So we could replace the statement "a is belong to the alphabet" with a \in {alphabet} and replace the statement "3 is not belong to the set of even numbers" with 3 \notin {Even numbers}

Now if we named our sets we could go even further. Give the set consisting of the **alphabet** the name A, and give the set consisting of **even numbers** the name E. We could now write

a∈A

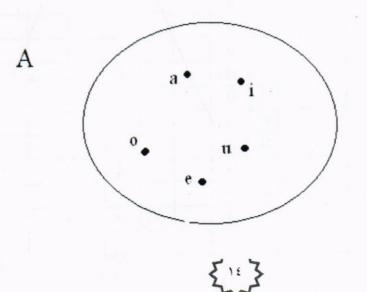
and

3∉E.

Problem

Let A = $\{2, 3, 4, 5\}$ and C = $\{1, 2, 3, ..., 8, 9\}$, Show that A is a proper subset of C.

Answer


Each element of A belongs to C so A \subseteq C. On the other hand, 1 \in C but 1 \notin A. Hence A \neq C. Therefore A is a proper subset of C.

There are three ways to specify a particular set:

1) By list its members separated by commas and contained in braces{ }, (if it is possible), for example, A= {a,e,i,o,u}

2) By state those properties which characterize the elements in the set, for example, A={x:x is a letter in the English alphabet, x is a vowel}

3) Venn diagram: (A graphical representation of sets).

