
Thread ch4

By

Lecturer: Ameen A.Noor

• A thread is a stream of instructions (line of control) within a process
that can be executed independently of other threads.

• This means that a process may create at sometimes several threads
that can be executed concurrently by several processors or each
thread is dispatched for one time slice .

• Another definition of thread is a "Light Weight Process LWP" as it
simulates the original process "Called Heavy Weight Process HWP" in
the running for one time slice when it is dispatched.

• As the thread runs in a process environment, therefore, it shares a
process address space which means that communication between
threads is very simple and variable sharing is possible without
causing address violation problem.

1. Fast execution of a program as it can make use of several processors at
the same time (case of multiprocessing) or dispatched more time slices
(Case of Single Processor CPU)

2. Easy communication between threads as they share the same process
address space that created them.

3. Easier design of some applications which have a lot of parallel activities
such as a "Word" program.

There are two types of programming languages
1. Single threaded: Allows single thread of control in the program and

hence concurrent activities are not possible within the same program.
Examples of such language are: C, C++, VB, etc.

2. Multithreaded: Allows several threads of control in the program and
hence concurrent activities are quite possible within the same
program. Examples of such languages are: C#, VB.NET, JAVA, ADA, etc.

• It is worth noting that "single threaded languages" are also called
"non-threaded" or "sequential" while "multithreaded" are called
"threaded" or "parallel".

• Suppose we want to calculate the following expressions:

Y= (a1+x) ³ + (a2+x) 4

where a1, a2 are constants and x is input variable. This
calculation can be done as follows:

1. Using Non-Threaded Algorithm:

The calculation is shown in figure bellow and we notice
that it takes a total of 7 arithmetic operations

2. Using Threaded Algorithm:

The calculation is shown in fig
below the number of arithmetic
operations in Thread1 is 3, and in
Thread2 is 3.

1- User-Level Threads

• The first method is to put the threads package entirely in
user space, the kernel knows nothing about them, so User
level threads perform threading operations in the user
space, meaning that threads are created by runtime libraries
that cannot execute privileged instructions or access kernel
primitives directly.

2- Kernel-Level Threads
Kernel-level threads attempt to address the limitations of
user-level threads by mapping each thread to its own
execution context.
3- Combining User- level Threads and kernel-level Threads
Also called hybrid Threads, various ways have been
investigated to try to combine the advantages of user-level
threads with kernel-level threads. One way is use kernel-
level threads and then multiplex user-level threads onto
some or all of the kernel threads

