
 Parsing Techniques (Top-Down Parsing)

47

Parsing Techniques
Parsers

A parser for grammar G is a program that takes as input a string w

and produces as output either a parse tree for w, if w is a sentence of

G, or an error message indicating that w is not a sentence of G.

There are two basic types of parsers for context-free grammars are

Top-Down and Bottom-Up. As indicated by their names, top-down

parsers start with the root and work down to the leaves, while

bottom-up parsers build parse trees from the bottom (leaves) to the

top (root). In both cases the input to the parser is being scanned from

left to right, one symbol at a time.

Top-Down Parsing

Top-down parsing can be viewed as an attempt to find a leftmost

derivation for an input string. Equivalently, it can be viewed as an

attempt to construct a parse tree for the input starting from the root

and creating the nodes of the parse tree in preorder.

Parsing Techniques

Top-Down Parser Bottom-Up Parser

Recursive Descent

(Predictive Parser)

Shift-Reduce Parser

Operator-Precedence

Parser

LR Parser

 Parsing Techniques (Top-Down Parsing)

48

Recursive-Descent Parsing

The general form of top-down parsing, called recursive descent, the

recursive descent can be divided to two cases. First case that may

involve Backtracking, which is, making repeated scans of the input

and second case, is No Backtracking (Predictive Parser).

Backtracking

Backtracking is required in the next example, and will be keeping

track of the input when backtracking takes place.

Example: Consider the grammar

 S  cAd

 A  ab | a

and the input string w = cad. To construct a parse tree for this string

top-down.

1) Create a tree consisting of a single node labeled S.

2) An input pointer points to c, the first symbol of w. We then use

the first production for S to expand the tree and obtain the tree

of Figure below.

The leftmost leaf, labeled c, matches the first symbol of w.

3) Advance the input pointer to a, the second symbol of w, and

consider the next leaf, labeled A. We can then expand A using

the first alternative for A to obtain the tree of Figure below. We

now have a match for the second input symbol.

S

A c d

 Parsing Techniques (Top-Down Parsing)

49

4) Advance the input pointer to d, the third input symbol, and com-

pare d against the next leaf, labeled b. Since b does not match d,

we report failure and go back to A to see whether there is

another alternative for A that we have not tried but that might

produce a match.

5) In going back to A, we must reset the input pointer to position 2,

the position it had when we first came to A, we now try the

second alternative for A to obtain the tree of figure below.

The leaf a matches the second symbol of w and the leaf d

matches the third symbol. Since we have produced a parse tree

for w, we halt and announce successful completion of parsing.

Note: A left-recursive grammar can cause a recursive-descent

parser, even one with backtracking, to go into an infinite loop.

That is, when we try to expand A, we may eventually find

ourselves again trying to expand A without having consumed any

input.

S

A c d

 a b

S

A c d

a

 Parsing Techniques (Top-Down Parsing)

50

Predictive Parser

In many cases, by carefully writing a grammar, eliminating left

recursion from it, and left factoring the resulting grammar, we can

obtain a grammar that can be parsed by a recursive-descent parser

that needs no backtracking, i.e., a predictive parser.

 Transition Diagrams for Predictive Parser

We can create a transition diagram as a plan for a predictive parser.

Several differences between the transition diagrams for a lexical

analyzer and a predictive parser are immediately apparent. In the

case of the parser, there is one diagram for each nonterminal. The

labels of edges are tokens (terminal) and nonterminals. A

transition on a token (terminal) means we should take that transition

if that token is the next input symbol. A transition on a nonterminal,

A is a call of the procedure for A.

To construct the transition diagram of a predictive parser from a

grammar, first eliminate left recursion from the grammar, and then

left factor the grammar. Then for each nonterminal A do the

following:

1) Create an initial and final (return) state.

2) For each production A  X1X2 …. Xn, create a path from

the initial to the final state, with edges labeled X1X2 …. Xn.

The predictive parser working off the transition diagrams behaves as

follows. It begins in the start state for the start symbol. If after

some actions it is in state s with an edge labeled by terminal a to

state t, and if the next input symbol is a, then the parser moves the

 Parsing Techniques (Top-Down Parsing)

51

input cursor one position right and goes to state t. If, on the other

hand, the edge is labeled by a nonterminal A, the parser instead goes

to the start state for A, without moving the input cursor. If it ever

reaches the final state for A, it immediately goes to state t, in effect

having "read" A from the input during the time it moved from state s

to t. Finally, if there is an edge from s to t labeled , then from state

s the parser immediately goes to state t, without advancing the input.

Example: Design the transition diagram of predictive parser for the

following grammar:

 E  TE'

 E'  +TE' | 

 T  FT'

 T'  *FT' | 

 F  (E) | id

 2 0 1
T E'

 6 4 5
T E'

3
+



 9 7 8
F T'

 13 11 12
F T'

10
*



 17 15 16
E)

14
(

id

E:

E':

T:

F:

T':
:

 Parsing Techniques (Top-Down Parsing)

52

The figure in below shows an equivalent transition diagram for E'.

 Components of Predictive Parser

Predictive parser has an input buffer, a stack, a parsing table, and an

output stream. The model of predictive parser is shown the in figure

below:

1) The input buffer contains the string to be parsed, followed by $,

a symbol used as a right endmarker to indicate the end of the

input string.

 6

4 3
+

E':



T

Simplified Transition diagram

 a + b $

X

Y

Z

$

Predictive Parser

Program

Parser Table

M

Output

 Model of Predictive Parser

Input Buffer

Stack

 Parsing Techniques (Top-Down Parsing)

53

2) The stack contains a sequence of grammar symbols with $ on

the bottom, indicating the bottom of the stack. Initially, the

stack contains the start symbol of the grammar on top of $.

3) The parsing table is a two-dimensional array M [A, a], where

A is a nonterminal, and a is a terminal or the symbol $.

The parser is controlled by a program that behaves as follows. The

program considers X, the symbol on top of the stack, and a, the

current input symbol. These two symbols determine the action of the

parser. There are three possibilities.

a) If X = a = $, the parser halts and announces successful

completion of parsing.

b) If X = a ≠ $, the parser pops X off the stack and advances

the input pointer to the next input symbol.

c) If X is a nonterminal, the program consults entry M[X, a]

of the parsing table M. This entry will be either an X-

production of the grammar or an error entry. If, for

example, M[X, a] = {X  UVW}, the parser replaces

X on top of the stack by WVU (with U on top).

4) As output, we shall assume that the parser just prints the

production used; any other code could be executed here. If

M[X, a] = error, the parser calls error recovery routine.

 Parsing Techniques (Top-Down Parsing)

54

 Construction of Predictive Parsing Tables

The following algorithm can be used to construct a predictive

parsing table for a grammar G.

Algorithm: Construction of a predictive parsing table.

 Input: Grammar G.

Output: Parsing table M.

Method:

1. For each production A  α of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST (α), add A  α to M [A, a].

3. If  is in FIRST (α), add A  α to M [A, b] for each

terminal b in FOLLOW (A). If  is in FIRST (α) and $ is in

FOLLOW (A), add A  α to M [A, $].

4. Make each undefined entry of M be error.

Example: Parse the string id + id * id by using predictive parser for

the following grammar:

 E  TE'

 E'  +TE' | 

 T  FT'

 T'  *FT' | 

 F  (E) | id

FIRST (E) = FIRST (T) = FIRST (F) = {(, id}

FIRST (E') = {+, }

FIRST (T') = {*, }

FOLLOW (E) = FOLLOW (E') = {), $}

FOLLOW (T) = FOLLOW (T') = {+,), $}

FOLLOW (F) = {*, +,), $}

NONTER-

MINALS
INPUT SYMBOL

 Parsing Techniques (Top-Down Parsing)

55

Predictive Parsing Table M For Above Grammar

Blanks are error entries; non-blanks indicate a production with

which to expand the top nonterminal on the stack.

Moves made by predictive parser on input id + id * id

LL (1) Grammars

id + * () $

E E  TE' E  TE'

E' E'  +TE' E'   E'  

T T  FT' T  FT'

T' T'   T'  *FT' T'   T'  

F F  id F  (E)

Stack Input Output

$ E id + id * id$

$ E'T id + id * id$ E  TE'

$ E'T'F id + id * id$ T  FT'

$ E'T' id id + id * id$ F  id

$ E'T' + id * id$

$ E' + id * id$ T'  

$ E'T+ + id * id$ E'  +TE'

$ E'T id * id$

$ E'T'F id * id$ T  FT'

$ E'T' id id * id$ F  id

$ E'T' * id$

$ E'T'F* * id$ T'  *FT'

$ E'T'F id$

$ E'T' id id$ F  id

$ E'T' $

$ E' $ T'  

$ $ E'  

 Parsing Techniques (Top-Down Parsing)

56

Algorithm construction of a predictive parsing table can be applied

to any grammar G to produce a parsing table M. For some

grammars, however, M may have some entries that are multiply-

defined. for example, if G is left recursive or ambiguous, then M

will have at least one multiply-defined entry.

Example: Let us consider the following grammar:

S  iEtSS' | a

S'  eS | 

E  b

FIRST (S) = {i, a}

FIRST (S') = {e, }

FIRST (E) = {b}

FOLLOW (S) = {e, $}

FOLLOW (S') = {e, $}

FOLLOW (E) = {t}

The entry for M[S',e] contains both S'  eS and S'   , since

FOLLOW(S') = {e, $}. The grammar is ambiguous and the

ambiguity is manifested by a choice in what production to use when

an e is seen. Therefore this grammar is not LL (1).

Definition of LL (1):

NONTER-

MINALS

INPUT SYMBOL

a b e i t $

S S  a S  iEtSS'

S'
S'  

S'  eS

S'  

E E  b

 Parsing Techniques (Top-Down Parsing)

57

A grammar whose parsing table has no multiply-defined entries

is said to be LL (1). The first "L" in LL(1) stands for scanning the

input from left to right, the second "L" for producing a leftmost

derivation, and the "1" for using one input symbol of lookahead at

each step to make parsing action decisions. LL (1) grammars have

several distinctive properties. No ambiguous or left- recursive

grammar can be LL (1).

The grammar is LL (1) if satisfy the following Conditions :

For all productions A  α1 | α2 | …… | αn

1. FIRST (αi) ∩ FIRST (αj) = for all i ≠ j and

2. If αi 
  , Then FIRST (αj) ∩ FOLLOW(A)= for all i ≠ j

Example: Is the following grammar LL (1)?

A  iBte

B  SB | 

S  [ec] | •i

Sol:

Rule 1:

 B  SB | 

 FIRST (SB) ∩ FIRST () = {[, •} ∩ { } = 

 S  [ec] | •i

 FIRST ([ec]) ∩ FIRST (•i) = {[} ∩ {•} = 

Rule 2:

 B  SB | 

 FIRST (SB) ∩ FOLLOW (B) = {[, •} ∩ {t} = 

This grammar is LL (1).

Example: Is the following grammar LL (1)?

 Parsing Techniques (Top-Down Parsing)

58

S  XS| aY

X  a | b

Y  (S)

Sol:

Rule 1:

 S  XS | aY

 FIRST (XS) ∩ FIRST (aY) = {a, b} ∩ {a} = {a}

This grammar is not LL (1). And it is not suitable for constructing

parser table.

Example: Is the following grammar LL (1)?

S  Aa | bB

A  aBmS | C

B  (S)

C  

Sol:

Rule 1:

 S  Aa | bB

 FIRST (Aa) ∩ FIRST (bB) = {a,  } ∩ {b} = 

 A  aBmS | C

 FIRST (aBmS) ∩ FIRST (C) = {a} ∩ { } = 

Rule 2:

 A  aBmS | C Since C   , Then

 FIRST (aBmS) and FOLLOW (A) must be disjoint.

 FIRST (aBmS) ∩ FOLLOW (A) = {a} ∩ {a} = {a}

This grammar is not LL (1).

