Mathematical logic

Example:

Show that $(p \wedge \neg q) \wedge (\neg p \vee q)$ is a contradiction.

Solution:

р	Q	¬q	p∧¬q	¬р	(¬pvq)	$(p \land \neg q) \land (\neg p \lor q)$		
Т	Т	F	F	F	Т	F		
Т	F	Т	Т	F	F	F		
F	Т	F	F	Т	Т	F		
F	F	Т	F	Т	Т	F		

The last column shows that $(p \land \neg q) \land (\neg p \lor q)$ is always false, no matter what the truth values of p and q.

Hence $(p \land \neg q) \land (\neg p \lor q)$ is a contradiction.

6. Logical Equivalence

Two propositions P(p, q, ...) and Q(p, q, ...) are said to be logically equivalent, or equal, denoted by $P(p, q, ...) \equiv Q(p, q, ...)$ if they have identical truth tables.

р	q	$p \wedge q$	$\neg (p \land q)$	р	q	$\neg p$	- q	$\neg p \lor \neg q$	
Т	T	Т	F	Т	T	F	F	F	
Т	F	F	Т	Т	F	F	T	Т	
F	T	F	Т	F		1		Т	
F	F	F	Т	F	F	T	Т	Т	
$(a) \neg (p \land q)$				$(b) \neg p \lor \neg q$					

for example, the truth tables of $\neg(p \land q)$ and $\neg p \lor \neg q$, both truth tables are the same, that is, both propositions are false in the first case and true in the other three cases. Accordingly, we can write:

¬(p ∧ q) ≡ ¬p ∨¬q

