Command Buttons

o We've seen the command button before. Itis probably the most widely used
control. Itis used to begin, interrupt, or end a particular process.

o Command Button Properti es:

Appearance Selects 3-D or flat appearance.

Cancel Allows selection of button with Esc key (only one
button on a form can have this property True).

Caption String to be displayed on button.

Default Allows selection of button with Enter key (only one
button on a form can have this property True).

Font Sets font type, style, size.

¢ Command Button Events:

Click Event triggered when button is selected either by
clicking on it or by pressing the access key.

Label Boxes

A

¢ A label box is a control you use to display text that a user can't edit directly.

We've seen, though, in previous examples, that the text of a label box can be
changed at run-time in response to events.

e Label Properties:

Alighment Aligns caption within border.
Appearance Selects 3-D or flat appearance.
AutoSize If True, the label is resized to fit the text specifed by

the caption property. If False, the label will remain the
size defined at design time and the text may be
clipped.

BorderStyle Determines type of border.
Caption String to be displayed in box.
Font Sets font type, style, size.

WordWrap Works in conjunction with AutoSize property. If
AutoSize = True, WordWrap = True, then the text will
wrap and label will expand vertically to fit the Caption.
If AutoSize = True, WordWrap = False, then the text
will not wrap and the label expands horizontally to fit
the Caption. If AutoSize = False, the text will not wrap
regardless of WordWrap value.

o Label Events:

Click Event triggered when user clicks on a label.
DbiClick Event triggered when user double-clicks on a label.
Text Boxes
[ab]

¢ A text box is used to display information entered at design time, by a user at run-
time, or assigned within code. The displayed text may be edited.

¢ Text Box Properties:

Appearance Selects 3-D or flat appearance.

BorderStyle Determines type of border.

Font Sets font type, style, size.

MaxLength Limits the length of displayed text (0 value indicates
unlimited length).

MultiLine Specifies whether text box displays single line or
multiple lines.

PasswordChar Hides text with a single character.

ScrollBars Specifies type of displayed scroll bar(s).

SelLength Length of selected text (run-time only).

SelStart Starting position of selected text (run-time only).

SelText Selected text (run-time only).

Tag Stores a string expression.

Text Displayed text.

e Text Box Events:

Change Triggered every time the Text property changes.

LostFocus Triggered when the user leaves the text box. Thisis a
good place to examine the contents of a text box after
editing.

KeyPress Triggered whenever a key is pressed. Used for key
trapping, as seen in last class.

e Text Box Methods:

SetFocus Places the cursor in a specified text box.

Example 3 -1
Password Validation

1. Start a new project. The idea of this project is to ask the user to input a password.
If correct, a message box appears to validate the user. If incorrect, other options
are provided.

2. Place a two command buttons, a label box, and a text box on your form so it looks
something like this:

.....

....................

3. Set the properties of the form and each object.

Form1:
BorderStyle 1-Fixed Single
Caption Password Validation
Name frmPassword
Label1:
Alignment 2-Center
BorderStyle 1-Fixed Single
Caption Please Enter Your Password:
FontSize 10
FontStyle Bold
Text1:
FontSize 14
FontStyle Regular
Name txtPassword
PasswordChar *
Tag [Whatever you choose as a password]
Text [Blank]
Command1:
Caption &Validate
Default True
Name cmdValid
Command2:
Cancel True
Caption E&xit
Name cmdExit

Your form should now look like this:

m Password Yalhidation !E E

...

. Attach the following code to the ecmdValid_Click event.

Private Sub cmdValid Click()

"This procedure checks the input password
Dim Response As Integer
If txtPassword.Text = txtPassword.Tag Then
'If correct, display message box
MsgBox "You've passed security!", vbOKOnly +
vbExclamation, "Access Granted"
Else
'"If incorrect, give option to try again

Response = MsgBox ("Incorrect password", vbRetryCancel
+ vbCritical, "Access Denied")

If Response = vbRetry Then

txtPassword.SelStart = 0

txtPassword.Sellength = Len (txtPassword.Text)
Else

End
End If

End If
txtPassword. SetFocus

End Sub

This code checks the input password to see if it matches the stored value. If so, it
prints an acceptance message. If incorrect, it displays a message box to that
effect and asks the user if they want to try again. If Yes (Retry), another try is
granted. If No (Cancel), the program is ended. Notice the use of SelLength and
SelStart to highlight an incorrect entry. This allows the user to type right over the
incorrect response.

5. Attach the following code to the Form_Activate event.

Private Sub Form_Activate()
txtPassword. SetFocus
End Sub

6. Aftach the following code to the ecmdEXxit_ Click event.

Private Sub cmdExit Click()
End
End Sub

7. Try running the program. Try both options: input correct password (note it is case
sensitive) and input incorrect password. Save your project.

If you have time, define a constant, TRYMAX = 3, and modify the code to allow
the user to have just TRYMAX attempts to get the correct password. After the
final try, inform the user you are logging him/her off. You'll also need a variable
that counts the number of tries (make it a Static variable).

