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Goals (2)
e Normal operators and the spectral theorem

— Nice corollaries (slides (7)—(10)) which I plan to skip, but you should
study!

e Isometries
e Positive operators
e Polar decomposition
Spectral theorem for self-adjoint operators (3)

From now on, all our vector spaces are finite-dimensional inner product
spaces.

Theorem 1 (Theorem 7.13+). T is self-adjoint iff T admits an orthonormal
etgenbasis with real eigenvalues.

Proof. e Proof for F = C: we already know that M(T) is upper-triangular
in some orthonormal basis.

e Then, T' = T* iff the matrix equals its conjugate transpose, i.e., it is
upper-triangular with real values on the diagonal.

e Now let F = R. In some orthonormal basis, the matrix is block upper-
triangular with 1 x 1 and 2 x 2 blocks.

e Then, the matrix equals its own transpose iff it is block diagonal with real
diagonal entries and symmetric 2 x 2 blocks.

e However, in slide (6) we show that the 2 x 2 blocks are anti-symmetric.
So there are none. O



Spectral theorem for complex normal operators (4)
Motivation: Which 7" admit an orthonormal eigenbasis but not necessarily
with real eigenvalues?

Definition 2. An operator T is normal if TT* = T*T, i.e., T and T* commute.

Theorem 3 (Theorem 7.9). Let F = C. Then T € L(V) admits an orthonor-
mal eigenbasis iff it is normal.

Proof. e Pick an orthonormal basis so that A := M(T) is upper-triangular.
Then T is normal iff AA" = A" A.

e In coordinates A = (ajx) (with a;, = 0 for j > k), this means |a;;|? +
ctlagnl® =lagl?, Vi (dimV =n)

e This is equivalent to: aj; = 0 for j < k. So T" is normal iff A is diagonal.

O

Spectral theorem for real normal operators (5)
Motivation: What does it mean for a real operator to be normal?

Theorem 4 (Theorem 7.25). Let F = R. Then T is normal iff it admits an or-

thonormal basis in which M(T') is block-diagonal with blocks (\;) or <ZJ _ab'j> .
j j

The complex eigenvalues are A\; € R and a; £ib;.

Proof. e Pick an orthonormal basis so that A = M(T) is block upper-
triangular.

e Then, T is normal iff AR =A'A.

e For the rows with 1x 1 blocks, this again means |a;; >+ - -+|ajn > = |a;;]?,
i.e.7 Qjj41 = " = Qjp = 0.
e For rows j, j+1 with 2 x 2 blocks, adding the corresponding sums for both

rows, this implies ZZ=j+2 lajk|®>+laj1162 =0, ie, ajr = aji1x =0 for
k> j+1,so A is block diagonal.

e Finally, we apply the following proposition to the blocks. O
2 x 2 case (6)
We need just one final detail (F = R and dimV = 2):

Proposition 0.1 (Lemma 7.15, essentially). Suppose that T € L(V) is normal
and that T has no eigenvalues. Then, in any orthonormal basis, M(T) =

<Z _ab), where a + bi are the roots of the characteristic polynomial of T'.



Recall that for two-by-two matrices A, the characteristic polynomial is 22 —
(tr A)z + det A, and this does not depend on the choice of basis so makes sense
for T.

Proof. o Write M(T') = <Z Z) in the orthonormal basis.

e Since 7T is normal, |a|> + [b]? = |a|? + |c|?, so b = Fec.
e Since there are no real eigenvalues of M(T), b= —c # 0.

e Since T is normal, ac+bd = ab+cd, so (d—a)b = (a—d)b. Soa=d. O

Corollaries (7)

Corollary 5 (Corollary 7.8). If T is normal, then eigenvectors u,v of distinct
eigenvalues are orthogonal.

e Proof: In an orthonormal eigenbasis (e;) so that M(T') is (block) upper-
triangular, an eigenvector v of eigenvalue A is a linear combination of the
e; with the same eigenvalue.

e So u,v cannot have nonzero coefficients of the same e;, i.e., u L v.

Corollary 6 (Corollary 7.7). Let T' be normal. If v is an eigenvector of T of
eigenvalue X\, then it is also an eigenvector of T* of eigenvalue .

e Proof: Again, v must be a linear combination of the e; that are eigenvec-
tors of eigenvalue .

e Since M(T™) = M(T)t, these e; are eigenvectors of T* of eigenvalue .

A characterization of normal operators (8)

Proposition 0.2 (Proposition 7.4). If T is self-adjoint, then (T'v,v) = 0 for
allv iff T =0.

e Assume (Tv,v) = 0 for all v. Then (T (v+u), v+u)—(T(v),v)—(T(u),u) =
0 for all v, u.

o Thus, (T'(v),u) + (T'(u),v) =0 for all u,v.
e When T is self-adjoint, this says 2R(T'(v),u) = 0 for all u, v.

e Plugging in iu for u, also 23(T(v),u) = 0 for all u,v. Thus T'(v) = 0 for
all v, i.e., T = 0.

Corollary 7 (Proposition 7.6). An operator T is normal iff |Tv| = |T*v| for
all v.

o |Tv| = |T*v| < (Tv,Tv) = (T*v, T*v) < (T*T — TT*)v,v) = 0.

e Since T*T — TT* is self-adjoint, by the corollary, the last condition is
satisfied for all v iff T' is normal.



(Tv,v) = 0 and anti-self-adjoint operators on R (9)

Proposition 0.3 (Proposition 7.2+). (Tv,v) =0 for all v iff either T =0, or
F=R and T =-T* (T is anti-self-adjoint).

Note: anti-self-adjoint (T' = —T™) implies normal.

Proof. e Take an orthonormal basis (e;) in which A = (a;5) = M(T) is
(block) upper-triangular.

e We claim aj; = 0 for all j. Indeed, (Tej,e;) = a;; = 0.

e It remains only to show that A is block diagonal (since then the blocks
are antisymmetric).

o Otherwise, if a;; # 0 above the block diagonal, then (T'(e; + Aex),e; +
Xex) = ((aj;+Aajk)ej, ej) = aj; +Aaj. For A # fajjaj_kl, this is nonzero.
Contradiction. O

Anti-self-adjoint operators for F = C (10)

Proposition 0.4. For ¥ = C, T = —T* if and only if T has an orthonormal
eigenbasis with purely imaginary eigenvalues (i.e., eigenvalues in i - R).

Proof. e In an orthonormal basis in which M(T) is upper-triangular, T' =
—T* means the matrix equals its negative conjugate transpose.

e This means it is diagonal with purely imaginary diagonal entries. 0

Alternatively: anti-self-adjoint operators are normal, so admit an orthonor-
mal eigenbasis; then (Tv,v) = Av,v) = (v,T*v) = —A(v,v) implies that
A = — for all eigenvalues A. So they are purely imaginary.

Complex eigenvalues of real operators (11)
We have often spoken about complex eigenvalues of M(T) when F = R.
Let’s formalize it:

Definition 8. Let F = R. Then the complex eigenvalues of T are the complex
eigenvalues of M(T') in any basis.

Why do these not depend on the basis? The change of basis formula! We
know that conjugate matrices A and SAS~! have the same (complex) eigenval-
ues (directly, or by using complex operators).

Ezample 9. The complex eigenvalues of any T such that M(T) = (Z _ab) are

a+ bi and a — bi.

e Note: |a+ bi| =1 = |a — bi| iff it is a rotation matrix, i.e., a = cosf and
b = sin @ for some angle 6.



Isometries (12)
Let T € L(V,W), with V and W inner product spaces.

Definition 10. An isometry is an operator such that (u,v) = (T'u, Tv) for all
u,v € V.

That is, isometries are operators that preserve the inner product.

Proposition 0.5. T is an isometry iff it preserves merely the norm: |Tv| = |v|
for all v.

Proof. The inner product is given by a formula from the norm (on the home-
work), so preservation of the norm implies preservation of inner product. The
converse is obvious. O

Characterization of isometries (13)
Let V = W be finite-dimensional. Useful characterization: T' € L(V) is
an isometry iff 7T = I = TT*. (In particular isometries of V are invertible!)

Theorem 11 (Theorem 7.37). Isometries are the same as normal operators
whose complex eigenvalues all have absolute value one.

Proof. e First, isometries are normal by the characterization.

e Given a normal operator, pick an orthonormal basis as in the spectral
theorem. Then M(T)M(T*) = I iff |\;|?> =1 and |a;|? + |b;|> = 1 for all
i. O

That is, in our usual orthonormal basis, an isometry has blocks which are
either numbers of absolute value one, or rotation matrices.
Positive operators (14)

Definition 12. A positive operator T is a self-adjoint operator such that
(Tw,v) > 0 for all v.

In view of the spectral theorem, a self-adjoint operator is positive iff its
eigenvalues are nonnegative (part of Theorem 7.27).

Theorem 13 (Remainder of Theorem 7.27). (i) Every operator of the form
T = 5*S is positive.

(i) Every positive operator admits a positive square root.
Proof. o (i) First, T* = (S*5) = 5*S is self-adjoint.
e Next, (Tv,v) = (Sv,Sv) > 0 for all v.

e (ii) For any orthonormal eigenbasis of T', let v/T' be the operator with the
same orthonormal eigenbasis, but with the nonnegative square root of the
eigenvalues. O



Polar decomposition (15)

After the spectral theorem, the second-most important theorem of Chapters
6 and 7 is:

Theorem 14 (Polar decomposition: Theorem 7.41). Every T € L(V) equals
SVIT*T for some isometry S.

Main difficulty: T' need not be invertible!
Lemma 15. For allv €V, |Tv| = |VT*Tv|.

Proof. |VT*Tv|? = (VT*Tv,NT*Tv) = (VT*T)*VT*Tv,v) = (T*Tv,v) =
(Tv, Tv) = |Tv|?. O

Corollary: null(7T") = null(vT*T). We may thus define S; : range(vT*T) = range(T')
by S1(VT*Tv) = Twv. Thus, forallv € V, S1vVT*Tv =Tv. Also, |Siu| = |ul
for all u(= vT*Tw) by the lemma. So S; is an isometry.

Completion of proof (16)

e We only have to extend S; to an isometry on all of V.
e Note that range(vT*T) @ range(vVT*T)t = V = range(T) @ range(T)*.

e Thus, the extensions of S; : range(vT*T) = range(T) to an isometry S :
V 2 V are exactly S = S; @ Sa, where S : range(v/T*T)+ = range(T)*

is an isometry.

e Since these are inner product spaces of the same dimension, there always
exists an isometry, by taking an orthonormal basis to an orthonormal
basis.

Recall here that Th & 75 on Uy @ Us means (11 ®To)(ug +usz) = T1(ur) +To(ug),
VU1 S Ul,U,Q S Ug.



