
Lecture 18: Normal operators, the spectral

theorems, isometries, and positive operators (1)

Travis Schedler

Tue, Nov 16, 2010 (version: Tue, Nov 16, 4:00 PM)

Goals (2)

• Normal operators and the spectral theorem

– Nice corollaries (slides (7)–(10)) which I plan to skip, but you should
study!

• Isometries

• Positive operators

• Polar decomposition

Spectral theorem for self-adjoint operators (3)
From now on, all our vector spaces are finite-dimensional inner product

spaces.

Theorem 1 (Theorem 7.13+). T is self-adjoint iff T admits an orthonormal
eigenbasis with real eigenvalues.

Proof. • Proof for F = C: we already know that M(T ) is upper-triangular
in some orthonormal basis.

• Then, T = T ∗ iff the matrix equals its conjugate transpose, i.e., it is
upper-triangular with real values on the diagonal.

• Now let F = R. In some orthonormal basis, the matrix is block upper-
triangular with 1× 1 and 2× 2 blocks.

• Then, the matrix equals its own transpose iff it is block diagonal with real
diagonal entries and symmetric 2× 2 blocks.

• However, in slide (6) we show that the 2 × 2 blocks are anti-symmetric.
So there are none.
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Spectral theorem for complex normal operators (4)
Motivation: Which T admit an orthonormal eigenbasis but not necessarily

with real eigenvalues?

Definition 2. An operator T is normal if TT ∗ = T ∗T , i.e., T and T ∗ commute.

Theorem 3 (Theorem 7.9). Let F = C. Then T ∈ L(V ) admits an orthonor-
mal eigenbasis iff it is normal.

Proof. • Pick an orthonormal basis so that A :=M(T ) is upper-triangular.

Then T is normal iff AA
t

= A
t
A.

• In coordinates A = (ajk) (with ajk = 0 for j > k), this means |ajj |2 +
· · ·+ |ajn|2 = |ajj |2, ∀j. (dimV = n)

• This is equivalent to: ajk = 0 for j < k. So T is normal iff A is diagonal.

Spectral theorem for real normal operators (5)
Motivation: What does it mean for a real operator to be normal?

Theorem 4 (Theorem 7.25). Let F = R. Then T is normal iff it admits an or-

thonormal basis in whichM(T ) is block-diagonal with blocks (λj) or

(
aj −bj
bj aj

)
.

The complex eigenvalues are λj ∈ R and aj ± i bj .

Proof. • Pick an orthonormal basis so that A = M(T ) is block upper-
triangular.

• Then, T is normal iff AA
t

= A
t
A.

• For the rows with 1×1 blocks, this again means |ajj |2+· · ·+|ajn|2 = |ajj |2,
i.e., aj,j+1 = · · · = ajn = 0.

• For rows j, j+1 with 2×2 blocks, adding the corresponding sums for both
rows, this implies

∑n
k=j+2 |aj,k|2 + |aj+1,k|2 = 0, i.e., aj,k = aj+1,k = 0 for

k > j + 1, so A is block diagonal.

• Finally, we apply the following proposition to the blocks.

2× 2 case (6)
We need just one final detail (F = R and dimV = 2):

Proposition 0.1 (Lemma 7.15, essentially). Suppose that T ∈ L(V ) is normal
and that T has no eigenvalues. Then, in any orthonormal basis, M(T ) =(
a −b
b a

)
, where a± bi are the roots of the characteristic polynomial of T .
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Recall that for two-by-two matrices A, the characteristic polynomial is x2−
(trA)x+ detA, and this does not depend on the choice of basis so makes sense
for T .

Proof. • Write M(T ) =

(
a b
c d

)
in the orthonormal basis.

• Since T is normal, |a|2 + |b|2 = |a|2 + |c|2, so b = ±c.

• Since there are no real eigenvalues of M(T ), b = −c 6= 0.

• Since T is normal, ac+ bd = ab+ cd, so (d− a)b = (a− d)b. So a = d.

Corollaries (7)

Corollary 5 (Corollary 7.8). If T is normal, then eigenvectors u, v of distinct
eigenvalues are orthogonal.

• Proof: In an orthonormal eigenbasis (ej) so that M(T ) is (block) upper-
triangular, an eigenvector v of eigenvalue λ is a linear combination of the
ej with the same eigenvalue.

• So u, v cannot have nonzero coefficients of the same ej , i.e., u ⊥ v.

Corollary 6 (Corollary 7.7). Let T be normal. If v is an eigenvector of T of
eigenvalue λ, then it is also an eigenvector of T ∗ of eigenvalue λ.

• Proof: Again, v must be a linear combination of the ej that are eigenvec-
tors of eigenvalue λ.

• Since M(T ∗) =M(T )
t
, these ej are eigenvectors of T ∗ of eigenvalue λ.

A characterization of normal operators (8)

Proposition 0.2 (Proposition 7.4). If T is self-adjoint, then 〈Tv, v〉 = 0 for
all v iff T = 0.

• Assume 〈Tv, v〉 = 0 for all v. Then 〈T (v+u), v+u〉−〈T (v), v〉−〈T (u), u〉 =
0 for all v, u.

• Thus, 〈T (v), u〉+ 〈T (u), v〉 = 0 for all u, v.

• When T is self-adjoint, this says 2<〈T (v), u〉 = 0 for all u, v.

• Plugging in iu for u, also 2=〈T (v), u〉 = 0 for all u, v. Thus T (v) = 0 for
all v, i.e., T = 0.

Corollary 7 (Proposition 7.6). An operator T is normal iff ||Tv|| = ||T ∗v|| for
all v.

• ||Tv|| = ||T ∗v|| ⇔ 〈Tv, Tv〉 = 〈T ∗v, T ∗v〉 ⇔ 〈(T ∗T − TT ∗)v, v〉 = 0.

• Since T ∗T − TT ∗ is self-adjoint, by the corollary, the last condition is
satisfied for all v iff T is normal.
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〈Tv, v〉 = 0 and anti-self-adjoint operators on R (9)

Proposition 0.3 (Proposition 7.2+). 〈Tv, v〉 = 0 for all v iff either T = 0, or
F = R and T = −T ∗ (T is anti-self-adjoint).

Note: anti-self-adjoint (T = −T ∗) implies normal.

Proof. • Take an orthonormal basis (ej) in which A = (ajk) = M(T ) is
(block) upper-triangular.

• We claim ajj = 0 for all j. Indeed, 〈Tej , ej〉 = ajj = 0.

• It remains only to show that A is block diagonal (since then the blocks
are antisymmetric).

• Otherwise, if ajk 6= 0 above the block diagonal, then 〈T (ej + λek), ej +
λek〉 = 〈(ajj +λajk)ej , ej〉 = ajj +λajk. For λ 6= −ajja−1jk , this is nonzero.
Contradiction.

Anti-self-adjoint operators for F = C (10)

Proposition 0.4. For F = C, T = −T ∗ if and only if T has an orthonormal
eigenbasis with purely imaginary eigenvalues (i.e., eigenvalues in i ·R).

Proof. • In an orthonormal basis in which M(T ) is upper-triangular, T =
−T ∗ means the matrix equals its negative conjugate transpose.

• This means it is diagonal with purely imaginary diagonal entries.

Alternatively: anti-self-adjoint operators are normal, so admit an orthonor-
mal eigenbasis; then 〈Tv, v〉 = λ〈v, v〉 = 〈v, T ∗v〉 = −λ〈v, v〉 implies that
λ = −λ for all eigenvalues λ. So they are purely imaginary.

Complex eigenvalues of real operators (11)
We have often spoken about complex eigenvalues of M(T ) when F = R.

Let’s formalize it:

Definition 8. Let F = R. Then the complex eigenvalues of T are the complex
eigenvalues of M(T ) in any basis.

Why do these not depend on the basis? The change of basis formula! We
know that conjugate matrices A and SAS−1 have the same (complex) eigenval-
ues (directly, or by using complex operators).

Example 9. The complex eigenvalues of any T such thatM(T ) =

(
a −b
b a

)
are

a+ bi and a− bi.

• Note: |a + bi| = 1 = |a − bi| iff it is a rotation matrix, i.e., a = cos θ and
b = sin θ for some angle θ.
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Isometries (12)
Let T ∈ L(V,W ), with V and W inner product spaces.

Definition 10. An isometry is an operator such that 〈u, v〉 = 〈Tu, Tv〉 for all
u, v ∈ V .

That is, isometries are operators that preserve the inner product.

Proposition 0.5. T is an isometry iff it preserves merely the norm: ||Tv|| = ||v||
for all v.

Proof. The inner product is given by a formula from the norm (on the home-
work), so preservation of the norm implies preservation of inner product. The
converse is obvious.

Characterization of isometries (13)
Let V = W be finite-dimensional. Useful characterization: T ∈ L(V ) is

an isometry iff T ∗T = I = TT ∗. (In particular isometries of V are invertible!)

Theorem 11 (Theorem 7.37). Isometries are the same as normal operators
whose complex eigenvalues all have absolute value one.

Proof. • First, isometries are normal by the characterization.

• Given a normal operator, pick an orthonormal basis as in the spectral
theorem. Then M(T )M(T ∗) = I iff |λi|2 = 1 and |ai|2 + |bi|2 = 1 for all
i.

That is, in our usual orthonormal basis, an isometry has blocks which are
either numbers of absolute value one, or rotation matrices.

Positive operators (14)

Definition 12. A positive operator T is a self-adjoint operator such that
〈Tv, v〉 ≥ 0 for all v.

In view of the spectral theorem, a self-adjoint operator is positive iff its
eigenvalues are nonnegative (part of Theorem 7.27).

Theorem 13 (Remainder of Theorem 7.27). (i) Every operator of the form
T = S∗S is positive.

(ii) Every positive operator admits a positive square root.

Proof. • (i) First, T ∗ = (S∗S) = S∗S is self-adjoint.

• Next, 〈Tv, v〉 = 〈Sv, Sv〉 ≥ 0 for all v.

• (ii) For any orthonormal eigenbasis of T , let
√
T be the operator with the

same orthonormal eigenbasis, but with the nonnegative square root of the
eigenvalues.
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Polar decomposition (15)
After the spectral theorem, the second-most important theorem of Chapters

6 and 7 is:

Theorem 14 (Polar decomposition: Theorem 7.41). Every T ∈ L(V ) equals
S
√
T ∗T for some isometry S.

Main difficulty: T need not be invertible!

Lemma 15. For all v ∈ V , ||Tv|| = ||
√
T ∗Tv||.

Proof. ||
√
T ∗Tv||2 = 〈

√
T ∗Tv,

√
T ∗Tv〉 = 〈(

√
T ∗T )∗

√
T ∗Tv, v〉 = 〈T ∗Tv, v〉 =

〈Tv, Tv〉 = ||Tv||2.

Corollary: null(T ) = null(
√
T ∗T ). We may thus define S1 : range(

√
T ∗T ) ∼→ range(T )

by S1(
√
T ∗Tv) = Tv. Thus, for all v ∈ V , S1

√
T ∗Tv = Tv. Also, ||S1u|| = ||u||

for all u(=
√
T ∗Tv) by the lemma. So S1 is an isometry.

Completion of proof (16)

• We only have to extend S1 to an isometry on all of V .

• Note that range(
√
T ∗T )⊕ range(

√
T ∗T )⊥ = V = range(T )⊕ range(T )⊥.

• Thus, the extensions of S1 : range(
√
T ∗T ) ∼→ range(T ) to an isometry S :

V ∼→ V are exactly S = S1⊕S2, where S2 : range(
√
T ∗T )⊥ ∼→ range(T )⊥

is an isometry.

• Since these are inner product spaces of the same dimension, there always
exists an isometry, by taking an orthonormal basis to an orthonormal
basis.

Recall here that T1⊕T2 on U1⊕U2 means (T1⊕T2)(u1+u2) = T1(u1)+T2(u2),
∀u1 ∈ U1, u2 ∈ U2.
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