TYPES OF RELATIONS:

Properties of relations:

Let R be a relation on the set A

- 1) Reflexive: R is reflexive if: $\forall a \in A \rightarrow aRa$ or $(a,a) \in R$; $\forall a,b \in A$. Thus Ris not reflexive if there exists $a \in A$ such that $(a, a) \notin R$.
- 2) Symmetric: $aRb \rightarrow bRa \ \forall \ a,b \in A \cdot \ if \ whenever \ (a, b) \in R$ then $(b, a) \in R \cdot$ Thus R is not symmetric if there exists $a, b \in A$ such that $(a, b) \in R$ but $(b, a) \notin R \cdot$
- 3) Transitive: $aRb \land bRc \rightarrow aRc \cdot that is$, if whenever (a, b), $(b, c) \in R$ then $(a, c) \in R \cdot Thus R is not transitive if ther e exist <math>a, b, c \in R$ such that $(a, b), (b, c) \in R$ but $(a, c) \notin R \cdot Thus R is not transitive if ther$
- 4) **Equivalence relation**: it is Reflexive & Symmetric & Transitiv e· That is, R is an equivalence relation on S if it has the following three properties:

a - For every a ∈ 5, aRa·
b- If aRb, then bRa·
c- If aRb and bRc, then aRc·

- 5) Irreflexive: $\forall a \in A (a,a) \notin R$
- 6) AntiSymmetric : if aRb and bRa \rightarrow a=b the relations \geq , \leq and \subseteq are antisymmetric