FIRST and FOLLOW

The construction of a predictive parser is aided by two functions associated with a grammar G. These functions, <u>FIRST</u> and <u>FOLLOW</u>, allow us to fill in the entries of a predictive parsing table for G, whenever possible.

First Function

To compute $\mathbf{FIRST}(X)$ for all grammar symbols X, apply the following rules until no more terminals or \mathcal{E} can be added to any **FIRST** set.

- 1) If X is <u>**Terminal**</u>, then FIRST(X) is $\{X\}$.
- 2) If $X \longrightarrow \mathcal{E}$ is a production, then add \mathcal{E} to **FIRST**(X).
- 3) If X is <u>Nonterminal</u> and $X \longrightarrow Y_1 Y_2 \dots Y_k$ is a production, then place <u>a</u> in **FIRST**(X) if for some **i**, <u>a</u> is in F1RST (Y_i), and \mathcal{E} is in all of FIRST (Y₁). . . FIRST (Y_{i-1}); that is, $Y_{1} \dots Y_{i-1} \xrightarrow{*} \mathcal{E}$. If \mathcal{E} is in FIRST (Y_j) for all $j = 1, 2, \dots, k$, then add \mathcal{E} to FIRST(X). For example, everything in FIRST (Y₁) is surely in FIRST(X). If Y₁ does not derive \mathcal{E} , then we add nothing more to FIRST(X), but if $Y_1 \xrightarrow{*} \mathcal{E}$, then we add FIRST (Y₂) and so on.

Now, we can compute **FIRST** for any string $X_1 X_2 ... X_n$ as follows. Add to FIRST $(X_1 X_2 ... X_n)$ all the non- \mathcal{E} symbols of FIRST (X_1) . Also add the non- \mathcal{E} symbols of FIRST (X_2) if \mathcal{E} is in FIRST (X_1) , the non- \mathcal{E} symbols of FIRST (X_3) if \mathcal{E} is in both FIRST (X_1) and FIRST (X_2) , and so on. Finally, add \mathcal{E} to FIRST $(X_1 X_2 ... X_n)$ if, for all **i**, F1RST (X_i) contains \mathcal{E} .

First Function Examples:

Example1: Consider the following grammar

 $S \longrightarrow \mathbf{a}S\mathbf{b} | \mathbf{b}\mathbf{a} | \boldsymbol{\mathcal{E}}$ FIRST(S) = {**a**, **b**, \boldsymbol{\mathcal{E}} }

Example2: Consider the following grammar

 $S \longrightarrow TabS \mid X$ $T \longrightarrow cT \mid \mathcal{E}$ $X \longrightarrow b \mid bX$ Sol: $FIRST (S) = \{c, a, b\}$ $FIRST (T) = \{c, \mathcal{E}\}$ $FIRST(X) = \{b\}$

Example3: Consider the following grammar

 $S \longrightarrow AB \mid bS$ $A \longrightarrow aB \mid BB$ $B \longrightarrow b / cB$ Sol: FIRST (S) = {a, b, c} FIRST (A) = {a, b, c} FIRST (B) = {b, c}

Example4: Consider the following grammar

 $S \longrightarrow XYB | \operatorname{ccb} X \longrightarrow xX | \mathcal{E}$ $Y \longrightarrow yY / Xy | \mathcal{E}$ $B \longrightarrow \operatorname{bbc} / \operatorname{b}$ FIRST (S) = {c, x, y, b} FIRST (X) = {x, \mathcal{E}} FIRST (Y) = {y, x, \mathcal{E}} FIRST (B) = {b}

Sol:

Example5: Consider the following grammar

 $S \longrightarrow abS | bX$ $X \longrightarrow \mathcal{E} | cN$ $N \longrightarrow Nb | c$

There is the left recursion problem, so we must solve this problem

before finding the first function

 $S \longrightarrow abS | bX$ $X \longrightarrow \mathcal{E} | cN$ $N \longrightarrow cN'$ $N' \longrightarrow bN' | \mathcal{E}$ Sol:
FIRST (S) = {a, b}
FIRST (X) = {c, \mathcal{E}}
FIRST (N) = {c}
FIRST (N') = {b, \mathcal{E}}

Follow Function

To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing can be added to any FOLLOW set.

- Place \$ in FOLLOW(S), where S is the start symbol And \$ is the input right endmarker.
- 2) If there is a production $A \longrightarrow \alpha B\beta$, then everything in **FIRST** (β) except for \mathcal{E} is placed in **FOLLOW** (B).
- 3) If there is a production $A \longrightarrow \alpha B$, or a production $A \longrightarrow \alpha B\beta$ where **FIRST** (β) contains \mathcal{E} (i.e., $\beta \xrightarrow{*} \mathcal{E}$), then everything in FOLLOW (A) is in FOLLOW (B).

Follow Function Examples:

Example1: Consider the following grammar

 $\begin{array}{ccc} S & \longrightarrow \mathbf{b} XY \\ X & \longrightarrow \mathbf{b} \mid \mathbf{c} \\ Y & \longrightarrow \mathbf{b} \mid \boldsymbol{\mathcal{E}} \end{array}$

Nonterminals	First	Follow
S	b	\$
X	b, c	b, \$
Y	b, <i>E</i>	\$

Example2: Consider the following grammar

- $S \longrightarrow aSb \mid X$ $X \longrightarrow cXb \mid b$
- $X \longrightarrow \mathbf{b} X Z$
- $Z \longrightarrow n$

Nonterminals	First	Follow
S	a, b, c	\$, b
X	b, c	b, n, \$
Z	n	b, n, \$

Example3: Consider the following grammar

- $S \longrightarrow ABb \mid bc$
- $A \longrightarrow abAB | \mathcal{E}$
- $B \longrightarrow bc | cBS$

Nonterminals	First	Follow
S	a, b, c	\$, a, b, c
A	a, <i>E</i>	b, c
B	b, c	a, b, c