symmetric (incremental) algorithm

- Computation can be reduced by considering the symmetry of circle.
- The shape of the circle is similar in each quadrant
- We can generate the circle section in the second quadrant by noting that the two circle sections are symmetric with respect to the y axis And circle sections in the third and fourth quadrants can be obtained from sections in the first and second quadrants by considering symmetry about the x axis.

Symmetry in circle

Circle sections in adjacent octants within one quadrant are symmetric with respect to the 45 ' line dividing the two octants.

Consider a circle center at the origin(0,0), if the point (x, y) is on the circle then we can trivially compute seven other points on the circle.

- This method proposed the center of circle at origin point $(0,0)$,so the first pixel in the circle is ($\mathrm{r}, 0$).
- The other pixels are computed depend on polar equation as follow:-
$\mathrm{x}=\mathrm{xc}+\mathrm{r} \cos \theta$
$y=y c+r \sin \theta \quad(x c, y c)=(0,0)$
$x=r \cos \theta$
$y=r \sin \theta \quad$ use differential
$D x=-r \sin \theta d \theta$
Dy $=\mathrm{r} \cos \theta \mathrm{d} \theta$
Dx $=-\mathrm{y} d \theta$
Dy $=x d \theta$
as we know
$\mathrm{x}=\mathrm{x}+\mathrm{Dx}$
$y=y+D y \quad$ symmetry equation
if we add center (xc,yc) we obtain the values of 8 pixels of the circle as figure bellow.

Symmetry in mathematical

Symmetry in computer

Symmetric algorithm

Start

th $=0, \mathrm{pi}=3.141593, \mathrm{dth}=1 / \mathrm{r}, \mathrm{x}=\mathrm{r}, \mathrm{y}=0$;
while th<=pi/4
begin
plot (integer ($\mathrm{xc}+\mathrm{x}$) , integer ($\mathrm{yc}+\mathrm{y}$))
plot (integer $(x++x)$, integer (yc-y))
plot (integer ($x c-x$) , integer $(y c+y)$)
plot (integer (xc-x) , integer (yc-y))
plot (integer ($\mathrm{xc}+\mathrm{y}$) , integer ($\mathrm{yc}+\mathrm{x}$))
plot (integer $(x c+y)$, integer ($y c-x$))
plot (integer ($x c-y$) , integer $(y c+x)$)
plot (integer (xc-y) , integer (yc-x))
th $=$ th $+d t h$;
$x=x-y^{*} d t h$;
$y=y+x * d t h$;
End while

Finish

Midpoint (bresenham) Circle Algorithm

- Bresenham's line algorithm for raster displays is adapted to circle generation by setting up decision parameters (P) for finding the closest pixel to the circumference at each step.
- For a given radius r and screen center position (xc, yc), we can first set up our algorithm to calculate pixel positions around a circle path centered at the coordinate origin (0,0). So first pixel is ($0, r$)
- each calculated position (x, y) is moved to its proper screen position by adding xc to x and yc to y .
- we compute the first octant pixels from $x=0$ to $x=y$.
- Positions for the other seven octants are then obtained by symmetry
- we can take unit steps in the positive x direction over octant and use a decision parameter to determine which of the two possible y positions is closer to the circle path at each step.

$$
\begin{aligned}
\mathrm{r}^{2} & =\mathrm{x}^{2}+\mathrm{y}^{2} \\
\mathrm{P} & =(\mathrm{x}+1)^{2}+(\mathrm{y}-1)^{2}-\mathrm{r}^{2} \\
\mathrm{p} & =2(1-\mathrm{r})
\end{aligned}
$$

- Any point (x, y) on the boundary of the circle with radius r satisfies the equation $\mathrm{p}=0$.
- If the point is in the interior of the circle, P is negative value.
- if the point is outside the circle, P is positive.
$\mathrm{P}\left\{\begin{array}{l}<0 \\ =0 \\ =0 \\ \text { if }(x, y) \text { is insidethecircleb } \\ >0\end{array}\right.$
- We need to determine whether the pixel at position ($\mathrm{x}+1, \mathrm{y}$) or the one at position $(x+1, y-1)$ is closer to the circle. So If $p<0$,the point is inside the circle and the pixel $(\mathrm{x}+1, \mathrm{y})$ is closer to the circle boundary. Otherwise, the point is outside or on the circle boundary and we select the pixel $(x+1, y-1)$.
$\underset{\mathbb{D}}{\mathbf{P}} \begin{cases}<0 & (x+1, y) \\ & p=p+2 x+1 \\ \geq 0 & (x+1, y-1) \\ & p=p+2(x-y)+1\end{cases}$

midpoint circle algorithm

Start

$$
x=0, y=r p=2^{*}(1-r)
$$

While x < y
$\mathrm{x}=\mathrm{x}+1$
If $\mathrm{p}<0$ Then $\mathrm{p}=\mathrm{p}+2 * \mathrm{x}+1$
Else $y=y-1 p=p+2 *(x-y)+1$
End If
$\operatorname{plot}(x c+x, y c+y)$
plot ($x c+x, y c-y$)
plot ($\mathrm{xc}-\mathrm{x}, \mathrm{yc}+\mathrm{y}$)
plot (xc-x , yc-y)
plot ($x c+y, y c+x$)
plot ($\mathrm{xc}+\mathrm{y}, \mathrm{yc}-\mathrm{x}$)
plot ($\mathrm{xc}-\mathrm{y}, \mathrm{yc}+\mathrm{x}$)
plot (xc-y , yc-x)
End while

Finish

