kif;(z+N), a contradiction.

Thus dim (V/N)# > N. Combining this with the fact that dim (V/N) <
N yields dim (V/N) = dim(V/N)# = N, and that {f;, fs, ..., fx} is a ba-
sis for (V/N)7.

Now define g : V/N — Kvia g(z+N) = g(x). Again, since N C ker g,
g is well-defined. Since g € (V/N)#, we can write

N
g= Zkﬂ?j for some k1, ko, ..., kn € K.
j=1
For z € V,
N —
0=(G-> kif)x+N)
j=1
N
= g(x) = > kifj(=),
j=1

so that g = Zﬁvzl kjif;.
O

The first part of the above Proposition shows that if f and ¢ are distinct linear
functionals on a vector space V, then they have the same kernel if and only if one
functional is a non-zero multiple of the other.

6.8. Definition. Let V be a vector space over K. A hyperplane M inV is a
linear manifold for which dim (V/M) = 1.

6.9. If 0 # ¢ € V#, then from elementary linear algebra theory we see that
M := ker ¢ is a hyperplane in V and that ¢ induces an (algebraic) isomorphism @
between V/M and K via

oz + M) = ¢(x) for all z + M € V/ M.

Conversely, if M C V is a hyperplane, then V/ M is (algebraically) isomorphic to
K. Let x : V/M — K denote such an isomorphism. If ¢ : V — V /M is the canonical
quotient map, then ko q:V — K is a linear functional with ker (k o ¢) = M.

Thus we have established a correspondence between linear functionals and hy-
perplanes. Proposition 6.7 implies that, up to a factor of a non-zero scalar multiple,
this correspondence is bijective.
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6.10. Proposition. If (V,7) is a TVS and M C 'V is a hyperplane, then either
M is closed in V, or M is dense.
Proof. Since M is a vector space satisfying M C M C V, and since dim (V/M) =
1, we either have M = M, or M = V.
O

It is worth noting that both possibilities can occur.

6.11. Example.

(a) Let X = (C([0,1],C), - ||oo), and let 5% : X — C be the map 5%(f) = f(3),
f € X. Then ker (5% = {f:10,1] — C|f is continuous and f(3) = 0}. This
is clearly closed.

(b) Let ¥V = ¢o(C), and let e, = (314, d2k, I3k, -..), Where 055 = { (1] gz ii
Let z = (1,1/2,1/3,1/4,...). Then {z,e1,es,e€s,...} is linearly independent
in V, and as such it can be extended to a Hamel basis (i.e. a vector space
basis) for V, say

B={ze1,e,e3,..} U{by: A€ A}

Given v € V, say v = az+_po; Brer+ 2 cp Yaba for some a, Bi, v €
K with only finitely many coefficients not equal to zero, define g(v) = a.

It is clear that this defines a linear functional on V. Since ker g is a
subspace containing e, k > 1, and since span {e}7° is dense in V), ker g
is dense in V. Since g # 0, and since ker g is dense in V, we see that ker g
is not closed.

6.12. Proposition. Let V be a TVS and p € V¥*. Suppose that there exists an
open nbhd U € Uy of 0 and a constant k > 0 so that Rep(x) < k for all z € U.
Then p is uniformly continuous on V.

Proof. By Proposition 4.10, we can find a balanced, open nbhd N of 0 with N C U.
Observe that for x € N C U, there exists 0, € K, |0,| = 1 so that

Ip(x)] = p(Oz2) = Re p(b,).

But 6,2 € N since N is balanced, and so |p(z)| < & for x € N. Consider the
function
p: V — R
z = |p(z)|
which is easily seen to be a seminorm. Since p is bounded above by « on the open
nbhd N of 0, we can invoke Proposition 5.11 to conclude that p is continuous on V.

By linearity, it follows that p is continuous at 0, and hence p is uniformly continuous
on V by Theorem 4.29.

a
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6.13. Corollary. Let V be a TVS and p € V#. The following are equivalent:
(a) p is continuous on V - i.e. p € V*;
(b) ker p is closed.
Proof.

(a) implies (b): This is clear. If p is continuous, then ker p = p~1({0}) is closed
in V because {0} is closed in K.

(b) implies (a): Suppose next that ker p is closed. If p = 0, then p is obviously
continuous. Suppose therefore that p # 0. Then W := V/ker p is a one-
dimensional TVS and

p: W - K
x+ker p — p(x)
is a linear functional on W. By Remark 6.4 (b), p is continuous. If

q : 'V — W is the canonical quotient map, then by Paragraph 4.18, ¢
is also continuous, and thus p = p o ¢ is continuous as well.

|
Recall that X* = B(X,K) is a Banach space whenever X is a NLS. Let us recall

a couple of results from Measure Theory which provide us with interesting examples
of classes of linear functionals.

6.14. Theorem. Let (X, u) be a measure space and 1 < p < 00. If%—i—% =1,
and if g € L1(X,Q, n), then

By(f) :Z/ngdu

defines a continuous linear functional on LP(X,Q,u), and the map g — By is an
isometric linear bijection of L1(X,Q, pu) onto LP(X,Q, pu)*.

If (X,Q, ) is o-finite, then the same conclusion holds in the case where p = 1
and g = 0.

Recall that if X is a locally compact space, then Mg(X) denotes the space of
K-valued regular Borel measures on X with the total variation norm.

6.15. Theorem. If X is locally compact and p € Mg (X), then
Bu: Co(X,K) — K
f =[x fdu

defines an element of Co(X,K), and the map p — [, is an isometric linear isomor-
phism of Mg (X) onto Co(X,K)*.
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THE EXTENSION THEOREMS

6.16. The Hahn-Banach Theorem is probably the most important result in
Functional Analysis. It has a great many applications, and its usefulness cannot
be overstated. There are two basic formulations of this result (each with a variety
of consequences); the first in terms of extensions of linear functionals from linear
submanifolds of a LCS to the entire LCS, and the second in terms of so-called
“separation theorems”, which we shall examine later.

6.17. Proposition. Let V be a vector space over R and p : V — R be a
sublinear functional. Suppose that M is a (proper) hyperplane and that f : M — R
is a linear functional for which f(x) < p(x) for all x € M. Then there exists a
linear functional g : V — R such that g|p = f, and g(z) < p(x) for all x € V.
Proof. Let z € V/ M, so that V = span {z, M}. Then v € V implies that v = tz+m
for some t € R, m € M.

For each r € R we may define h, : V — R by setting h,(z) = r, setting
hr(m) = f(m), m € M, and then extending h, by linearity to all of V. Clearly
h, € V# and h, extends f. The problem is that we do not know that h,(z) < p(x)
for all x € V - in fact, this is generally not true. The question of finding a g as
in the statement of the Proposition amounts to showing that for some s € R, we
will have hs(xz) < p(x) for all x € V. To find such an s, we first examine which
properties it must satisfy. We then demonstrate that these properties are also
sufficient. Finally, the existence of s is a byproduct of reconciling these necessary
and sufficient conditions.

If hs(x) < p(x) for all z € V, then for all t € R, m € M we must have

hs(tz +m) =ts + f(m) < p(tz +m).
e If t > 0, then setting m; = t~'m yields:
s < —t~1f(m)+t p(tz +m)
< —f(t7'm) +p(z+t7'm) for all m € M
(1) < —f(m1) +p(z+my1) forall m; € M.

e If t < 0, then setting my = —t~!m yields:

s> —t7Lf(m) +t p(tz +m)
(=t~ tm) — p(—z — t"tm) for all m € M
(ma) —p(—2z+mg) for all my € M.

(2) =

The key issue is that we can “reverse engineer” this process. Suppose that s € R
satisfies both (1) and (2), namely

(3) f(m2) —p(—z+m2) <s< —f(m1)+p(z+mq) for all my,me € M.
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e If t > 0, then
hs(tz +m) = ts+ f(m)
< t(=f(m/t) + p(z + (m/1))) + f(m)
=p(tz+m) for allme M,

while
e if t < 0, then

hs(tz +m) =ts+ f(m)
< t(f(=m/t) = p(=z — (m/1))) + f(m)
= —f(m) + (=t)p(=z — (m/t)) + f(m)
=p(tz+m) for all m € M.
o If t = 0, then hs(tz +m) = hs(m) = f(m) < p(m) = p(tz + m) for all
m e M.

There remains to show, therefore, that we can find s € R which satisfies (3) (or
equivalently, which satisfies both (1) and (2)). Now this can be done if

flma) + f(my) < p(—z+ma) +p(z+mq) for all my, ms € M.
But

f(ma) + f(m2) = f(m1 +m2) < p(my +m2)
< p(ma — 2) + p(z +m1)
for all m1,ms € M, and so we can choose
so := sup{f(mz) — p(—z +m2) : my € M}.
Letting g = hg, completes the proof.

6.18. Theorem. The Hahn-Banach Theorem 01

Let V be a vector space over R and let p be a sublinear functional on V. If M
is a linear manifold in V and f : M — R is a linear functional with f(m) < p(m)
for all m € M, then there exists a linear functional g : V — R with g|pm = f, and
g(z) < p(x) for all x € V.
Proof. Let 7 = {(N,h) : N a linear manifold in V, M C N, hjp = f, and h(n) <
p(n) for alln € N} For (Nl,hl),(Ng,hQ) € J, define (Nl,hl) = (Ng,hg) if
N1 C Ny and he|n; = hi. Then (J, =) is a partially ordered set with respect
to <. Moreover, J # &, since (M, f) € J.

Let C = {(Nyx,hy) : A € A} be a chain in J, and let N := UyeaN,. Define
h : N — R by setting h(n) = hy(n) if n € Ny. Then h is well-defined because C
is a chain (check!), h is linear and h(n) < p(n) for all n € N. Thus (N,h) € J
and it is an upper bound for C. By Zorn’s Lemma, (J, <) has a maximal element
(V,g). Suppose that YV # V. Choosing z € V\Y and letting Yy = span{z, V},
Proposition 6.17 implies the existence of a functional gg : Yy — R which extends g
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and satisfies go(y) < p(y) for all y € V. This contradicts the maximality of (Y, g).
Hence Y =V, and ¢ has the required properties.
O

The complex version of this theorem can now be established.

6.19. Theorem. The Hahn-Banach Theorem 02

Let V be a vector space over K. Let M C V be a linear manifold and letp : V — R
be a seminorm on V. If f : M — K is a linear functional and |f(m)| < p(m) for
all m € M, then there exists a linear functional g : V — K so that gy = f and
lg(z)| < p(x) for allz € V.
Proof. Suppose that K = R. Then f(m) < |[f(m)| < p(m) for all m € M, and
p is a sublinear functional (by virtue of the fact that it is a seminorm). By the
Hahn-Banach Theorem 01, there exists g : V — R linear so that g|ypq = f and
g(xz) < p(z) for all z € V. Thus —g(z) = g(—x) < p(—z) = p(z) for all z € V, so
that |g(z)| < p(zx) for all z € V.

Now suppose that K = C. Let f; = Ref. Then by Lemma 6.6, |f1(m)| < p(m)
for all m € M. By the argument of the first paragraph of this proof, there exists
an R-linear functional ¢g; : V — R so that gi|p = f1 and |gi(m)| < p(m) for all
m € M. Let g = (g1)c denote the complexification of g1, as obtained in Lemma 6.6.
Then g : V — C is C-linear, g|y = f, and by part (c) of that Lemma,

lg(z)| < p(z) forall x € V.
Od

6.20. Corollary. Let (V,7) be a LCS and W C V be a linear manifold. If
f € W*, then there exists g € V* so that glyw = f.
Proof. Since (V,7) is a LCS, so is W. Let I" be a separating family of seminorms
which generate the LCS topology on V (see Theorem 5.23). Then it is routine to
verify that 'y := {p|yy : p € T'} is a separating family of seminorms on W which
generates the relative LCS topology on W.

Suppose that f € W*. By Corollary 5.31, there exist k > 0 and p1,p2, ..., pm € I’
so that

|f(w)| < k max(p1(w), p2(w), ..., pm(w))  for all w € W.
Let q(z) := k max(pi(x), p2(x),...,pm(z)) for all z € V. Then, as is easily verified,
q is a seminorm on V, and ¢ is continuous by Proposition 5.29. Moreover,
|f(w)| < gq(w) for all w e W.

By the Hahn-Banach Theorem 02, we can find a linear functional g : V — K so that
glw = f and
lg(x)| < q(z) forallzeV.
Another application of Corollary 5.31 shows that ¢ is continuous, as was required.
O



80 L.W. MARCOUX FUNCTIONAL ANALYSIS

The following is simply an application of Corollary 6.20 to the context of normed
linear spaces. It is often the version that comes to mind when the Hahn-Banach
Theorem is quoted.

6.21. Theorem. The Hahn-Banach Theorem 03

Let (X,| - ||) be a NLS, M C X be a linear manifold, and f € M* be a bounded
linear functional. Then there exists g € X* such that g|ypm = f and ||g|| = || f]]-
Proof. Consider the map

p: X — R
z o= Sl

It is easy to check that p is a seminorm on X. (In fact, it is a norm unless f = 0.)
Since |f(m)| < p(m) for all m € M, it follows from the Hahn-Banach Theorem 02
that there exists g : X — K so that g|pm = f and |g(z)| < p(z) = ||f] ||z|| for all
x € X. This last inequality shows that ||g|]| < ||f||. That ||g|]| > || f|| is clear, and
hence ||g[| = [/l

a

6.22. Corollary. Let (V,T) be a LCS and {z;}]", be a linearly independent
set of vectors in V. If {k’j}}n:l € K are arbitrary, then there exists g € V* so that
g(zj) =k;, 1 <j<m.

Proof. Let M = span{xj}?“zl, so that M is a finite-dimensional subspace of V.

Define f: M — K via
FOQazy) =Y ajk;.
i=1 J=1

Then f is linear on M, and thus, by Corollary 4.31, it is continuous. By Corol-
lary 6.20, there exists g € V* so that g|xp = f. Hence g(z;) = k;, 1 <j <m.
O

A special case of the above Corollary which is worth pointing out is the following.

6.23. Corollary. Let (V,T) be a LCS and 0 # y € V. Then there exists g € V*

so that g(y) # 0.
Proof. Simply let 1 = y and k1 = 1 in the previous Corollary.

a

As an application of these results, let us show that finite dimensional subspaces
of locally convex spaces are topologically complemented.

6.24. Definition. A closed subspace W of a LCS (V,T) is said to be topolog-
ically complemented if there exists a closed subspace Y of V so that V =Y & W.
That is, x € V implies that x = y+w for somey € Y and w € W, while YNW = {0}.
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6.25. Remark. Every vector subspace W of a vector space V over K is alge-
braically complemented. If {w)}xea is a basis for W, then it can be extended to a
basis {wx}xea U{ys}ger for V. Letting Y = span{ys}ger, we get V=Y @ W.

The key issue in the above definition is that if WV is a closed subspace in the
LCS V, then we are asking that the complement ) of VW also be closed. This is not
always possible. For example, ¢g is a closed subspace of (£*°,] - ||~). Nevertheless,
it does not possess a topological complement. The proof is omitted.

When W is finite-dimensional, the situation is somewhat better.

6.26. Proposition. Let W be a finite-dimensional subspace of a LCS (V,T).
Then W is topologically complemented in V.
Proof. First observe that W is closed in V by Corollary 4.21. Let {wy,ws, ..., w,}
be a basis for W.

By Corollary 6.22, we can find continuous linear functionals p1, pa, ..., p, € V*
so that p;(w;) = d;j, where d;; is the Kronecker delta function. Let ) = ﬁ;?:l ker p;.
Since each p; is continuous, ker p; is closed for all 7, and hence Y is also closed.

Suppose v € V. Let kj = p;j(v), 1 < j <n. Then w = Y " kw; € W. If
y :=v —w, then p;(y) = p;j(v) — pj(w) =k;j —k; =0, 1 < j <n. Hence y € V.

Finally, if z € YN W, then z = 2?21 r;w; for some r; € K, 1 <i < n. But then
z€)Y,soforeach 1 <j<n,0=pj(z)=r;. Hence z=0and V=Y W.

O

6.27. Corollary. Let (V,7) be a LCS and W C V be a closed subspace of V.
Ifx €V, © €W, then there exists g € V* so that g|lyy = 0 but g(x) # 0.
Proof. By Proposition 5.17, V/W is a LCS. Also, x ¢ W implies that g(x) # 0 in
V /W, where q : V — V/W is the canonical quotient map. We can therefore apply
Corollary 6.23 to produce a functional f € (V/W)* so that f(q(x)) # 0. Since q is
continuous, so is g := f o ¢, and so g € V* satisfies g(w) = 0 for all w € W, while

g(z) # 0.

a

6.28. Theorem. Let (V,T) be a LCS and W C V be a linear manifold. Then
W =n{ker f: fe€V* and W C ker f}.

Proof. Clearly f € V* implies that ker f is closed, so if W C ker f, then W C ker f.
Thus

W Cn{ker f:feV" and W C ker f}.
Conversely, suppose that € V, x ¢ W. By Corollary 6.27, there exists g € V*

so that g|yy = 0 but g(x) # 0. This proves the reverse inclusion, and combining the
two inclusions yields the desired result.

a
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6.29. Corollary. Let (V,7) be a LCS and W C V be a linear manifold. The
following are equivalent:

(a) W is dense in V.
(b) f € V* and flyw = 0 implies that f = 0.

Let us now describe some quantitative versions of the above results, in the setting
of normed linear spaces.

6.30. Corollary. Let (X,| -||) be a NLS and x € X. Then

[]] = max{]a™(2)] : 2™ € X7, |7 < 1}.

Proof. For the rest of the proof, the vector x € X is fixed.

Let 8 := sup{|z*(z)| : z* € X*,||z*|| < 1}. Then for any z* € X* with ||z*| <1,
[z*(2)] < [|lz*[|]|=]] < |[=[|, and so 8 < [|]].

Define P = Kz, so that ) is a one-dimensional normed, linear subspace of X.
Define f € 9% via f(kx) = k||z||. Then |f(kz)| = |k|||z| = ||kz|, and so ||f| = 1.
By the Hahn-Banach Theorem 03 (Theorem 6.21), there exists y* € X* so that
Yy = f, and [ly*[| = || f]| = 1.

Thus

ly"(2)] = y*(z) = f(z) = [,
which proves that 8 > ||z||, and hence that 8 = |z|. It also shows that the
supremum is attained at y*.
a

Recall from Proposition 2.18 that if X is a normed linear space, then the canon-
ical embedding J : X — X™* which sends x € X to T € X**, where Z(z*) = 2*(x) for
all x* € X* is a contractive linear mapping.

As a simple consequence of Corollary 6.30, we obtain:

6.31. Corollary. The canonical embedding J : X — X** is an isometry.

6.32. Corollary. Let (X, -||) be a NLS and P C X be a closed subspace, with
ze€X but z¢ 9. Let d:=d(2,9) = ||z +D||. Then there exists z* € X* so that
|z*|| =1, 2*|9 = 0, and x*(2) = d.

Proof. Let ¢ : X — X/9) denote the canonical quotient map. Since X/9) is a
NLS and ||g(2)|| = d, Corollary 6.30 guarantees the existence of a linear functional
£ € (X/9)" so that ||¢*|| = 1 and £ (g(2)) = ¢(2)]| = d.

Let * = £* oq. Obviously z*(z) = d. Since ||g|| < 1, [|z*| < ||€*] |l¢|| < 1. Also,
fory €9, z*(y) = " (q(y)) = £7(0) = 0.

To see that ||z*|] > 1, note that ||£*|| = 1 and so we can find a sequence
(q(zp))22y in X/ with ||¢(z,)| < 1 for all n > 1 and lim,— [£*(q(zp))| = 1.
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Choose y, € 9 so that ||z, + yn| < 1 for all n. Then
lim |2*(z, + yn)| = lim | (q(n + yn)|
n—oo n—oo
= lim |£%(q(zn))|
n—oo
= 1.

Hence ||z*|| > 1, whence [|z*|| = 1.

THE SEPARATION THEOREMS

6.33. Proposition. Let (V,7) be a LCS over the field K and let & # G CV
be an open, convex subset of V with 0 € G. Then there exists a closed hyperplane
M inV such that GNM = 2.

Proof. Let us first consider the case where K = R.

Fixzg € Gandlet H = xg—G. Then H € L{&/ is open and convex. Let py denote
the Minkowski functional on H. By Proposition 5.10, H = {z € V : pg(z) < 1}.

Observe that 0 ¢ G implies that o ¢ H. Thus pg(zp) > 1. Let W = Rz, and
define f: W — R via f(kxo) = kpg(zo). Clearly f € W#. Moreover,

o if k>0, then f(kzo) = kpu(x0) = pu(kzo), while
e if £ <0, then f(kxo) = kpp(zo) <0 < pr(kxo).

It follows from the Hahn-Banach Theorem 01 (Theorem 6.18) that there exists a
linear functional g : V — R with g,y = f and g(x) < pg(z) for all x € V. Suppose
that y € H. Then Reg(y) = g(y) < pu(y) < 1.

By Proposition 6.12, g is continuous on V. Thus M := ker g is a closed hyper-
plane in V. [Note: obviously g # 0 since f # 0.]

Suppose z € G. Then g —z € H, so g(zo) — g(2) = g(xo— z) < pg(xog—2z) < 1.
On the other hand, g(zo) = f(z0) = pu(zo) > 1, and so

g(z) > g(xz) —1>0, and z € M.
Thus GNM = @.

Next, suppose that K = C.

Then V is also an R-linear space, and so as above we can find a continuous R-
linear functional gg : V — R so that GNker gr = @. Let gc be the complexification
of gr, gc(z) = gr(z) — igr(iz), x € V. By Lemma 6.6, gc is a C-linear functional
and gr = Regc.

Now gc(z) = 0 if and only if gr(z) = gr(iz) = 0. Let M = kergc. Then
M = ker ggr N [i ker gr] is a closed C-hyperplane in ¥V and M NG C kergr NG = @.



84 L.W. MARCOUX FUNCTIONAL ANALYSIS

a

6.34. Definition. An affine hyperplane M in a TVS (V,T) is a translate
of a hyperplane; that is, M is an affine hyperplane if there exists x € M so that
M — x is a hyperplane.

More generally, L CV is an affine manifold (resp. affine subspace) of V if
there exists m € L so that L —m is a manifold (resp. subspace) of V.

We remark that if there exists m € L so that £ —m is a manifold in V, then for

all m € £ we must have £ — m is a manifold. The verification of this is left to the
reader.

6.35. Corollary. Let (V,7T) be a LCS and @ # G C 'V be open and conver. If
L CV is an affine subspace of V and LN G = &, then there exists a closed, affine
hyperplane Y CV so that LC Y and Y NG = @.

Proof. Choose m € L and let Ly = L — m, so that Ly is a closed subspace of V.
Let Gy = G — m. Since LN G = @, it follows that LoNGy=D. Let ¢: V — V/Ly
denote the canonical quotient map.

Since G is open, so is Gy. Since ¢ is an open map (see paragraph 4.18), q(Go)
is open. Furthermore, G is convex and hence so are Gy and ¢(Gp). Again, since
LoNGy =3, 0 ¢ q(Gy). By Proposition 6.33, there exists a closed hyperplane Ny
in V/Lg so that Ny Nq(Go) = @. Let Vo = ¢ 1 (Np). It is routine to check that )y
is a linear manifold in V, and ) is closed since ¢ is continuous. Moreover,

dim V/yo = d1m(V/£0)/(y0/£0)
= dim(V/[:o)/No
=1,
and so ) is a closed hyperplane in V with £y C ). Translating back, let ) =
Yo+ m. Then Y is a closed affine hyperplane of V, £L C )Y and if z € Y N G, then
q(z —m) € (Vo) Nq(Go) = No N q(Gp) = @, a contradiction.
Od

6.36. Definition. Let (V,7) be a TVS over the field R. By an open half-
space (resp. closed half-space) we shall mean a subset S C 'V for which there
exrist a non-zero continuous linear functional f :V — R and k € R so that

S={zeV: f(z) >k}
(resp. S={xeV: f(z) > k}.)

We say that two subsets A and B of V are separated if we can find closed half-
spaces S4 and Sp so that A C S4, B C Sp and SANSp is a closed affine hyperplane
of V. We say that A and B are strictly separated if we can find disjoint open
half-spaces Sp and Sp with A C S4 and B C Sp.

Note that if f € V* and k € R, then S = {z € V : f(z) < k} is also an open
half-space, since g = —f € V¥ and S = {x € V : g(x) > —k}. A similar statement
holds for closed half-spaces.
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6.37. Example.

(a) Consider R? equipped with the Euclidean norm. Let A = {(z,y) € R? :
r < 0andy > 1/2?}, B = {(z,y) € R? : 2 > 0 and y > 1/2?}. Then
f:R? =R, f(x,y) = z defines a continuous linear functional on R?. Let
Sa = {(z,y) € R?: f(x) < 0} and S = {(x,y) € R?: f(z) > 0}. Then
Sa,Sp are disjoint open half-spaces with A C Sy and B C Sg. Hence A
and B are strictly separated.

(b) With R2, f A, Sy and Sp as above, set C = {(0,y) : y € R}. Then
ACSy={(z,y) eR?: f(z) <0}, C C Sp = {(a,y) € R*: f(z) > 0}
and Sa, Sp are closed half-spaces for which SANSp = {(x,y) € R? : z = 0}
is a closed (affine) hyperplane.

Thus A and C are separated. One can check that A and C' are not
strictly separated.

6.38. Theorem. The Hahn-Banach Theorem 04 - R

Let (V,T) be a LCS over R and suppose that A and B are non-empty, disjoint,
open, convez subsets of V. Then A and B are strictly separated.
Proof. Let G := A— B ={a—b:a € Ab € B}. We claim that @ # G is
open and convex. That @ # G is obvious as both A and B are non-empty. Since
G = UpepA — b, G is the union of open sets (each A — b is a translate of the open
set A), and thus G is open.

Suppose that g = a1 — by and g2 = as — bg lie in G. Let t € [0, 1]. Then

tgr + (1 —t)ga = [tay + (1 — t)ag] — [thy + (1 — t)by).

Since A and B are convex, it follows that so is G. Observe that AN B = @& also
implies that 0 € G.

It now follows from Proposition 6.33 that there exists a closed hyperplane M
in V such that M NG = @. Let f denote a continuous linear functional on V such
that ker f = M. (That a linear functional with this kernel exists was demonstrated
in paragraph 6.9, and that it is continuous follows from Corollary 6.13.)

Now G is convex and f is linear, whence f(G) is again convex. But GNker f = &,
so 0 ¢ f(G) and hence either f(z) > 0 for all x € G, or f(z) < 0 for all z € G.
By replacing f by —f if necessary, we may assume that the first condition holds. If
a€ Abe B, thenc=a—-b¢€ G, so f(c) = f(a) — f(b) >0, i.e. f(b) < f(a). We
deduce that there exists k € R so that

sup{f(b) : b€ B} <k <inf{f(a):a € A}.

Now A is open and hence f(A) is open (check!). Similarly, f(B) is open. Hence
f(b) <k < f(a) for all a € A,b € B. It follows that Sq4 = {x € V : f(x) > k}
and Sp = {x € V : f(x) < k} are disjoint open half-spaces with A C S4, B C Sp.
Hence A and B are strictly separated.

a
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6.39. Remark. If A were open but not B, then G = UpcgA — b would still be
a union of open sets and hence would still be open. The conclusion would be there
there exist a continuous linear functional g : ¥V — R and a constant k € R such that
AC{zeV:g(x)>k}and BC {x € V:g(z) < k}.

6.40. Theorem. The Hahn-Banach Theorem 04 - C

Let (V,T) be a LCS over C and suppose that A, B CV are non-empty, disjoint,
open, convex subsets of V. Then there exist a continuous C-linear functional f on
V and k € R so that

Ref(a) > k > Ref(b) forallae Abe B.

Proof. Thinking of (V,7) as a vector space over R, we may apply Theorem 6.38
(i.e. the HB04-R) above to obtain a continuous R-linear functional fgr : V — R and
a constant k € R so that

fr(a) > k> fr(b) forallae Abe B.

Let fc(x) = fr(x) — ifr(iz) be the complexification of fr. By Lemma 6.6, fc is
continuous and

Ref(a) > k > Ref(b) forallaec A,be B.
Thus f = fc is the desired C-linear functional.

6.41. Theorem. The Hahn-Banach Theorem 05

Let (V,T) be a LCS and suppose that A, B CV are non-empty, disjoint, closed,
convex subsets of V. Suppose furthermore that B is compact. Then there are real
numbers a, 8 and a continous linear functional f € V* so that

Ref(a) > o> > Ref(b)

for all a € A,b € B. In particular, A and B are strictly separated.
Proof. Observe that V\A is open and that b € B implies that b € V\ A. It follows
from Corollary 5.15 that we can find a balanced, convex, open nbhd N, of 0 so
that b + N, € V\A. The collection {b+ N, : b € B} is an open cover of B, and
Upenb+ Np € V\A. Since B is compact, we can find a finite subcover {b; + Ny, }?:1
of B. Let Ny = ﬂ?lebj. Then Ny € Ug’, and N := %N() S U(}} is balanced, convex
and open.

Let Ag = A+N ={a+n:a € A,n € N}and By = B+N. Clearly Ay # @ # By.
Then Ag = Ugepa+ N is open and similarly By is open. If a1 +n1,a2 +ns € A and
t € [0,1], then

t(ar +n1) + (1 —t)(az + ng) = (ta; + (1 — t)ag) + (tm + (1 —t)ng) € A+ N,

since each of A and N is convex. Thus Ay, and similarly By, is convex.
Suppose z € Ag N By. Then there exists a € A, b € B and ni,ne € N so that
a+mnj = b+ny. Thus a = b+(ng—n1). Now ny,ny € N implies that 2ny, —2n; € Ny
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since N = £ Nj and Ny is balanced. Since Ny is convex, 3(2n2)+3(—2n1) = na—ny €
Ny. Thus a € b+ Ny, contradicting the fact that b+ Ny € V\A. Hence AgNBy = <.
By Theorem 6.40 (HB04-C), there exists f € V* and a € R so that

Re f(a) > a > Re f(b)

for all a € Agy, b € By.
But B is compact, and Reof is continuous on B, so that § = sup{Ref(b) : b € B}
is attained at some point by € B. Thus

Re f(a) > a > 8= Re f(bo) > Re f(b)

forall a € A,b € B.
O

6.42. Corollary. Let (V,7) be a LCS over R and @ # A C V. Then the closed,
convez hull of A, ©6(A), is the intersection of the closed half spaces that contain A.
Proof. Let @ = {S§: A CS,S C Vis a closed half-space}. Since each S € Q is
closed and convex, B = NgcnS is again closed and convex. Clearly A C B, and so
the closed convex hull of A is also a subset of B.

If 2 ¢ ©(A), then {z} and ©o(A) are disjoint, non-empty, closed and convex
subsets of V. Since {z} is compact, we can apply Theorem 6.41 (i.e. HBO05) to
obtain a linear functional f € V* and «, 8 € R such that

f(z)za>pB2>fy)

for all y € co(A). Thus if Sp = {z € V : f(z) < B}, then Sy is a closed half-space of
V, A Cco(A) C Sy, and z € Syg. Thus NsenS C o(A), proving that

co(A) = NsenS.
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Appendix to Section 6.

6.43. Corollary 6.30 admits an interesting interpretation. Given (X, ||-||) a NLS
and z* € X*, we do not in general expect x* to achieve its norm. For example, if
X = ¢, equipped with the supremum norm, and if

x
z*((xn)n) = Z QTT;?
n
then x* has norm one, but there is no z = (z,), € ¢y with ||z| = 1 and |2*(z)| =
¥ = 1.

Nevertheless, Corollary 6.30 allows us to conclude that we may find z** € X**
with ||z**|| = 1 for which |z**(z*)| = 1. If J : X* — X*** is the canonical embedding
of X* into its second dual, then ||xz*|| = 1 by Corllary 6.31 and

2*(2™)] = |2 («")| = 1 = [|lz*]].

One can think of this as saying that the domain of z* is not “large enough” to
allow z* to attain its norm, but hat X** extends the domain of z* enough to allow
the extension z* of z* to attain its norm. Of course, given an arbitrary z*** € X***,
it need not attains its norm at an element of X** and so — unless X* is reflexive —the
game is once again afoot.

6.44. The proof of Proposition 6.33 also gives us an indication of how one may
try to interpret the Hahn-Banach Theorem 01, namely Theorem 6.18, geometrically.

Let V be a vector space over R and let p be a sublinear functional on V. Suppose
that M is a linear manifold in V and f : M — R is a linear functional with
f(im) < p(m) for all m € M.

Let H ={x € V : p(x) < 1}. It is routine to verify that H is convex. Since
0 # f, there exists mg € M such that f(mg) > 1. This forces p(mg) > f(mo) > 1,
and so mg & H. Let K =mog— H ={mo—h:h € H}. Clearly K is also convex.
Since mg € H, 0 ¢ K. In fact, we claim that K Nker f = &.

Suppose otherwise: let k € K Nker f. Then k£ € M and kK = mg — h for some
h € H, which forces h € H N M, since k,mg € M. But

0= f(k) = f(mo —h) = f(mo) — f(h) >1—p(h) >0,
a contradiction. Thus K Nker f = &. Theorem 6.18 then says that we can extend
f to a linear functional g : V — R with g|y = f, such that
g(z) < p(x) for all z € V.

A similar analysis to that above shows that K Nker ¢ = &. In other words,
one can translate the “unit ball” H of V (as measured by the sublinear functional
p — note, p doesn’t even have to be a non-negative-valued function, and hence the
interpretation of H as a “unit ball” here is very, very loose) so that it doesn’t
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intersect the linear manifold ker f in such a way that the manifold may be extended
to a hyperplane (ker ¢g) which also doesn’t intersect the translation.

This is only intended as a heuristic. Proposition 6.33 shows how to correctly
use HBO1, i.e. Theorem 6.18, to obtain an interesting geometric result in locally
convex spaces.

*

There is less in this than meets the eye.
Tallulah Bankhead
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7. Weak topologies and dual spaces

Last week I stated that this woman was the ugliest woman I had ever
seen. I have since been visited by her sister and now wish to withdraw
that statement.

Mark Twain

7.1. In Remarks 5.27, we observed that if V is a vector space over K, if
(X0, || - lla)aca is a family of normed linear spaces, and if for each a € A we have a
linear map T, : V — X,, then each

Pa: V — R
r = || Tz

is a seminorm. Furthermore, if {T,},cA is separating — i.e. for each 0 # z € V,
there exists ag € A so that T,z # 0 — then the family I' = {p, }ac4 is a separating
family of seminorms. Finally, we saw there that the LCS topology on V generated
by I was nothing more (nor was it anything less) than the weak topology generated

by {Ta}aeA-

Let us now consider the following special instance of this phenomenon. Again,
we begin with a vector space V over K, and we assume that we are given a separating
family Q C V#. Of course, for each o € Q, we have

0:V —K,

and (K, | -|) is a normed linear space. Since {2 was assumed to be separating for V,
the family I' = {7, : 0 € Q} of functions defined by

TQ(:L') = |Q($)’, r eV,

is a separating family of seminorms which generates a LCS topology on V. From
above, this topology coincides with the weak topology generated by €2, and we shall
denote it by o(V, Q).

Thus a base for the o(V, Q) topology on V is given by

B={N(z,F,e):x € V,e>0,F C finite},
where for each =, F' and € > 0 as above,
N(z,Fe)={y eV :1y(z —y) =l|o(z) — o(y)| <e,0 € F}.
In particular, a net (zx)xep in (V,0(V,Q)) converges to z € V if and only if
lin (e — ) = lim p(22) — p(z)| = 0,
or equivalently,
lim p(zx) = p(2)
for all p € Q.
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7.2. Definition. Let V be a vector space over K, and suppose that L C V¥ is
both a linear manifold and a separating family of linear functionals. We say that
(V, L) is a dual pair.

7.3. Example. Suppose that (V,7) is a LCS and that £ = V*. By Corol-
lary 6.23, £ separates points of V and hence (V,V*) is a dual pair. The o(V,V*)
topology is sufficiently important to merit its own name, and we refer to it as the
weak topology on V. If (z)), is a net in V which converges to some z in the weak
topology, we say that (z))) converges weakly to x.

Suppose that (z))y is a net in V which converges to € V in the initial topology
T. For any f € V*, the fact that f is continuous implies that

lim f(z)) = f(x).

Thus (x))) converges to = weakly. It follows that the weak topology on V induced
by V* is weaker than the initial topology: in other words, o(V,V*) C 7.

Let (V,L) be a dual pair. By Paragraph 7.1, each p € L is continuous on V
relative to the o(V, £) topology. Our present goal is to show that these are the only
o(V, L)-continuous linear functionals on V.

7.4. Theorem. Let (V,L) be a dual pair. Then
L=V,o(V,.L))".

Proof. That L is contained in (V,o(V, £))* was shown in Paragraph 7.1.

Suppose now that u € V# is o(V, L£)-continuous. Then the map p, : V— R
satisfying p,(x) = |u(z)| defines a o(V, £)-continuous seminorm on V. By Proposi-
tion 5.29, there exist p1, po, ..., pn € L and 0 < k € R so that

pu() = |p(x)| < £ max(|pi ()], [p2(2)], .. [pn(2)]) for all z € V.
It follows that ker u 2 N’_; ker p;. By Proposition 6.7, uu € span {p;}}_; C L.

7.5. Remark.

e We first remark that if Q C V¥ is a separating family of linear functionals
but is not a linear manifold, then after setting £ = span (), one can verify
that the o(V, £)-topology on V agrees with the o (), Q)-topology, and hence
that

L=,oV,Q)".

o It follows from Theorem 7.4 that the only weakly continuous linear func-
tionals on a locally convex space (V,7T) are the elements of (V,7T)*.
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7.6. Definition. Suppose that (V,T) is a LCS. Then V* C V¥ is a vector space
over K. For each x € V, define
. V¥ = K
p — Z(p) = p)
Then V = {Z : 2 € V} is a linear manifold in (V*)#. If 0 # p € V*, then obviously
there exists x € V such that p(x) # 0. In other words, Visa separating family of
linear functionals on V*. Hence (V*, ﬁ) s a dual pair.
By convention, the weak topology on V* induced by the family VY is usually de-

noted by o(V*,V) (as opposed to o(V*,V)), and is referred to as the weak*-topology
on V*.

7.7. Remark. It follows that a base for the weak*-topology on V* is given by
B={N(p,F,e): p €V e>0,F CV finite},

where

N(p,Fie)={pe V" :[Z(p— )| = |p(z) — p(z)| <&,z € F}.
Moreover, a net (py) in V* converges in the weak*-topology to a functional p € V*
if and only if limy py(z) = p(x) for all z € V. In other words, convergence in the
weak*-topology on V* is convergence at every point of V.

By Theorem 7.4, a functional ¢ is weak*-continuous on V* if and only if ¢ =7
for some x € V.

7.8. Proposition. Let (V,7y) and (W, Tyy) be locally convex spaces, and sup-
pose that T : (V,Ty) — (W, Tyw) is a continuous linear operator. Then T is contin-
wous as a linear map between V and VW when they are equipped with their respective
weak topologies.

Proof. Suppose that (x)), is a net in V which converges weakly to z € V. We must
show that the net (T'z) )y converges weakly to Tx in W. Now, if p € W*, then poT
is continuous with respect to the 7y, topology on V, and hence p o T € V*. But the
weakly continuous linear maps on V coincide with V*, and therefore p o T is weakly
continuous on V, i.e. limy poT(z)) = poT(z), as was to be shown.

O

When V is a LCS and C' C V is convex, we get a particularly nice result con-
cerning the weak topology.

7.9. Theorem. Let C be a convex set in a LCS (V,T). Then the closure of C
in (V,T) coincides with its weak closure in (V,o(V,V*)).
Proof. First observe that we can always view (V,7) and (V,o(V,V*)) as locally
convex spaces over R. Since C' is assumed to be convex already, Corollary 6.42
implies that the closure of C in (V,7) (resp. in (V,c(V,V*))) is the intersection of
the T-closed (resp. o(V, V*)-closed) half spaces which contain C.

But a closed half space in a LCS corresponds to (a constant and) a continuous
linear functional on that space. Since (V,7) and (V,o(V,V*)) share the same dual
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space, namely V*, it follows that they also share the same closed half-spaces, and
hence the closure of C' in these two topologies must coincide.
O

7.10. Let (X,] - ||) be a Banach space. Recall from Proposition 2.18 that the
canonical embedding
J: X — X+
T — X,
where Z(z*) := z*(z) for all 2* € X*, is a contractive map. In Corollary 6.31 we saw
that — as a consequence of the Hahn-Banach Theorem — J is in fact an isometry.
By Theorem 7.4 and Remark 7.5, J(X) corresponds exactly to the weak*-
continuous linear functionals on X*.

7.11. Proposition. Let X be a finite-dimensional Banach space. Then the
norm, weak and weak*-topologies on X all coincide.
Proof. First we must decide what we mean by the weak*-topology on X. Observe
that if dim X = n < oo, then dim X* = n as well, and thus dim X** = n = dim X.
Since J : X — X*™* is a linear isometry, it must be a bijection in this case and therefore
we can identify X with X** = (X*)*. In this sense X ~ J(X) comes equipped with a
weak*-topology induced by X*, namely the o(J(X), X*)-topology. But since we are
identifying X with J(X) = X**, this is really just the o(X, X*)-topology, namely the
weak topology on X.

Since the weak and the norm topologies on X are both TVS topologies, and
since finite-dimensional vector spaces admit a unique TVS topology, we see that all
three topologies cited above must coincide.

a

We now wish to examine some of the properties of the weak and weak*-topologies
in the context of normed linear spaces. We shall first require a result from Real
Analysis, which we shall then adapt to the setting of normed linear spaces.

7.12. Theorem. The Uniform Boundedness Principle
Let (X,d) be a complete metric space and let H C C(X,K) be a non-empty
family of continuous functions on X such that for each x € X,

M, = sup |h(z)| < co.
heH

Then there exists an open set G C X and a constant M > 0 so that
|h(z)] < M for allh € H,x € G.

Proof. For each m > 1, let B, ), = {z € X : |h(x)| < m}, and let E,, = Nper Em p-
Since each E,, p, is closed (as h € H implies that h is continuous), so is E,,. Also,
for any x € X, there exists m > M,, and so x € F,,. Thus
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Since X is complete, the Baire Category Theorem implies the existence of k > 1
so that the interior int (Ejx) of Fj is non-empty. This clearly leads to the desired
conclusion.

a

7.13. Corollary. The Uniform Boundedness Principle - Banach space
version

Let (X, - [|x) and (V,]| - ||y) be Banach spaces and let A C B(X,9)) denote a
family of continuous linear operators from X to ). Suppose that for each x € X, we
have

M, = sup{||Tz| : T € A} < 0.
Then
sup{||T]| : T € A} < o0.

Proof. For each T € A, let pr : X — R be the continuous seminorm given by
pr(z) = ||Tx|. Since X is complete, the metric space version of the Uniform Bound-
edness Principle (Theorem 7.12) implies that there exists an open set @ # G C X
and a constant M > 0 so that

|Tz|| <M forall T €2,z €G.

Now @ # G open implies that there exists z € G and § > 0 so that Vs(z) = {z €
X:|lx—z| <d} CG. Consider y € V5(0) and T € 2.
Then

1Tyl < IT(y + =) + || - T2
< M+ T2
<2M,

as z and y + z € G. It follows that if x € X, ||z|| < 1, then

Tl = IT(Qa)ll < M + T2 < 20,
and hence that

Tz < %(2]\4), T e
That is,

4M
sup{||T|| : T € A} < -5
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7.14. Corollary. Let X be a Banach space and S C X. Then S is bounded if
and only if for all x* € X*,

sup{|z*(s)] : s € S} < 0.

Proof. Suppose that S is bounded by M > 0. If z* € X*, then |z*(s)| < ||z*|| ||s]| <
Conversely, if sup{|z*(s)| : s € S} < oo, then sup{|s(z*)|: s € S} < oo for all
z* € X*. By the Uniform Boundedness Principle,

sup{||s]| : s € S} = sup{||s|| : s € S} < 0.

7.15. Corollary. Let X be a Banach space and & C X*. Then & is bounded if
and only if for all x € X,

sup{|s*(z)| : s* € 6} < 0.

Proof. This is an immediate consequence of the Uniform Boundedness Principle,
Theorem 7.13.

a

7.16. Theorem. The Banach-Steinhaus Theorem
Let X and Q) be Banach spaces and suppose that {T,}2°, C B(X,9)) is a sequence
which satisfies the property that for each x € X, there exists y, € Y so that
lim Thx = y,.
n—oo
Then the map T : X — ) defined by Tx = vy, is a bounded linear map, and
sup,, ||Tn|| < oco.
Proof. For each x € X, we have that {T,,2}° ; converges to some y,, and therefore
it is bounded. That is, sup,> ||[Tnz| < oo for each x € X. By the Uniform
Boundedness Principle, M := sup,,~ || Th|| < oo.
Let Tx := lim,, T),x, for each € X. Linearity of T is readily checked. Also,

ITe] < sup [Tz < (sup HTnH) lell < Mall, =€ X.
n>1 n>1

Hence ||T']| < M < oo, and T is bounded.
a

In general, we do not expect weak topologies to be determined by sequential
convergence. If we do have weak convergence of a sequence, therefore, something
strong is implied.
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7.17. Proposition. Let X be a Banach space.
(a) If (xn)02 4 is a sequence which converges weakly to x € X, then
(i) sup ||zn|| < oo; and
(i) o] < liminf 2,
(b) If (y})>2, is a sequence which converges in the weak*-topology to y* € X*,
then
(if) sup |y | < oo; and
(iv) fly*[l < liminf [y |-
Proof.

(a) (i) Foreach z* € X*, lim,,,o0 *(x,) = 2*(z). It follows that the sequence
(x*(xy))22 is bounded for each * € X*. By Corollary 7.14, {z,}7,

is bounded.
(ii) If we choose z* € X* with ||z*|] = 1 so that |z*(z)| = |||, then
|z = |z*(x)] = |limy—o0o ()| < liminf ||z*]| ||z, || = iminf ||z,

(b) (iii) For each z € X, lim, o ¥} (z) = lim, 0o Z(y) = Z(y*) = y*(x), so
that (y;:(2))s; is bounded. By the Uniform Boundedness Principle,
sup,>1 [|yy | < oo.
(iv) Fix € > 0. Choose y € X such that ||y| = 1, and |y*(v)| > ||y*|| — €.
Then

ly* | — & < |y*(v)]
= y(y")|
= | Jim 3005
< liminf (|| ||yl
= liminf ||y ||
for all € > 0. Hence

g™ < liminf gy

It is worth pointing out that by Theorem 7.9, if (z,,)32, converges weakly to z,

then 2 € colll({x,}52,), since the latter is a convex set in X, closed in the norm
(and hence in the weak) topology.

Before considering our next example, let us first recall a result from Measure

Theory, alternately referred to as the Riesz Representation Theorem or the Riesz-
Markov Theorem.

7.18. Theorem. Let X be a locally compact, Hausdorff topological space, and
denote by M(X) the space of K-valued, finite, reqular, Borel measures on X, equipped
with the total variation norm: ||p|| = |u|(X).
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If pn € M(X), then B, : Co(X,K) — K given by B.(f) = [y fdu is an ele-
ment of Co(X,K)*, and the map © : M(X) — Co(X,K)* is an isometric linear
isomorphism.

For example, if X = N with counting measure, then Cy(X,K) = ¢(N,K) and
M(X) = 1N, K).

When X = [0, 1], we can in turn identify M([0, 1]) = C([0, 1], K)* with the space
BV[0, 1] of left-continuous functions of bounded variation on [0, 1].

7.19. Proposition. Let X be a compact, Hausdorff space. Then a sequence
{fn}22 in C(X) converges weakly to f € C(X) if and only if
(i) sup, ||fn]l < co; and
(ii) For each x € X, (fn(x))s2; converges to f(x).
Proof. Suppose first that {f,}>%, converges weakly to f. By Proposition 7.17,
sup,, || fn]l < 00. Let ¢ : C(X) — K be the evaluation functional, é,(f) = f(x) for
all z € X. Then d, is linear and for f € C(X), |0,(f)] = |[f(x)| < || f], so that
|0z]] <1 and é, € C(X)*. (In fact, d, corresponds to the point mass measure at x.)
Thus limy, 00 02(fr) = 0z(f), i.e. im0 fr(z) = f(2).
Conversely, suppose that (i) and (ii) hold. If p € C(X)*, then by the Riesz
Representation Theorem above, there exists p € M(X) with ||u]| = ||p|| so that

p(f) = /X fau,

for all f € C(X). By the Lebesgue Dominated Convergence Theorem,
o) = [ fdp=tm [ fudu= tm p(s,).
X n—oo X n—oo

In other words, (f,)n converges weakly to f.

7.20. Theorem. Tychonoff’s Theorem

Suppose that (X, 7)) is a non-empty collection of compact, topological spaces.
Then X =[], X is compact in the product topology.
Proof. Recall from Real Analysis that it suffices to prove that if F is a collection
of closed subsets of X with the Finite Intersection Property (FIP), then N{F : F' €
F} # @. To that end, let F be a collection of closed subsets of X with the FIP.

Let 3 ={J C P(X) : F C J and J has the FIP}, partially ordered by inclu-
sion, so that J; < Jo if J1 € Jo. Since F € J, J # &. Suppose that C = {Tx}
is a chain if J. Clearly F C K := U)J», and if Hy, Hs, ..., H,, € K, then the fact
that C is totally ordered implies that there exists A\g so that Hy, Ho, ..., H,, € Jy,-
Since Jy, has the FIP, N*, H; # &. Thus K has the FIP, and so K € J is an upper
bound for C. By Zorn’s Lemma, J admits a maximal element, say M.

We make two observations: first, if we set Mo = {Nj,_ My : M € M,1 <k <
r,r > 1}, then the elements of M are finite intersections of elements of M. Tt
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follows that Mg has the FIP. Moreover, F C Mj. Since M < My, the maximality
of M implies that M = M. In other words, finite intersections of elements of M
lie in M.

Second, if RC X and RN M # @ for all M € M, then F C M C MU{R}
and M U {R} has the FIP. Again, the maximality of M implies that R € M.

_Our goal now is to prove that N{M : M € M} # @. Since "{F : F € F} 2
N{M : M € M}, this will suffice to prove the Theorem.

For each A, let 7 : X — X, denote the canonical projection map. Then @ #
My = {m\(M) : M € M} is a family of subsets of X with the FIP. Since X is
compact, ﬁ{m\(M)XA : M € M} # @. Choose ) € ﬂ{m\(M)XA : M e M}, and
let x = (z))x. We want to show that z € N{M : M € M}.

To do this, we must show that G € UX implies GN M # @ for all M € M.
Clearly it suffices to do this when G is a basic nbhd of z, say

G= m?:lﬂ-);l(Uj)?
where U; C X is open, 1 < j < n. Now for any A\g € A and z), € Uy, € T,
xy € Tag(M) 2 for all M € M implies that Uy, Ny, (M) # @ for all M € M.

But then 7[';01(U)\0) NM # & whenever z), € Uy, C X}, is open. By maximality
of M and the second observation above, 7r;01(U Ao) € M. Since M is closed under
finite intersections by the first observation,

G =nN"_,;m, Y(Uy,) € M whenever G is a basic nbhd of z.
J=17X; J

Thus z € N{M : M € M}, and we are done.

7.21. Theorem. The Banach-Alaoglu Theorem

Let X be a Banach space. Then the closed unit ball X7 := {z* € X* : ||z*|| < 1}
of X* is weak*-compact.
Proof. For each z € X, z* € X7, we have

(") = [a™ ()] < ™| =] < fl=]]

Thus Z(X7) C D, :={z € K: |z| <||z||}. Now each such D, is compact, and so by
Tychonoff’s Theorem above,
D:=[] D.

reX
is also compact in the product topology. To complete the proof, we shall show that
X7 is homeomorphic to a closed, and therefore compact, subset of D.
Define
o: X7 — D
[ (@(f))eex = (f(@))zex.

Clear @ is injective. Now a net (fy)xea converges weak™ to f if and only if
liinf,\(x) = liinic\(f}\) =2(f) = f(z) forallz e X,



7. WEAK TOPOLOGIES AND DUAL SPACES 99

that is, if and only if limy ®(f\) = ®(f).
Thus X7 is homeomorphic to ®(X7). There remains to show that ®(X7) is closed
in D.
Suppose that (fy), is a net in X7, and that (®(f))) converges to d = (dz)zex €
D. Then
liin fi(x) =d, forall z € X.

Define f(x) :=d,, x € X. Then f is linear since each f is, and
[f(@)| = |de| < [lz]|  for all z € X,

so that f € Xj. Clearly ®(f) = limy(®(fx)), so that ran ® is closed, and we are
done.

a

7.22. Corollary. FEvery Banach space X is isometrically isomorphic to a sub-
space of (C(L,K), || - ||s) for some compact, Hausdorff space L.
Proof. Let L := X]. Then L is weak*-compact, by the Banach-Alaoglu Theorem,
and is Hausdorff since X separates the points of X7. Define

A: X — C(L,K)
r ZEIL

Then A is easily seen to be linear, and [|Z|z|| < [|Z]| < |||

By the Hahn-Banach Theorem [Corollary 6.30], there exists z* € X such that
|z*(x)| = ||z||, and so ||Z|L|| > |Z(z*)| = |2*(z)| = ||z||; that is, A is an isometry.

g

7.23. Corollary. Let X be a Banach space and suppose that A C X* is weak”-
closed and bounded. Then A is weak®-compact.

7.24. Theorem. Goldstine’s Theorem
Let X be a Banach space and J : X — X** denote the canonical embedding. Then
J(%X1) is weak*-dense in X7*. Thus J(X) is weak*-dense in X**.

Proof. Clearly J(X1) = X; is convex, since X; is. Observe that the closure of

J(%1) in the weak*-topology, namely J(X;) , is weak*-closed and convex. Being

weak”*-closed in the weak*-compact set X7, it is also weak*-compact. Suppose that

pe X" and ¢ & J(%l)w*. Then, by the Hahn-Banach Theorem 6.41 (HB05), we
can find a weak*-continuous linear functional z* € J(X*) C X*™* so that

Rez*(p) = b
>a:=sup{Rez*(¢) : € € 3X)" }
= sup{|z*(©)] : € € 3" }.
(The last equality follows from the fact that X; and hence J(X;) and mﬂ* are

balanced.)
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But
sup{[a(§)] : € € IE)" } = sup{Jé(a)| € € 3@ )
> sup{|Z(z¥)|: x € X1}
= sup{|z*(z)|: x € X1}
= llz"],
while

[Rea*(¢)| < [2*(¢)] = lp(@)]l < [l lz*]l < ll2*].

This contradicts our choice of z*, and thus J(X;)" = X*, as claimed.
Since X*™* = Up>1 X}, and since each J(X,,) is weak*-dense in X}* by a routine
modification of the above proof, J(X) is weak*-dense in X**.
a

7.25. Example. Since ¢p(K)* = ¢(K) and ¢}(K)* = ¢>°(K)*, the unit ball
(co(K))1 of ¢o(K) is weak*-dense in the closed unit ball of £*°(K), and thus ¢ (K) is
weak*-dense in *°(K).

Of course, cgo(K) is norm dense in ¢y(K), and so cpo(K) is also weak*-dense in
> (K).

CULTURE: Although we shall not have time to prove this, the non-commutative
analogue of the above statement is that the set of finite rank operators F(H) on an
infinite-dimensional Hilbert space is weak*-dense in B(H).

Let us now establish a relation between compactness and reflexivity of a Banach

space.

7.26. Proposition. Let X be a Banach space. The following are equivalent.

(a) X is reflexive.

(b) X1 is weakly compact.

Proof.

(a) implies (b): First suppose that X is reflexive. Then X=%x"and X; = X7
is weak*-compact the Banach-Alaoglu Theorem 7.21. But then the weak*-
topology on i‘\l is just the weak topology on X1, so X is weakly compact.

(b) implies (a): Next suppose that X; is weakly compact. Then X, is weak*-
compact, and since the weak*-topology is Hausdorff, i\l is weak*-closed.
But by Goldstine’s Theorem, %\1 is weak*-dense in X7*. Thus i\l =T'(%) =
mw* = X7*. This in turn implies that = X**, or in other words, that
X is reflexive.

O

Although in general, weak topologies are not metrizable, sometimes their re-
strictions to bounded sets can be:
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7.27. Theorem. Let X be a Banach space. Then X7 is weak*-metrizable if and
only if X is separable.
Proof. First assume that X is separable, and let {z,} 2, be a dense subset of X.
Define a metric d on X7 via

|2 (2n) = y" (20|
Z 2” Hx H '

Then a net (z3)y in X] converges in the metric topology to z* € X7 if and only if
(@3 (xn))a converges to x*(xy,) for all n > 1 (exercise). If x € X and ¢ > 0, we can
choose n > 1 so that ||z, — z|| < £/3. Choose A\g € A so that A > )¢ implies that
|23 (27) — 2 (xp)| < €/3. Then A > X implies that

23 (2) — 2% (2)| < |2X(2) — 2X(@n)| + |2} (2n) — 2" (20)] + 27 (2n) — 27 (2)]
< @)l lz = zall + /3 + (|27 [|an — ]
<e/3+¢/3+¢/3=¢c.

Thus z3(x,) converges to x*(x,) for all n > 1 if and only if (x3)) converges in the
weak*-topology to x*. Hence the weak*-topology on X7 is metrizable.

Next, assume that X7 is weak™-metrizable. Then we can find a countable se-
quence {G 0 , of weak*-open nbhds of 0 € X7 so that N2 G} = {0}. There is no
harm in assurnlng that each G, is a basic Weak* -open nbhd so for each n > 1 there
exists g, > 0 and a finite set I}, C X so that

={z" € X]: |2%(x)| <en,x € F,}.

Let FF = U F,. If 2* € X7, *(F) = 0, then z* € G}, for all n > 1, and therefore
x* = 0. That is, if 9 = spanlll ', then 9) is separable and z* € X7, ¥y = 0 implies
that * = 0. By the Hahn-Banach Theorem [Corollary 6.29], ) = X.

O

7.28. Corollary. Let X be a separable Banach space. Then X7 is separable in
the weak*-topology.
Proof. By the Banach-Alaoglu Theorem, X7 is weak*-compact. By Theorem 7.27
above, X1 is weak*-metrizable.

Since a compact metric space is always separable — see Proposition 10.10 — we
see that (X7, 0(X*, X)) is separable.

a

In a similar vein, we have

7.29. Theorem. Let X be a Banach space. Then X1 is weakly metrizable if
and only if X* is separable.
Proof. Assignment.
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7.30. Definition. Let X be a Banach space and M C X, N C X*. Then the
annthilator of M is the set

M- = {z* € X*: 2" (m) = 0 for all m € M},
while the pre-annihilator of N is the set

MN={zeX:n (x)=0 for alln* € N}

Observe that M and 19 are linear manifolds in their respective spaces. More-
over, both are norm-closed and hence Banach spaces in their own right.

7.31. Theorem. Let X be a Banach space, and let M C X be a closed subspace.
Let q : X — X/9M denote the canonical quotient map. Then
0: (x/m* —mt
3 —goq

s an isometric isomorphism of Banach spaces.
Proof. Clearly O is linear. Let us show that © is injective.

If O(&1) =&10qg=E&o0q=06(&), then
§1(g(w)) = &2(g(w)) forall x € X,

and so & = &s.

Next we show that O is surjective.

Let z* € Mt and define &+ : X/M — K via &+(q¢(z)) = 2*(x). Since
M C ker z*, the map is well-defined. Furthermore, if z € X and [[¢(x)| < 1,
then there exists m € 9 so that ||z + m| < 1, and

€2 (q(2)] = [ (@)] = [ (@ +m)[ < [[27]],

so that [|{;+]| < ||2*]] < co. Hence &+ € (X/M)*. Clearly O(&,+) = 2*.
Thus © is bijective, and [[O(S)[| = [I€ o gll < [|€][ ]lgll < [I€]], so that [|©] < 1.

Conversely, let ¢ > 0 and choose ¢(z) € X/ with |¢(z)| < 1 so that [£(¢(z))] >
€] — €. Choose m € M so that ||z + m|| < 1. Then

1€ 0 gl = [€ o q(z+m)| = [E(q(2))] = €]l — e,

so that ||©(&)|| = |I€ o q|| = ||€]|, implying that © is in fact isometric.
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7.32. Theorem. Let X be a normed linear space and M C X be a closed linear
subspace. Then the map
e: x/m+ —
x* 4 f)ﬁJ- N UC*\sm
is an isometric isomorphism.
Proof. Note that 9+ closed implies that X*/9" is a Banach space. We check
that © is well-defined.

If 2* + 9L = y* + 9L, then z* — y* € ML, so that (z* — y*)|gn = 0. That is,
O(z* + M) = O(y* + M*). Working our way backwards through this argument
proves that © is injective. That O is linear is easily verified.

Next suppose that m* € 9t+. By the Hahn-Banach Theorem, we can find
r* € X*, ||2*]| = ||m*| so that z*|sn = m*. Then O(z* +M*) = z*|gn = m*, so that
O is onto. Thus © is bijective.

Suppose that [|z* +9tL|| < 1. Then there exists n* € M+ so that ||z* +n*|| < 1.
Thus

1©(z* +95)|| = 2" |onl| = [|(2* + n*)[onl| < 2™ +n*|| < 1.
It follows that ||©] < 1.

From above, given m* € 9+, there exists #* € X* with ||z*|| = ||m*|| so that
0~ Y (m*) = z* + M. Now
l©~ (m*)|| = lla* + 2| < [|l2*|| = [|m*],

so that ©7! is also contractive. But then © is isometric, and we are done.
O

7.33. It is a worthwhile exercise to think about the relationship between the an-
nihilator M of a subspace M of a Hilbert space H and the orthogonal complement
of 91 in ‘H, for which we used the same notation.

In particular, one should interpret what Theorem 7.32 says in the Hilbert space
setting, where 9+ refers to the orthogonal complement of 9.

*

If you had a face like mine, you’d punch me right on the nose, and
I'm just the fella to do it.

Stan Laurel
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Appendix to Section 6.

The following result characterizes weak convergence of sequences in /. We
leave its proof as an exercise for the reader.

7.34. Proposition. Suppose that 1 < p < oo. A sequence (x,)5%, in ¢P(N
(i.e. each Xy = (Tni, Tn2, Tn3,...) € P(N) converges weakly to z = (z1, 22, 23, ...)
(P(N)) if and only if

(i) SUDP;,>1 |xn| < oo, and
(ii) limy—oo Tnk = 2k for all k € N.
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8. Local compactness and extremal points

Somewhere on this globe, every ten seconds, there is a woman giving
birth to a child. She must be found and stopped.

Sam Levenson

8.1. The main result of this section is the Krein-Milman Theorem, which asserts
that a non-empty, compact, convex subset of a LCS has extreme points; so many,
in fact, that we can generate the compact, convex set as the closed, convex hull of
these extreme points.

Extreme points of convex sets appear in many different contexts in Functional
Analysis. For example, it is an interesting exercise (so interesting that it may appear
as an Assignment question) to calculate the extreme points of the closed unit ball
B(C"™); of the locally convex space B(C™), where C™ is endowed with the Euclidean
norm || - ||z and B(C") is given the operator norm.

Recall that a linear map T € B(C") is said to be positive and we write 7" > 0
if (Tx,z) > 0 for all z € C". An equivalent formulation of this property says that
T is positive if there exists an orthonormal basis for C™ with respect to which the
matrix [T] of T is diagonal, and all eigenvalues of 7' are non-negative real numbers.
A linear functional ¢ € B(C™)* is said to be positive if ¢(T') > 0 whenever T > 0.
For example, if {e1,e2,...,en} is an orthonormal basis for C”, then the so-called
normalized trace functional

n
r(T) = - 3 (Ter )
k=1
for T' € B(C™) can be shown to be a positive linear functional of norm one.

The state space S(B(C™)) of B(C"), consisting of all positive, norm-one linear
functionals on B(C™) — called states — forms a non-empty, compact, convex subset
of B(C™)*. The extreme points of the state space are called pure states. For
example, if x € C", then the map

vz B(C") — C
T +— (Tx,x)

defines a pure state. States on B(C"™) (and more generally states on so-called
C*-algebras) are of extreme importance in determining the representation theory
of these algebras. This, however, is beyond the scope of the present manuscript.

8.2. Definition. A topological space (X, T) is said to be locally compact if
each point in X has a nbhd base consisting of compact sets.

Suppose that X is locally compact and Hausdorff, and that g € X. Then for
all U € Uy, there exists K € Uy, so that K is compact and K C U. Choose G € T
so that 9o € G C K. Then G C K = K C U, and so G is compact. That is, if X is
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Hausdortff and locally compact, then for any U € Uy, there exists G € T so that G
is compact and zo € G C G CU.

8.3. Example. Let n > 1 be an integer and consider (K", |- ||2). Then for each
x € K™, the collection

{Be() :={y €K": [ly —alla <} : £ > 0}

is a nbhd base at z consisting of compact sets, so (K", || - ||2) is locally compact.

Our next result says that this is essentially the only example amongst locally
convex spaces.

8.4. Theorem. A LCS (V,T) is locally compact if and only if V is finite-
dimensional.
Proof. If dimV < oo, then V is homeomorphic to (K", | - ||2) by Proposition 4.20.
Since (K", || - ||2) is locally compact from above, so is V.

Conversely, suppose that V is locally compact. Choose N € T Ny so that N
is compact. Now %N €T NUy and N C Upew T+ %N. Since the latter is an open
cover of N, we can find 1,2, ...,z € N so that

— 1 1
N g U;:l Z; + §N = {.1:173327 "‘7:1;7"} =+ §N
Let M = span{z1, 9, ...,2,}. Then N C M + %N. Moreover,
1 1— 1 1
- NC-NC - -N
2 2 = 2M + 47

sothatNQM—l—(%M—i—%N):M—l—iN.
Repeating this argument ad nauseum shows that

— 1
N§M+2—kN for all £ > 1.

We claim that N C M.

If we can prove this, then the fact that M is finite-dimensional implies that M
is closed, and so N C M = M. But then V = U2, rN C M, proving that V is
also finite-dimensional, as required.

Let {w1,ws,...,ws} be a basis for M (here s < r). Since dim M < oo, M
is topologically complemented in V, so we can find a closed subspace ) of V with
M @Y = V. It is routine to verify that {w; + YV, wa + Y, ..., ws + Y} is a basis for
V/Y~ M.

As such, we can choose py, py, ..., 0, € (V/Y)* so that

Define p; :=p;oq, where g : V — V/Y is the canonical quotient map. Then p; € V*,
1<j <s, pj(wg) =d;p for all 1 < j,k < s, and N;_; ker p; = V.
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Since N is compact, given any p € V*, p(N) is again compact. Thus there exists
kp > 0 so that
lp(n)| <k, forallneN.

Since N C M + Q%N for all k > 1, given z € N, we can find m;, € M and uy, € Q%N
so that z = my + ug. Also, since V = M & ), we can find a unique m € M and
u € Y so that z =m +y.

Foreach1 <j<sandk>1,

pi(2) = pj(m) + pj(ug).
But |pj(ur)| < 2%/%], for all k£ > 1 by linearity of p;, and so pj(z) = limy p;(my). Of
course, y € Y = N;_; ker p; implies that p;(z) = pj(m), 1 < j < s and thus
pi(m) = pj(z) = limpj(my), 1<j<s.
Now m =% pj(m)y; and my, = >°%_; pj(my)y; for each k > 1. Hence

m = limmy.
k

Also, ug € 2%N for all £ > 1 implies that

1 — 0.

z:lillcrnmk:mej\/l.

This completes the proof.

An interesting and useful consequence of this result is the following.

8.5. Corollary. Let (X,| -||) be a NLS. Then the closed unit ball X1 of X is

compact if and only if X is finite-dimensional.
Proof. First suppose that X; is compact. If U € US‘: is any nbhd of 0, then there
exists 0 > 0 so that ||z|| < 20 implies that z € U. But then X5 C U, and X5 = 0%,
is compact, being a homeomorphic image of X;. By definition, X is locally compact,
hence finite-dimensional, by Theorem 8.4.

Conversely, suppose that X is finite-dimensional. By Theorem 8.4, X is locally
compact. By hypothesis, there exists a compact nbhd K of 0. As above, there exists
6 > 0 so that X5 C K. Since X; is a closed subset of a compact set, it is compact.
Since X1 = (67 !)X; is a homeomorphic image of a compact set, it too is compact.

a
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8.6. Definition. Let V' be a vector space and C C V be a convexr set. A point
e € C is called an extreme point of C if whenever there exist x,y € C andt € (0,1)
for which
e=tx+ (1—1t)y,

it follows that x = y = e. We denote by Ext(C) the (possibly empty) set of all
extreme points of C.

8.7. Example.

(a) Let V.=C. Let D = {w € C : |w| < 1} denote the open disk. It is easy
to see that D is convex. However D has no extreme points. If w € D, then
|lw| < 1, so there exists 6 > 0 so that (1 +0)|w| < 1. Let x = (1 + d)w,
y=(1—=9)w. Then z,y € D and w = %x—k %y

(b) With V = C again, let D = {w € C : |w| < 1}. Then every z € T :=
{2 € C: |z| = 1} is an extreme point of D. The proof of this is left as an
exercise.

(c) Let V = R? and let pi,ps2,p3 be three non-collinear points in V. The
triangle T" whose vertices are p1, p2, p3 has exactly {p1,p2,ps} as its set of
extreme points.

The following generalizes the concept of an extreme point.

8.8. Definition. Let V' be a vector space and let @ # C C V be conver. A
non-empty convez set F' C C is called a face of C if whenever x,y € C andt € (0,1)
satisfy tx + (1 —t)y € F, then x,y € F.

We emphasize the fact that F' is convex is part of the definition of a face.

8.9. Remarks. Let V be a vector space and C' C V be convex.

(a) If e is an extreme point of C, then F' = {e} is a face of C. Conversely, if
F = {z} is a face of C, then z € Ext(C).

(b) Let F be a face of C, and let D be a face of F. Then D is a face of C.

Indeed, let x,y € C and t € (0,1), and suppose that tx + (1 —t)y € D.

Then D C F implies that tx + (1 — t)y € F. Since F is a face of C, we
must have z,y € F. But then D is a face of F, and so it follows from
tr+ (1 —t)y € D that x,y € D.

(c) From (b), it follows that if e is an extreme point of a face F' of C, then e
is an extreme point of C.

8.10. Example.

(a) Let V = R? and let py, p2, p3 be three non-collinear points in V. Denote
by T the triangle whose vertices are py,pe2,p3. Then T is a face of itself.
Also, each line segment p;p; is a face of T'. Finally, each extreme point p;
is a face of T.
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(b) Let V =R3 and C be a cube in V, for e.g.,
C={(z,y,2) eR3:0< z,y, 2z <1}

Then C has itself as a face. Also, the 6 (square) sides of the cube are faces.
The 12 edges of the cube are also faces, as are the 8 corners. The corners
are extreme points of the cube.

The definition of a face currently requires us to consider convex combinations of
two elements of C. In fact, we may consider arbitrary finite convex combinations of
elements of C.

8.11. Lemma. Let (V,T) be a LCS, @ # C C V be convex and & # F C C

be a face of C. Suppose that {z;}7_ C C and that x = Y7, t;x; is a convex
combination of the x;’s. If x € F and tj € (0,1) for all 1 < j <n, then z; € F for
all1 <5< n.
Proof. We argue by induction on n. If n = 1, there is nothing to prove, and the
case n = 2 is nothing more than the definition of a face. Let k > 3, and suppose
that the result is true for n < k.

Suppose that x = 2?21 tjz; € F, where t; € (0,1) for all 1 < j < k and

Z?Zl tj = 1. Then
k—1

£
x=(1—tg) Z 1 —jthj + tpx.

J=1

Since C is convex, y := Zf;ll 12‘/;9 xj € C. But then x = (1 — t)y + tray € F, and

F' is a face, so that y and xp must lie in F'. Since y € F, our induction hypothesis
next implies that x; € F for all 1 < j <k — 1, which completes the proof.

a

8.12. Lemma. Let (V,T) be a LCS and @ # K CV be a compact, conver set.

Let p € V*, and set

r =sup{Rep(w) : w € K}.
Then F = {x € K : Rep(z) =r} is a non-empty, compact face of K.
Proof. Since Rep : K — R is continuous and K is compact, r = max{Re p(w) :
w € K}, and so F is non-empty. Moreover, F' = (Reo p)~1({r}) and {r} C R is
closed, so F'is closed in K, and hence F' is compact.

Next, observe that if x,y € F C K and t € (0,1), then tz + (1 —t)y € K as K
is convex. But Rep(tz + (1 —t)y) = tRep(x) + (1 —t)Rep(y) =tr+ (1 —t)r =r,
so that tx + (1 — t)y € F and F is convex.

Suppose that z,y € K, t € (0,1), and tx + (1 — t)y € F. As before,

r =Rep(te + (1 —t)y)
=tRep(z) + (1 —t)Rep(y).
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But Re p(z) < r, Rep(y) < r, so the only way that equality can hold is if z,y € F.
Hence F' is a face of K.

a

The following result is a crucial step in the proof of the Krein-Milman Theorem.

8.13. Lemma. Let (V,T) be a LCS and @ # K CV be a compact, conver set.
Then Ext(K) # @.

Proof. Let 7 ={F C K : @ # F is a closed face of K}, and partially order J by
reverse inclusion: i.e. Fy} < Fy if Fy C Fy. Observe that K € J and so J # @.

Suppose that C = {F\}xea is a chain in J. We claim that F' = NycpF) is
an upper bound for C. Since {F)} ca has the Finite Intersection Property and K
is compact, F # @. Moreover, each F) is assumed to be closed and convex, and
thus so is F. Suppose that z,y € K, t € (0,1), and tz + (1 —t)y € F. Then
tr + (1 —t)y € F) for each A\. But F) is a face of K, so z,y € F) for all A\, whence
xz,y € F and F is face of K. Clearly it is an upper bound for C.

By Zorn’s Lemma, J contains a maximal element, say FE. Since E € 7, it is
non-empty, convex, and closed in K, hence compact. We claim that E is a singleton
set, and therefore corresponds to an extreme point of K.

Suppose to the contrary that there exist z,y € E with x # y. By the Hahn-
Banach Theorem 05 (Theorem 6.41), there exists a continuous linear functional
p € V* so that

Re ¢(z) > Re p(y).
Since E is non-empty, convex and compact, we can apply Lemma 8.12. Let r =
sup{Rep(w) : w € E}, and set H = {z € E : Rep(x) = r}. Then H is a non-empty,
compact face of I/, and hence of K.

But at least one of « and y does not belong to H, and so F < H, contradicting
the maximality of E. Thus E = {e} is a singleton set, and e € Ext (F) C Ext(K),
proving that the latter is non-empty.

O

8.14. Theorem. The Krein-Milman Theorem
Let (V,T) be a LCS and & # K CV be a compact, convex set. Then

K = wo(Ext(K)),

the closed, convex hull of the extreme points of K.
Proof. By Lemma 8.13, Ext(K) # @. Thus @ # co(Ext(K)) C K, as K is closed
and convex.

Suppose that m € K\(¢o(Ext(K))). By the Hahn-Banach Theorem (Theo-
rem 6.41), there exists 7 € V* and real numbers a > (3 so that

Rer(m) > a > (> Re7(b) for all b € co(Ext(K)).
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Let s := sup{Re7(w) : w € K}. Then s > Rer(m) > «, and L := {z € K :

Re7(z) = s} is a non-empty, compact face of K, by Lemma 8.12. But then @ # L

is a compact, convex set in V, and so by Lemma 8.13, Ext(L) # &. Furthermore,

Ext(L) C Ext(K), by virtue of the fact that L is a face of K (see Remark 8.9 (c)).
Hence there exists e € Ext(L) C co(Ext(K)) so that

Ret(e) =s>a > Rer(b) forall b e co(Ext(K)),

an obvious contradiction.
It follows that K\co(Ext(K)) = &, and thus K = co(Ext(K)).
O

8.15. Corollary. Let (V,7) be a LCS and @ # K CV be a compact, conver
set. If p € V*, then there ezists e € Ext(K) so that

Rep(w) < Rep(e) forallw e K.

Proof. Let r := sup{Rep(w) : w € K}. By Lemma 8.11, F = {x € K : Rep(z) =
r} is a non-empty, compact face of K. By the Krein-Milman Theorem, Theo-
rem 8.14, Ext(F) # &. Let e € Ext(F'). Then e € Ext(K), and

Rep(w) <r=Rep(e) forall we K.
O

Equipped with the Krein-Milman Theorem 8.14 above, we are able to extend
Corollary 7.23.

8.16. Corollary. Let X be a Banach space and suppose that A C X* is weak™*-
closed and bounded. Then A is weak™-compact. If A is also convex, then A =
o (ExtA).

*

I want to go back to Brazil, get married, have lots of kids, and just
be a couch tomato.

Ana Beatriz Barros
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9. The chapter of named theorems

I believe that sex is one of the most beautiful, natural, wholesome
things that money can buy.

Steve Martin

9.1. In general, if f: X — Y is a continuous map between topological spaces
X and Y, one does not expect f to take open sets to open sets. Despite this, we
have seen that if V is TVS and W is a closed subspace of V, then the quotient map
does just this.

The Open Mapping Theorem extends this result to surjections of Banach spaces.
Many of the theorems in this Chapter are a consequence - either direct or indirect
- of the Open Mapping Theorem. We begin with a Lemma which will prove crucial
in the proof of the Open Mapping Theorem.

9.2. Lemma. Let X and %) be Banach spaces and suppose that T € B(X,2)).
If ), C TX,, for some m > 1, then D1 CTXop,.
Proof. First observe that 9); C TX,, implies that D, CTX,p, for all r > 0.
Choose y € 1. Then there exists 1 € X,, so that |y — Tz| < 1/2. Since
y—Tz1 €919 € TX,, 9, there exists xg € X, 0 s0 that [|(y — Tx1) — Taa| < 1/4.
More generally, for each n > 1, we can find z,, € X,;,/on—1 so that

n

1

ly =" Tayll < 5
7=1

Since X is complete and Y7 | [|z,|| < Y07 53ttt = 2m, wehavex = Y7z, €
Xom. By the continuity of T,

0 N
Ta:zT( a;n> :NhinooT(Zmn):
n=1 n=1

9.3. Theorem. The Open Mapping Theorem

Let X and ) be Banach spaces and suppose that T € B(X,9)) is a surjection.
Then T is an open map - i.e. if G C X is open, then TG C %) is open.
Proof. Since T is surjective, Y = TX = U, TX, C UX,TX,. Now 9 is a
complete metric space, and so by the Baire Category Theorem , there exists m > 1
so that the interior int(TX,,) # @. As TX,, is dense in TX,,, we can choose
y € int(TX,,) N TX .

Let § > 0 be such that y + V;2(0) C int(TX,,) C (TX,,). Then V,?(0) C
—y+TXy CTXy + TX,, € TXop. (This last step uses the linearity of 7'.)
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Thus 95,2 C V(;QJ(O) C TX9y. By Lemma 9.2 above,
Ds/2 € TXam,

or equivalently,
TX, D Q.jr(S/Sm
for all r > 0.
Suppose that G C X is open and that y € TG, say y = Tz for some x € G.
Since G is open, we can find € > 0 so that = + V.¥(0) € G. Thus

TG 2 Tz + T(VX(0))
D2y +TX. )
2 Y+ Des/16m
2y+ ‘/5?/16171(0)'
Thus y € TG implies that y € int T'G, and so T'G is open.

9.4. Corollary. The Inverse Mapping Theorem
Let X and ) be Banach spaces and suppose that T € B(X,9)) is a bijection.
Then T~ is continuous, and so T is a homeomorphism.
Proof. If G C X is open, then (T~!)~}(G) = TG is open in Y by the Open Mapping
Theorem above. Hence T~! is continuous.
O

9.5. Corollary. The Closed Graph Theorem

Let X and %)) be Banach spaces and suppose that T : X — ) is linear. If the
graph

G(T) :={(z,Tz) : z € X}

15 closed in X @1, then T is conlinuous.
Proof. The ¢! norm on X &%) was chosen only so as to induce the product topology
on X®%). We could have used any equivalent norm (for example, the 2 or £*° norms).
Let m1 : X®1 9 — X be the canonical projection 71 (x,y) = z, (z,y) € X®2). Then
w1 is clearly linear, and

2]l = [z, y)llx < llzllx + llylly = Iz, )l

so that ||m1]] < 1. Moreover, G(T') is easily seen to be a linear manifold in X ©; 9,
and by hypothesis, it is closed and hence a Banach space.

The map
g: G(T) — X
(z,Tz) — =z
is a linear bijection with ||7g|| = ||71lg(r)ll < [|m|| < 1.

By the Inverse Mapping Theorem 9.4 above, mg ! is also continuous, hence
bounded.
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Thus
ITzlly < [[ollx + 1Tzl = [I(z, T2)|| = |7 (@)]| < ll7g || ||

for all x € X, and therefore ||T|| < ||7r§1|| < 00. That is, T is continuous.
O

Let X and 2) be Banach spaces. A linear map T : X — %) is continuous if and
only if for all sequences (z,,), in X converging to = € X, we have lim,, Tx,, = Tz. Of
course, given a linear map T : X — ), and given a sequence (x, ), converging to x,
there is no reason a priori to assume that (T'z,), converges to anything at all in ).
The following Corollary is interesting in that part (c) tells us that it in checking to
see whether or not 7' is continuous, it suffices to assume that lim,, ., Tz, exists, and
that we need only verify that the limit is the expected one, namely Tz. Linearity
of T' further reduces the problem to checking this condition for z = 0.

9.6. Corollary. Let X and ) be Banach spaces and T : X — ) be linear. The
following are equivalent:

(a) The graph G(T) is closed.
(b) T is continuous.
(¢) Iflimy oo ©p = 0 and limy, oo Tz, =y, then y = 0.

Proof.

(a) implies (b): This is just the Closed Graph Theorem above.

(b) implies (c): This is clear.

(c) implies (a): Suppose that ((x,Tzy)),—; is a sequence in G(T') which con-
verges to some point (z,y) € X ®19). Then, in particular, lim, . z, = z,
and so lim,, o (x,—z) = 0. Also, lim,, oo Ty, = y, s0 limy, 00 T(x), —x) =
y— Tz exists. By our hypothesis, y —T'x = 0, or equivalently y = T'x. This
in turn says that (z,y) = (z,Tx) € G(T), and so the latter is closed.

a

Recall that a two closed subspaces ) and 3 of a Banach space X are said to
topologically complement each other if X =2) @ 3.

9.7. Lemma. Two closed subspaces ) and 3 of a Banach space X topologically
complement each other if and only if the map

L P13 —» X
(y,2) = y+=z

1s a homeomorphism of Banach spaces.
Proof. First note that the norms on ) and on 3 are nothing more than the
restrictions to these spaces of the norm on X.

Suppose that ) and 3 are topologically complementary subspaces of X. That ¢
is linear is clear. Moreover, since ) and 3 are complementary subspaces, it is easy
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to see that ¢ is a bijection. Hence

leCys )l = lly + =]
< lyll+1I=I

= Ity 2)1l;

so that ¢ is a contraction. By the Inverse Mapping Theorem 9.4, :~! is continuous,
and so ¢ is a homeomorphism.

Conversely, suppose that ¢ is a homeomorphism. Now rant: =2) + 3 = X, since
¢ is surjective, and if w € P N 3, then (w, —w) € ker ¢ = (0,0), so w = 0. Hence X
is the algebraic direct sum of 2) and 3. Since ) and 3 are closed in X, they are also
topologically complemented.

|

The next result extends our results from Section 3, where we showed that for
a closed subspace M of a Hilbert space H, there exists an orthogonal projection
P € B(H) whose range is M (see Remarks 3.7).

9.8. Proposition. Let X a Banach space and let ) and 3 be topologically
complementary subspaces of X. For each x € X, denote by y, and z, the unique
elements of ) and 3 respectively such that © = y, + z,. Define E : X — ) via
Ex = E(y, + 2z2) = Yo for allx € X. Then

(a) E is a continuous linear map. Moreover, E = E? ranE = ), and
ker £ = 3.

(b) Conwersely, if E € B(X) and E = E?, then M =ran E and N = ker E are
topologically complementary subspaces of X.

(a) From Lemma 9.7 above, we know that there exists a linear homeomorphism
t:9 &1 3 — X. Consider the map

T P&13 — D
(y,2) = .

It is clear that 7y is linear and contractive, and so gy is continuous. As
such, the map

E::m@oflz X —- 9
T = Y

is clearly linear (being the composition of linear functions), and
1Ez]| = [lmg 0 e < [lmyl o™ < oo,

so that F is bounded - i.e. FE is continuous. That ran £ = %) and ker £ = 3
are left as exercises.
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(b) Since E is assumed to be continuous, M is closed. Now I — E is also
continuous, and ran E = ker(/ — E), so ran E is also closed. If z € ran E N
ker E, then z = Fw for some w € X, so z = E?>w = Ez = 0. Furthermore,
for any v € X, v+ = Ex + (I — E)xr € ranE + ker E. Hence 9 and
N are algebraically complemented closed subspaces of X; i.e. they are
topologically complemented.

O

9.9. Remark. A linear map E € B(X) is said to be idempotent if E = E?.
We point out that the term projection is often used in this context, although in
the Hilbert space setting, the meaning of projection is slightly different.

The above Proposition says that a subspace %) of a Banach space X is comple-
mented if and only if it is the range of a bounded idempotent in B(X).

*

Nobody in the game of football should be called a genius. A genius is
somebody like Norman FEinstein.

Joe Theismann
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10. Appendix — topological background

A child of five could understand this. Fetch me a child of five.

Groucho Marx

10.1. At the heart of analysis is topology. A thorough study of topology is
beyond the scope of this course, and we refer the reader to the excellent book [Wil70]
General Topology, written by my former colleague Stephen Willard. The treatment
of topology in this section borrows heavily from his book.

We shall only give the briefest of overviews of this theory - assuming that the
student has some background in metric and norm topologies. We shall only cover
the notions of weak topologies and nets, which are vital to the study of Functional
Analysis.

10.2. Definition. A topology T on a set X is a collection of subsets of X,
called open sets, which satisfy the following:

(i) X,@ € 7 - i.e. the entire space and the empty set are open;
(ii) If {Ga}a C 7, then UyGo € T - i.e. arbitrary unions of open sets are open;
(ili) If n > 1 and {Gr}}_, C 7, then N}_, Gy € T - i.e. finite intersections of
open sets are open
A set F is called closed if X\F is open. We call (X,T) (or more informally, we

call X ) a topological space.

It is useful to observe that the intersection of a collection {7, }+ of topologies on
X is once again a topology on X.

10.3. Example.

(i) Let X be any set. Then 7 = {@, X'} is a topology on X, called the trivial
topology on X.

(ii) At the other extreme of the topological spectrum, if X is any non-empty
set, then 7 = P(X), the power set of X, is a topology on X, called the
discrete topology on X.

(iii) Let X = {a,b}, and set 7 = {&,{a},{a,b}}. Then 7 is a topology on X.

(iv) Let (X,d) be a metric space. Let

7={G C X : for all g € G there exists 6 > 0 such that
bs(g) :=A{y € X : d(x,y) <6} C G}.

Then 7 is a topology, called the metric topology on X induced by d.
This is the usual topology one thinks of when dealing with metric spaces,
but as we shall see, there can be many more.
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(v) Let X be any non-empty set. Then
Tof ={@U{Y C X : XY is finite}
is a topology on X, called the co-finite topology on X.

10.4. Definition. Let (X,7) be a topological space, and v € X. A set U
is called a meighbourhood (abbreviated nbhd) of x if there exists G € T so that
x € G CU. The reader is cautioned that some authors require nbhds to be open - we
do not. The neighbourhood system at = is U, :== {U C X : U is a nbhd of x}.

The following result from [Wil70] illustrates the importance of nbhd systems.

10.5. Theorem. Let (X, 7) be a topological space, and x € X. Then:

(a) If U € Uy, then x € U.
(b) If U,V € Uy, then UNV € U,.
(¢) If U € Uy, there exists V € Uy, such that U € U, for eachy € V.
(d) IfU ey and U CV, then V C U,.
(e) G C X is open if and only if G contains a nbhd of each of its points.
Conversely, if in a set X a non-empty collections U, of subsets of X is assigned
to each x € X so as to satisfy conditions (a) through (d), and if we use (e) to define
the notion of an open set, the result is a topology on X in which the nbhd system at
x 15 precisely Uy.
Because of this, it is clear that if we know the nbhd system of each point in X,
then we know the topology of X.

There are a number of natural separation axioms that a topological space might
satisfy.

10.6. Definition. Let (X, 7) be a topological space.

(i) (X, 7) is said to be Tg if for every x, y € X such that x # y, either there
is a neighbourhood U, of x with y & U, or there is a neighbourhood U, of
y with x & U,.
(ii) (X, 7) is said to be Ty if for every x, y € X such that x # y, there are
neighbourhoods U, of x and Uy of y with y € U, and x € U,,.
(iii) (X, 7) is said to be Ty (or Hausdorff) if for every x, y € X such that
x # vy, there are neighbourhoods U, of x and Uy of y with U, N U, = @.

We say that two subsets A and B of X can be separated by 7 if there exist U, V € T
with ACU, BCV andUNV =a.

(iv) (X, 7) is said to be regular if whenever F C X is closed and © ¢ F,
F and {x} can be separated.
(v) (X, 7) is said to be normal if whenever Fy, Fy C X are closed and disjoint,
then Fy and F5 can be separated.
(vi) (X, 7) is said to be T3 if it is T} and regular.
(vil) (X, 7) is said to be T4 if it is Ty and normal.
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We are assuming that the next definition is a familiar one.

10.7. Definition. Let (X, 7) be a topological space. An open cover of X is a
collection G C 1 such that X = UgegG. A finite subcover of X relative to G is a
finite subset {G1,Ga,...,Gn} C G which is again an open cover of X.

A topological space (X, T) is said to be compact if every open cover of X admits
a finite subcover.

10.8. Theorem. Let (X,d) be a metric space. Then X, equipped with the
metric topology, is Ty.

10.9. Theorem. Let (X, 7) be a compact, Hausdorff space. Then (X, T) is Ty.

Recall that a topolological space (X, 7) is said to be separable if it admits a
countable dense subset.

The following result will be needed in Section 7.

10.10. Proposition. Let (X,d) be a compact metric space. Then (X,d) is
separable.
Proof. For each n > 1, the collection G, := {by/,(z) : ¥ € X} is an open cover of
X. Since X is compact, we can find a finite subcover {by,(z(;n)) : 1 < j < ky} of
X. Tt is then clear that if z € X, there exists 1 < j < k, so that d(m,x(jm) <1/n.
As such, the collection

D= {z(jn 1 <j<knl<n}

is a countable, dense set in X, proving that (X, d) is separable.

10.11. Definition. Let (X, 7) be a topological space. A neighbourhood base
B, at a point x € X is a collection B, C U, so that U € U, implies that there exists
B € B, so that B C U. We refer to the elements of B, as basic nbhds of the point
x.

The importance of neighbourhood bases is that all open sets can be constructed
from them, as we shall soon see.

10.12. Example. Consider (X, d) be a metric space equipped with the metric
topology 7. For each z € X, fix a sequence {r,(z)}>°; of positive real numbers
such that lim,, o 7, () = 0 and consider B, = {V;,,(z) : n > 1}. Then B, is a nbhd
base at x for each x € X.
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10.13. Definition. Let (X, 7) be a topological space. A base for the topology is
a collection B C 7 so that for every G € T there exists C C B so that G = U{B : B €
C}. That is, every open set is a union of elements of B. Note that if C is empty,
then U{B : B € C} is also empty, so we do not need to include the empty set in our
base. A subbase for the topology is a collection S C T such that the collection B of
all finite intersections of elements of S forms a base for T.

As we shall see in the Assignments, any collection C of subsets of X serves as a
subbase for some topology on X, called the topology generated by C.

10.14. Example. Let (X,7) be a topological space, and for each z € X,
suppose that B, is a neighbourhood base at . Then B := U,cx B, is a base for the
topology 7 on X.

10.15. Example. Consider R with the usual topology 7. The collection B =
{(a,b) : a,b € R,a < b} is a base for 7. (You might remember from Real Analysis
that every open set in R is a disjoint union of open intervals - although the fact the
union is disjoint in this setting is a luxury item which we have not built into the
definition of a base in general.)

The collection S = {(—o0,a) : a € R} U{(b,00) : b € R} is a subbase for the
usual topology, but is not a base for 7.

10.16. Definition. Let (X, 7) be a topological space. A directed set is a set
A with a relation < that satisfies:

(i) A< A forall X € A;
(ii) if )\1 S )\2 and )\2 S )\3, then )\1 S /\3,‘ and
(iii) of A1, A2 € A, then there exists A3 so that A\; < Az and Ay < As.
The relation < is sometimes called a direction on A.
A net in X is a function P : A — X, where A is a directed set. The point P(\)
is usually denoted by xy, and we often write (x))rea to denote the net.
A subnet of a net P: A — X is the composition P o o, where ¢ : M — A is a
increasing cofinal function from a directed set to A; that is,

(a) (p1) < p(p2) if p < p2 (increasing), and
(b) for each A\ € A, there exists p € M so that A < p(u) (cofinal).

For i€ M, we often write x, for Po@(u), and speak of the subnet (xy,),-

10.17. Definition. Let (X, 7) be a topological space. The net (xy)y is said to
converge to x € X if for every U € U, there exists A\g € A so that A > Ao implies
zy €U.

We write limy x) = x, or limycp )\ = .

This mimics the definition of convergence of a sequence in a metric space.
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10.18. Example.

(a) Since N is a directed set under the usual order <, every sequence is a net.
Any subsequence of a sequence is also a subnet. The converse to this is
false, however. A submnet of a sequence need not be a subsequence, since
its domain need not be N (or any countable set, for that matter).

(b) Let A be a non-empty set and A denote the power set of all subsets of A,
partially ordered with respect to inclusion. Then A is a directed set, and
any function from A to R is a net in R.

(c) Let P denote the set of all finite partitions of [0, 1], partially ordered by
inclusion (i.e. refinement). Let f be a continuous function on [0, 1]; then
toP={0=1t <t < - <t, =1} € P, we associate the quantity
Lp(f) = iy f(ti-1)(ti — ti—1). The map f +— Lp(f) is a net (P is a
directed set), and from Calculus, limpep Lp(f) = fol f(z)dx.

10.19. Definition. Let (X,7x) and (Y, 7y) be topological spaces. We say that
a function f: X — Y is continuous if f~1(G) is open in X for all G € 1y .

That this extends our usual notion of continuity for functions between metric
space is made clear by the following result:

10.20. Proposition. If (X,dx) and (Y,dy) are metric spaces with metric space
topologies Tx and Ty respectively, then the following are equivalent for a function
f: X—-Y:

(a) f is continuous on X, i.e. f~HG) € 1x for all G € Ty
(b) limy, f(xy) = f(x) whenever (x,)72, is a sequence in X converging to
z e X.

As we shall see in the Assignments, sequences are not enough to describe conver-
gence, nor are they enough to characterize continuity of functions between general
topological spaces. On the other hand, nets are sufficient for this task, and serve
as the natural replacement for sequences. (The following result also admits a local
version, which we shall also see in the Assignments.)

10.21. Theorem. Let (X, 7x) and (Y, Ty) be topological spaces. Let f : X —Y
be a function. The following are equivalent:

(a) f is continuous on X.
(b) Whenever (xx)xea is a net in X which converges to x € X, it follows that
(f(zx))ren s a net in' Y which converges to f(x).

The notion of a weak topology on a set X generated by a family of functions
{fy} from X into topological spaces (Y5, 7y) is of crucial importance in the study of
topological vector spaces and of Banach spaces. It is also vital to the understanding
of the product topology on a family of topological spaces, which we shall see shortly.
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10.22. Definition. Let @ # X be a set and {(Y,,7y)}yer be a family of topo-
logical spaces. Suppose that for each v € I' there ewists a function f, : X — Y,. Set

F = {f'y}'yel“-

IfS = {f;l(GW) : Gy € 7,7 €'}, then S C P(X) and — as noted above — S
is a subbase for a topology on X, denoted by o(X,F), and referred to as the weak
topology on X induced by F.

The main and most important result concerning weak topologies induced by a
family of functions is the following:

10.23. Proposition.

(a) If T is a topology on X and if fy : (X,7) — (Y,,7y) is continuous for all
~v €T, then o(X,F) C 7. In other words, o(X,F) is the weakest topology
on X under which each f, is continuous.

(b) Let (Z,7z) be a topological space. Then g : (Z,77) — (X,0(X,F)) tis
continuous if and only if fyog: Z — Y, is continuous for all v € T.

10.24. Definition. Let {(X,,Ta)}aca be a collection of topological spaces. The
Cartesian product of the sets X, is

MoeaXo ={2: A = UsXo | z(a) € X4 for each a € A}.

As with sequences, we write (xy)q for x.

The map 7g : 11X, — Xg, mg(x) = xp is called the Bth projection map.

The product topology on 11, X, is the weak topology on 11,X, induced by the
family {mg}gen. As we shall see in the Assignments, this is the topology which has
as a base the collection B = {Il,cpaUy}, where

(a) Uy € 7o for all a; and

(b) for all but finitely many o, Uy = X,.

It should be clear from the definition that in (a), it suffices to ask that we take
U, € B, where B, is a fixed base for 7o, a € A.

Observe that if U, € Xo and Uy, = X for all a except for ay, ao, ..., an, then
o Ua = 73, (Uay) N+ Mg (Ua,)-

From this it follows that {n;1(Uy,) : Uy € By, € A} is a subbase for the product
topology, where By, is a fixed base (or indeed even a subbase will do) for the topology
on X,.

It is perhaps worth pointing out that it follows from the Axiom of Choice that
if for all &« € A we have X, # @, then X # @.

We leave it to the reader to verify that the product topology on R" = II}}_;R is
just the usual topology on R".
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