Circle Drawing

The circle is a special kind of curves. The circle is a closed curve with same starting and ending point. Circles are probably the most used curves in elementary graphics.

- A circle is specified by the coordinates of its center $(x c, y c)$ and its radius (r).
- The circle equation is: $(x-x c)^{2}+(y-y c)^{2}=r^{2}$
- If the center of the circle is at the origin $(0,0)$ then the equation is :

$$
\begin{equation*}
x^{2}+y^{2}=r^{2} \tag{2}
\end{equation*}
$$

\qquad
Solving equation (1) for y :

$$
\mathrm{y}=y c \pm \sqrt{r^{2}-(x-x c)^{2}}
$$

Note: To draw a circle increment the x values by one unit from -r to $+r$ and use the above equation to solve for the two y values at each step.

1. Direct (implicit) algorithm

In this method the first pixel of circle is at left side as equation

$$
\mathrm{x}=\mathrm{xc}-\mathrm{r}
$$

$y=y c$
to draw the circle we can increment x from $-r$ to $+r$ or from 0 to $2 r$ by one unit at each step and solving for y

$$
\begin{aligned}
& \mathrm{y}=y c \pm \sqrt{r 2-(x-x c) 2} \\
& \mathrm{x}=\mathrm{x}+1
\end{aligned}
$$

This method of drawing a circle is inefficient because:

1. We are not taking advantages of the symmetry of the circle.
2. The amount of processing time required to perform the squaring and square root operations repeatedly.
3. X values are equally spaced (they differ by one unit) the y values are not. The circle is denes and flat near the y-axis and has large gaps and is steep near the x -axis.

Direct Algorithm

start

$\mathrm{x}=\mathrm{xc}-\mathrm{r}$;
for $\mathrm{i}=0$ to 2 r
begin
$y=y c+\sqrt{r 2-(x-x c)} 2$
plot (x , integer (y))
$\mathrm{y}=y c-\sqrt{r 2-(x-x c)} 2$
plot (x , integer (y))
$\mathrm{x}=\mathrm{x}+1$
end
finish
$\mathbf{H} \backslash \mathbf{W}$: Design implicit algorithm to draw circle if the first point is at right side.
$\mathbf{H} \backslash \mathbf{W}$: design implicit algorithm to draw circle if the first point is $x=x c, y=y c-r$
$\mathbf{H} \backslash \mathbf{W}$: Find the point of a circle where $x c=20, y c=10$ and $\mathrm{r}=8$?

Example :Find the point of a circle where $x c=10, y c=10$ and $\mathrm{r}=5$ using direct algorithm?
$\mathrm{Xc}=10$
Yc=10
X=xc-r
$X=10-5=5$
For $\mathrm{i}=0: 2^{*} \mathrm{r}$
$\mathrm{Y}=\mathrm{yc}+\operatorname{sqrt}\left(\left(\mathrm{r}^{\wedge} 2\right)-(\mathrm{x}-\mathrm{xc})^{\wedge} 2\right)$
Plot(x,round(y),'.y')
$\mathrm{Y}=\mathrm{yc}-\mathrm{sqrt}\left(\left(\mathrm{r}^{\wedge} 2\right)-(\mathrm{x}-\mathrm{xc})^{\wedge} 2\right)$
Plot(x,round(y),'.'y')
$\mathrm{X}=\mathrm{x}+1$
End

\mathbf{X}	\mathbf{Y}	Round(y)	\mathbf{Y}	Round(y)	Plot(X,Y)
5	10	10	10	10	$(5,10),(5,10)$
6	13	13	7	7	$(6,13),(6,7)$
7	14	14	6	6	$(7,14),(7,6)$
8	14.5	15	5.4	5	$(8,15),(8,5)$
9	14.8	15	5.1	5	$(9,15),(9,5)$
10	15	15	5	5	$(10,15),(10,5)$
11	14.8	15	5.1	5	$(11,15),(11,5)$
12	14.5	15	5.4	5	$(12,15),(12,5)$
13	14	14	6	6	$(13,14),(13,6)$
14	13	13	7	7	$(14,13),(14,7)$
15	10	10	10	10	$(15,10),(15,10)$

2. parametric (polar) algorithm

One method of eliminating the problem of plotting points evenly spaced around the circle is to use polar representation of a circle:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x}_{\mathrm{c}}+\mathrm{r} \cos \theta \\
& \mathrm{y}=\mathrm{y}_{\mathrm{c}}+\mathrm{r} \sin \theta .
\end{aligned}
$$

Where: $\theta \rightarrow$ is measured in radians from 0 to 2π
arc length $=\mathrm{r} \times \theta, \mathrm{r}=$ radius (constant)
in this method we depend on angles to draw the circle, since it propose the first angle th=0, and end angle is two_pi (360).

The change in angle (dth) must be small value $d t h=1 / r$.

Polar algorithm

note: the algorithm use $\cos \& \sin$ operation and do not take the advantage of symmetric in circle
$\mathrm{H} \backslash \mathrm{W}$: write Matlab program to draw circle using polar algorithm?

Example :Find the point of a circle where $x c=10, y c=10$ and $\mathrm{r}=5$ using polar algorithm ?

Th=0
Dth=1/r=1/5
While th $<=2 *$ pi
$\mathrm{X}=\mathrm{xc}+\mathrm{r}^{*} \cos (\mathrm{th})$
Y=yc+r*sin(th)
Plot(round(x),round(y),'.k')
Th=th+dth
End

\mathbf{X}	Round(x)	\mathbf{Y}	Round(y)	Th	plot(x,y)
15	15	10	10	0.2	$(15,10)$
14.9	15	10.9	11	0.4	$(15,11)$
14.6	15	11.9	12	0.6	$(15,12)$
14.1	14	12.8	13	0.8	$(14,13)$
13.4	13	13.5	14	1	$(13,14)$
12.7	13	14.2	14	1.2	$(13,14)$
11.8	12	14.6	15	1.4	$(12,15)$
$:$	$:$	$:$	$:$	$:$	$:$
$:$	$:$	$:$	$:$	$:$	$:$
14.9	15	9.5	10	6.4	$(15,10)$

