FIRST and FOLLOW

The construction of a predictive parser is aided by two functions associated with a grammar \boldsymbol{G}. These functions, FIRST and FOLLOW, allow us to fill in the entries of a predictive parsing table for \boldsymbol{G}, whenever possible.

First Function

To compute $\operatorname{FIRST}(\boldsymbol{X})$ for all grammar symbols \boldsymbol{X}, apply the following rules until no more terminals or $\boldsymbol{\mathcal { E }}$ can be added to any FIRST set.

1) If X is Terminal, then $\operatorname{FIRST}(X)$ is $\{X\}$.
2) If $\boldsymbol{X} \longrightarrow \boldsymbol{\mathcal { E }}$ is a production, then add $\boldsymbol{\mathcal { E }}$ to FIRST(X).
3) If X is Nonterminal and $X \longrightarrow \boldsymbol{Y}_{1} \boldsymbol{Y}_{2} \ldots \boldsymbol{Y}_{\mathrm{k}}$ is a production, then place $\underline{\mathbf{a}}$ in FIRST (\boldsymbol{X}) if for some $\mathbf{i}, \underline{\mathbf{a}}$ is in F1RST $\left(\boldsymbol{Y}_{\mathbf{i}}\right)$, and $\boldsymbol{\mathcal { E }}$ is in all of $\operatorname{FIRST}\left(\boldsymbol{Y}_{\mathbf{1}}\right) \ldots \operatorname{FIRST}\left(\boldsymbol{Y}_{\mathbf{i} \mathbf{- 1}}\right)$; that is, $\boldsymbol{Y}_{\mathbf{1}} \ldots \boldsymbol{Y}_{\mathbf{i}-\mathbf{1}} \xrightarrow{*} \boldsymbol{\mathcal { E }}$. If $\boldsymbol{\mathcal { E }}$ is in $\operatorname{FIRST}\left(\boldsymbol{Y}_{\mathbf{j}}\right)$ for all $\mathrm{j}=1,2, \ldots, \mathrm{k}$, then add $\boldsymbol{\mathcal { E }}$ to $\operatorname{FIRST}(\boldsymbol{X})$. For example, everything in $\operatorname{FIRST}\left(\boldsymbol{Y}_{\mathbf{1}}\right)$ is surely in $\operatorname{FIRST}(\boldsymbol{X})$. If $\boldsymbol{Y}_{\boldsymbol{1}}$ does not derive $\boldsymbol{\mathcal { E }}$, then we add nothing more to $\operatorname{FIRST}(\boldsymbol{X})$, but if $\boldsymbol{Y}_{\mathbf{1}} \xrightarrow{*} \boldsymbol{\mathcal { E }}$, then we add $\operatorname{FIRST}\left(\boldsymbol{Y}_{\mathbf{2}}\right)$ and so on.

Now, we can compute FIRST for any string $\boldsymbol{X}_{\mathbf{1}} \boldsymbol{X}_{\mathbf{2}} \ldots \boldsymbol{X}_{\mathrm{n}}$ as follows. Add to $\operatorname{FIRST}\left(\boldsymbol{X}_{1} \boldsymbol{X}_{2} \ldots \boldsymbol{X}_{\mathrm{n}}\right)$ all the non- $\boldsymbol{\mathcal { E }}$ symbols of $\operatorname{FIRST}\left(\boldsymbol{X}_{1}\right)$. Also add the non- \boldsymbol{E} symbols of $\operatorname{FIRST}\left(\boldsymbol{X}_{2}\right)$ if $\boldsymbol{\mathcal { E }}$ is in $\operatorname{FIRST}\left(\boldsymbol{X}_{1}\right)$, the non- \boldsymbol{E} symbols of $\operatorname{FIRST}\left(\boldsymbol{X}_{\mathbf{3}}\right)$ if $\boldsymbol{\mathcal { E }}$ is in both $\operatorname{FIRST}\left(\boldsymbol{X}_{\mathbf{1}}\right)$ and $\operatorname{FIRST}\left(\boldsymbol{X}_{2}\right)$, and so on. Finally, add $\boldsymbol{\mathcal { E }}$ to $\operatorname{FIRST}\left(\boldsymbol{X}_{\mathbf{1}} \boldsymbol{X}_{\mathbf{2}} \ldots \boldsymbol{X}_{\mathrm{n}}\right)$ if, for all $\mathbf{i}, \operatorname{F1RST}\left(\boldsymbol{X}_{\mathbf{i}}\right)$ contains \boldsymbol{E}.

First Function Examples:

Example1: Consider the following grammar
$S \longrightarrow \mathbf{a S b}|\mathrm{ba}| \boldsymbol{E}$
$\operatorname{FIRST}(\boldsymbol{S})=\{\mathbf{a}, \mathbf{b}, \boldsymbol{\varepsilon}\}$
Example2: Consider the following grammar

$$
\begin{aligned}
& S \longrightarrow T \mathbf{T} S \mid X \\
& T \longrightarrow \mathbf{C} \mid \varepsilon \\
& X \longrightarrow \mathbf{b} \mid \mathbf{b} X
\end{aligned}
$$

Sol:
$\operatorname{FIRST}(\boldsymbol{S})=\{\mathbf{c}, \mathbf{a}, \mathbf{b}\}$
$\operatorname{FIRST}(\boldsymbol{T})=\{\mathbf{c}, \boldsymbol{\varepsilon}\}$
$\operatorname{FIRST}(\boldsymbol{X})=\{\mathbf{b}\}$
Example3: Consider the following grammar
$S \longrightarrow A B \mid \mathrm{b} S$
$A \longrightarrow \mathrm{a} \boldsymbol{B} \mid \boldsymbol{B B}$
$\boldsymbol{B} \longrightarrow \mathbf{b} \mid \mathbf{c} \boldsymbol{B}$
Sol:
$\operatorname{FIRST}(\boldsymbol{S})=\{\mathrm{a}, \mathbf{b}, \mathbf{c}\}$
$\operatorname{FIRST}(\boldsymbol{A})=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\operatorname{FIRST}(\boldsymbol{B})=\{\mathbf{b}, \mathbf{c}\}$
Example4: Consider the following grammar

$$
\begin{aligned}
& S \longrightarrow X Y B \mid \text { ccb } \\
& X \longrightarrow \mathbf{x} X \mid \varepsilon \\
& Y \longrightarrow \mathbf{y} Y|X \mathbf{y}| \varepsilon \\
& B \longrightarrow \mathbf{b b c} \mid \mathbf{b}
\end{aligned}
$$

Sol:
$\operatorname{FIRST}(\boldsymbol{S})=\{\mathbf{c}, \mathbf{x}, \mathbf{y}, \mathbf{b}\}$
$\operatorname{FIRST}(\boldsymbol{X})=\{\mathbf{x}, \boldsymbol{\varepsilon}\}$
$\operatorname{FIRST}(\boldsymbol{Y})=\{\mathbf{y}, \mathbf{x}, \boldsymbol{E}\}$
$\operatorname{FIRST}(\boldsymbol{B})=\{\mathbf{b}\}$

Example5: Consider the following grammar

$$
\begin{aligned}
& S \longrightarrow \mathbf{a b} S \mid \mathbf{b} X \\
& X \longrightarrow \mathcal{E} \mid \mathbf{c} N \\
& N \longrightarrow N \mathbf{b} \mid \mathbf{c}
\end{aligned}
$$

There is the left recursion problem, so we must solve this problem before finding the first function

$$
\begin{aligned}
& S \longrightarrow \mathbf{a b} S \mid \mathbf{b} X \\
& X \longrightarrow \mathcal{E} \mid \mathbf{c} N \\
& N \longrightarrow \mathbf{c} N^{\prime} \\
& N^{\prime} \longrightarrow \mathbf{b} N^{\prime} \mid \varepsilon
\end{aligned}
$$

Sol:
$\operatorname{FIRST}(\boldsymbol{S})=\{\mathbf{a}, \mathbf{b}\}$
$\operatorname{FIRST}(\boldsymbol{X})=\{\mathbf{c}, \boldsymbol{E}\}$
$\operatorname{FIRST}(\boldsymbol{N})=\{\mathbf{c}\}$
$\operatorname{FIRST}\left(N^{\prime}\right)=\{\mathbf{b}, \boldsymbol{\varepsilon}\}$

Follow Function

To compute $\operatorname{FOLLOW}(\boldsymbol{A})$ for all nonterminals \boldsymbol{A}, apply the following rules until nothing can be added to any FOLLOW set.

1) Place $\$$ in $\operatorname{FOLLOW}(\boldsymbol{S})$, where \boldsymbol{S} is the start symbol And $\$$ is the input right endmarker.
2) If there is a production $\boldsymbol{A} \longrightarrow \boldsymbol{\alpha} \boldsymbol{B} \boldsymbol{\beta}$, then everything in FIRST $(\boldsymbol{\beta})$ except for $\boldsymbol{\mathcal { E }}$ is placed in FOLLOW (\boldsymbol{B}).
3) If there is a production $\boldsymbol{A} \longrightarrow \boldsymbol{\alpha} \boldsymbol{B}, \quad$ or a production $\boldsymbol{A} \longrightarrow \boldsymbol{\alpha} \boldsymbol{B} \boldsymbol{\beta}$ where FIRST $(\boldsymbol{\beta})$ contains $\boldsymbol{\mathcal { E }}$ (i.e., $\boldsymbol{\beta} \xrightarrow{*} \boldsymbol{\mathcal { E }}$), then everything in FOLLOW (A) is in FOLLOW (B).

Follow Function Examples:

Example1: Consider the following grammar
$S \longrightarrow \mathbf{S} \boldsymbol{Y} \boldsymbol{Y}$
$\boldsymbol{X} \longrightarrow \mathbf{b} \mid \mathbf{c}$
$\boldsymbol{Y} \longrightarrow \mathbf{b} \mid \boldsymbol{\varepsilon}$

Nonterminals	First	Follow
\boldsymbol{S}	\mathbf{b}	$\$$
X	\mathbf{b}, \mathbf{c}	$\mathbf{b , \$}$
\boldsymbol{Y}	$\mathbf{b}, \boldsymbol{\varepsilon}$	$\$$

Example2: Consider the following grammar

$$
\begin{aligned}
& S \longrightarrow \mathbf{a S b} \mid X \\
& X \longrightarrow \mathbf{c X b} \mid \mathbf{b} \\
& X \longrightarrow \mathbf{b} X Z \\
& Z \longrightarrow \mathbf{n}
\end{aligned}
$$

Nonterminals	First	Follow
\boldsymbol{S}	$\mathbf{a}, \mathbf{b}, \mathbf{c}$	$\mathbf{\$}, \mathbf{b}$
X	\mathbf{b}, \mathbf{c}	$\mathbf{b}, \mathbf{n}, \mathbf{\$}$
Z	\mathbf{n}	$\mathbf{b}, \mathbf{n}, \mathbf{\$}$

Example3: Consider the following grammar
$S \longrightarrow A B \mathbf{b} \mid \mathbf{b c}$
$A \longrightarrow \mathbf{a b} A B \mid \mathcal{E}$
$B \longrightarrow \mathbf{b c} \mid \mathbf{c B S}$

Nonterminals	First	Follow
S	$\mathbf{a}, \mathbf{b}, \mathbf{c}$	$\$, \mathbf{a}, \mathbf{b}, \mathbf{c}$
\boldsymbol{A}	$\mathbf{a}, \boldsymbol{\varepsilon}$	\mathbf{b}, \mathbf{c}
\boldsymbol{B}	\mathbf{b}, \mathbf{c}	$\mathbf{a}, \mathbf{b}, \mathbf{c}$

