Lecture 18: Normal operators, the spectral theorems, isometries, and positive operators (1)

Travis Schedler

Tue, Nov 16, 2010 (version: Tue, Nov 16, 4:00 PM)

Goals (2)

- Normal operators and the spectral theorem
 - Nice corollaries (slides (7)–(10)) which I plan to skip, but you should study!
- Isometries
- Positive operators
- Polar decomposition

Spectral theorem for self-adjoint operators (3)

From now on, all our vector spaces are finite-dimensional inner product spaces.

Theorem 1 (Theorem 7.13+). T is self-adjoint iff T admits an orthonormal eigenbasis with real eigenvalues.

- *Proof.* Proof for $\mathbf{F} = \mathbf{C}$: we already know that $\mathcal{M}(T)$ is upper-triangular in some orthonormal basis.
 - Then, $T = T^*$ iff the matrix equals its conjugate transpose, i.e., it is upper-triangular with real values on the diagonal.
 - Now let $\mathbf{F} = \mathbf{R}$. In some orthonormal basis, the matrix is block uppertriangular with 1×1 and 2×2 blocks.
 - Then, the matrix equals its own transpose iff it is block diagonal with real diagonal entries and symmetric 2 × 2 blocks.
 - However, in slide (6) we show that the 2 × 2 blocks are anti-symmetric.
 So there are none.

Spectral theorem for complex normal operators (4)

Motivation: Which T admit an orthonormal eigenbasis but not necessarily with real eigenvalues?

Definition 2. An operator T is normal if $TT^* = T^*T$, i.e., T and T^* commute.

Theorem 3 (Theorem 7.9). Let $\mathbf{F} = \mathbf{C}$. Then $T \in \mathcal{L}(V)$ admits an orthonormal eigenbasis iff it is normal.

- Proof. Pick an orthonormal basis so that $A := \mathcal{M}(T)$ is upper-triangular. Then T is normal iff $A\overline{A}^t = \overline{A}^t A$.
 - In coordinates $A = (a_{jk})$ (with $a_{jk} = 0$ for j > k), this means $|a_{jj}|^2 + \cdots + |a_{jn}|^2 = |a_{jj}|^2$, $\forall j$. (dim V = n)
 - This is equivalent to: $a_{jk} = 0$ for j < k. So T is normal iff A is diagonal.

Spectral theorem for real normal operators (5)

Motivation: What does it mean for a real operator to be normal?

Theorem 4 (Theorem 7.25). Let $\mathbf{F} = \mathbf{R}$. Then T is normal iff it admits an orthonormal basis in which $\mathcal{M}(T)$ is block-diagonal with blocks (λ_j) or $\begin{pmatrix} a_j & -b_j \\ b_j & a_j \end{pmatrix}$.

The complex eigenvalues are $\lambda_j \in \mathbf{R}$ and $a_j \pm i b_j$.

- *Proof.* Pick an orthonormal basis so that $A = \mathcal{M}(T)$ is block upper-triangular.
 - Then, T is normal iff $A\overline{A}^t = \overline{A}^t A$.
 - For the rows with 1×1 blocks, this again means $|a_{jj}|^2 + \cdots + |a_{jn}|^2 = |a_{jj}|^2$, i.e., $a_{j,j+1} = \cdots = a_{jn} = 0$.
 - For rows j, j+1 with 2×2 blocks, adding the corresponding sums for both rows, this implies $\sum_{k=j+2}^{n} |a_{j,k}|^2 + |a_{j+1,k}|^2 = 0$, i.e., $a_{j,k} = a_{j+1,k} = 0$ for k > j+1, so A is block diagonal.

• Finally, we apply the following proposition to the blocks.

 2×2 case (6)

We need just one final detail ($\mathbf{F} = \mathbf{R}$ and dim V = 2):

Proposition 0.1 (Lemma 7.15, essentially). Suppose that $T \in \mathcal{L}(V)$ is normal and that T has no eigenvalues. Then, in any orthonormal basis, $\mathcal{M}(T) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, where $a \pm bi$ are the roots of the characteristic polynomial of T.

Recall that for two-by-two matrices A, the characteristic polynomial is $x^2 - (\operatorname{tr} A)x + \det A$, and this does not depend on the choice of basis so makes sense for T.

- *Proof.* Write $\mathcal{M}(T) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in the orthonormal basis.
 - Since T is normal, $|a|^2 + |b|^2 = |a|^2 + |c|^2$, so $b = \pm c$.
 - Since there are no real eigenvalues of $\mathcal{M}(T)$, $b = -c \neq 0$.
 - Since T is normal, ac + bd = ab + cd, so (d a)b = (a d)b. So a = d. \Box

Corollaries (7)

Corollary 5 (Corollary 7.8). If T is normal, then eigenvectors u, v of distinct eigenvalues are orthogonal.

- Proof: In an orthonormal eigenbasis (e_j) so that $\mathcal{M}(T)$ is (block) uppertriangular, an eigenvector v of eigenvalue λ is a linear combination of the e_j with the same eigenvalue.
- So u, v cannot have nonzero coefficients of the same e_j , i.e., $u \perp v$.

Corollary 6 (Corollary 7.7). Let T be normal. If v is an eigenvector of T of eigenvalue λ , then it is also an eigenvector of T^* of eigenvalue $\overline{\lambda}$.

- Proof: Again, v must be a linear combination of the e_j that are eigenvectors of eigenvalue λ .
- Since $\mathcal{M}(T^*) = \overline{\mathcal{M}(T)}^t$, these e_j are eigenvectors of T^* of eigenvalue $\overline{\lambda}$.

A characterization of normal operators (8)

Proposition 0.2 (Proposition 7.4). If T is self-adjoint, then $\langle Tv, v \rangle = 0$ for all v iff T = 0.

- Assume $\langle Tv, v \rangle = 0$ for all v. Then $\langle T(v+u), v+u \rangle \langle T(v), v \rangle \langle T(u), u \rangle = 0$ for all v, u.
- Thus, $\langle T(v), u \rangle + \langle T(u), v \rangle = 0$ for all u, v.
- When T is self-adjoint, this says $2\Re \langle T(v), u \rangle = 0$ for all u, v.
- Plugging in *iu* for *u*, also $2\Im\langle T(v), u \rangle = 0$ for all *u*, *v*. Thus T(v) = 0 for all *v*, i.e., T = 0.

Corollary 7 (Proposition 7.6). An operator T is normal iff $||Tv|| = ||T^*v||$ for all v.

- $||Tv|| = ||T^*v|| \Leftrightarrow \langle Tv, Tv \rangle = \langle T^*v, T^*v \rangle \Leftrightarrow \langle (T^*T TT^*)v, v \rangle = 0.$
- Since $T^*T TT^*$ is self-adjoint, by the corollary, the last condition is satisfied for all v iff T is normal.

 $\langle Tv, v \rangle = 0$ and anti-self-adjoint operators on R (9)

Proposition 0.3 (Proposition 7.2+). $\langle Tv, v \rangle = 0$ for all v iff either T = 0, or $\mathbf{F} = \mathbf{R}$ and $T = -T^*$ (T is anti-self-adjoint).

Note: anti-self-adjoint $(T = -T^*)$ implies normal.

- *Proof.* Take an orthonormal basis (e_j) in which $A = (a_{jk}) = \mathcal{M}(T)$ is (block) upper-triangular.
 - We claim $a_{jj} = 0$ for all j. Indeed, $\langle Te_j, e_j \rangle = a_{jj} = 0$.
 - It remains only to show that A is block diagonal (since then the blocks are antisymmetric).
 - Otherwise, if $a_{jk} \neq 0$ above the block diagonal, then $\langle T(e_j + \lambda e_k), e_j + \lambda e_k \rangle = \langle (a_{jj} + \lambda a_{jk})e_j, e_j \rangle = a_{jj} + \lambda a_{jk}$. For $\lambda \neq -a_{jj}a_{jk}^{-1}$, this is nonzero. Contradiction.

Anti-self-adjoint operators for F = C (10)

Proposition 0.4. For $\mathbf{F} = \mathbf{C}$, $T = -T^*$ if and only if T has an orthonormal eigenbasis with purely imaginary eigenvalues (i.e., eigenvalues in $i \cdot \mathbf{R}$).

Proof. • In an orthonormal basis in which $\mathcal{M}(T)$ is upper-triangular, $T = -T^*$ means the matrix equals its negative conjugate transpose.

• This means it is diagonal with purely imaginary diagonal entries. \Box

Alternatively: anti-self-adjoint operators are normal, so admit an orthonormal eigenbasis; then $\langle Tv, v \rangle = \lambda \langle v, v \rangle = \langle v, T^*v \rangle = -\overline{\lambda} \langle v, v \rangle$ implies that $\lambda = -\overline{\lambda}$ for all eigenvalues λ . So they are purely imaginary.

Complex eigenvalues of real operators (11)

We have often spoken about complex eigenvalues of $\mathcal{M}(T)$ when $\mathbf{F} = \mathbf{R}$. Let's formalize it:

Definition 8. Let $\mathbf{F} = \mathbf{R}$. Then the *complex eigenvalues* of T are the complex eigenvalues of $\mathcal{M}(T)$ in any basis.

Why do these not depend on the basis? The change of basis formula! We know that conjugate matrices A and SAS^{-1} have the same (complex) eigenvalues (directly, or by using complex operators).

Example 9. The complex eigenvalues of any T such that $\mathcal{M}(T) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ are a + bi and a - bi.

• Note: |a + bi| = 1 = |a - bi| iff it is a rotation matrix, i.e., $a = \cos \theta$ and $b = \sin \theta$ for some angle θ .

Isometries (12)

Let $T \in \mathcal{L}(V, W)$, with V and W inner product spaces.

Definition 10. An isometry is an operator such that $\langle u, v \rangle = \langle Tu, Tv \rangle$ for all $u, v \in V$.

That is, isometries are operators that preserve the inner product.

Proposition 0.5. *T* is an isometry iff it preserves merely the norm: ||Tv|| = ||v|| for all *v*.

Proof. The inner product is given by a formula from the norm (on the homework), so preservation of the norm implies preservation of inner product. The converse is obvious. \Box

Characterization of isometries (13)

Let V = W be finite-dimensional. Useful characterization: $T \in \mathcal{L}(V)$ is an isometry iff $T^*T = I = TT^*$. (In particular isometries of V are invertible!)

Theorem 11 (Theorem 7.37). Isometries are the same as normal operators whose complex eigenvalues all have absolute value one.

- *Proof.* First, isometries are normal by the characterization.
 - Given a normal operator, pick an orthonormal basis as in the spectral theorem. Then $\mathcal{M}(T)\mathcal{M}(T^*) = I$ iff $|\lambda_i|^2 = 1$ and $|a_i|^2 + |b_i|^2 = 1$ for all *i*.

That is, in our usual orthonormal basis, an isometry has blocks which are either numbers of absolute value one, or rotation matrices.

Positive operators (14)

Definition 12. A positive operator T is a self-adjoint operator such that $\langle Tv, v \rangle \geq 0$ for all v.

In view of the spectral theorem, a self-adjoint operator is positive iff its eigenvalues are nonnegative (part of Theorem 7.27).

- **Theorem 13** (Remainder of Theorem 7.27). (i) Every operator of the form $T = S^*S$ is positive.
- (ii) Every positive operator admits a positive square root.

Proof. • (i) First, $T^* = (S^*S) = S^*S$ is self-adjoint.

- Next, $\langle Tv, v \rangle = \langle Sv, Sv \rangle \ge 0$ for all v.
- (ii) For any orthonormal eigenbasis of T, let \sqrt{T} be the operator with the same orthonormal eigenbasis, but with the nonnegative square root of the eigenvalues.

Polar decomposition (15)

After the spectral theorem, the second-most important theorem of Chapters 6 and 7 is:

Theorem 14 (Polar decomposition: Theorem 7.41). Every $T \in \mathcal{L}(V)$ equals $S\sqrt{T^*T}$ for some isometry S.

Main difficulty: T need not be invertible!

Lemma 15. For all $v \in V$, $||Tv|| = ||\sqrt{T^*T}v||$.

 $\begin{array}{l} \textit{Proof.} \ \|\sqrt{T^*T}v\|^2 = \langle \sqrt{T^*T}v, \sqrt{T^*Tv} \rangle = \langle (\sqrt{T^*T})^*\sqrt{T^*T}v, v \rangle = \langle T^*Tv, v \rangle = \langle Tv, Tv \rangle = \|Tv\|^2. \end{array}$

Corollary: null(T) = null($\sqrt{T^*T}$). We may thus define S_1 : range($\sqrt{T^*T}$) $\xrightarrow{\sim}$ range(T) by $S_1(\sqrt{T^*T}v) = Tv$. Thus, for all $v \in V$, $S_1\sqrt{T^*T}v = Tv$. Also, $||S_1u|| = ||u||$ for all $u(=\sqrt{T^*T}v)$ by the lemma. So S_1 is an isometry.

Completion of proof (16)

- We only have to extend S_1 to an isometry on all of V.
- Note that $\operatorname{range}(\sqrt{T^*T}) \oplus \operatorname{range}(\sqrt{T^*T})^{\perp} = V = \operatorname{range}(T) \oplus \operatorname{range}(T)^{\perp}$.
- Thus, the extensions of S_1 : range $(\sqrt{T^*T}) \xrightarrow{\sim}$ range(T) to an isometry $S : V \xrightarrow{\sim} V$ are exactly $S = S_1 \oplus S_2$, where S_2 : range $(\sqrt{T^*T})^{\perp} \xrightarrow{\sim}$ range $(T)^{\perp}$ is an isometry.
- Since these are inner product spaces of the same dimension, there always exists an isometry, by taking an orthonormal basis to an orthonormal basis.

Recall here that $T_1 \oplus T_2$ on $U_1 \oplus U_2$ means $(T_1 \oplus T_2)(u_1 + u_2) = T_1(u_1) + T_2(u_2)$, $\forall u_1 \in U_1, u_2 \in U_2$.