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Preface

The present manuscript was written for my course Functional Analysis given
at the University of Vienna in winter 2004 and 2009. It was adapted and
extended for a course Real Analysis given in summer 2011. The last part
are the notes for my course Nonlinear Functional Analysis held at the Uni-
versity of Vienna in Summer 1998 and 2001. The three parts are essentially
independent. In particular, the first part does not assume any knowledge
from measure theory (at the expense of hardly mentioning LP spaces).

It is updated whenever I find some errors and extended from time to
time. Hence you might want to make sure that you have the most recent
version, which is available from

http://www.mat.univie.ac.at/~gerald/ftp/book-fa/

Please do not redistribute this file or put a copy on your personal
webpage but link to the page above.

Goals

The main goal of the present book is to give students a concise introduc-
tion which gets to some interesting results without much ado while using a
sufficiently general approach suitable for later extensions. Still I have tried
to always start with some interesting special cases and then work my way up
to the general theory. While this unavoidably leads to some duplications, it
usually provides much better motivation and implies that the core material
always comes first (while the more general results are then optional). Nev-
ertheless, my aim is not to present an encyclopedic treatment but to provide

X
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a student with a versatile toolbox for further study. Moreover, in contradis-
tinction to many other books, I do not have a particular direction in mind
and hence I am trying to give a broad introduction which should prepare
you for diverse fields such as spectral theory, partial differential equations,
or probability theory. This is related to the fact that I am working in math-
ematical physics, an area where you never know what mathematical theory
you will need next.

I have tried to keep a balance between verbosity and clarity in the sense
that I have tried to provide sufficient detail for being able to follow the argu-
ments but without drowning the key ideas in boring details. In particular,
you will find a show this from time to time encouraging the reader to check
the claims made (these tasks typically invole only simple routine calcula-
tions). Moreover, to make the presentation student friendly, I have tried
to include many worked out examples within the main text. Some of them
are standard counterexamples pointing out the limitations of theorems (and
explaining why the assumptions are important). Others show how to use
the theory in the investigation of practical examples.

Preliminaries

The present manuscript is intended to be gentle when it comes to re-
quired background. Of course I assume basic familiarity with analysis (real
and complex numbers, limits, differentiation, basic integration, open sets)
and linear algebra (vector spaces). Apart from this natural assumptions
I also expect basic familiarity with metric spaces and elementary concepts
from point set topology. As this might not always be the case, I have re-
viewed all the necessary facts in a preliminary chapter. For convenience this
chapter contains full proofs in case one needs to fill some gaps. As some
things are only outlined (or outsourced to exercises) it will require extra
effort in case you see all this for the first time. Moreover, only a part is
required for the core results. On the other hand I do not assume familiarity
with Lebesgue integration and consequently LP spaces will only be briefly
mentioned as the completion of continuous functions with respect to the
corresponding integral norms in the first part. At a few places I also assume
some basic results from complex analysis but it will be sufficient to just
believe them.

Similarly, the second part on real analysis only requires a similar back-
ground and is essentially independent on the first part. Of course here you
should already know what a Banach/Hilbert space is, but Chapter 1 will be
sufficient to get you started.
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Finally, the last part of course requires a basic familiarity with functional
analysis and measure theory. But apart from this it is again independent
form the first two parts.

Content

The idea is that you start reading in Chapter 1. In particular, I do not
expect you to know everything from Chapter 0 but I will refer you there
from time to time such that you can refresh your memory should need arise.
Moreover, you can always go there if you are unsure about a certain term
(using the extensive index) or if there should be a need to clarify notation
or conventions. I prefer this over referring you to several other books which
might in the worst case not be readily available.

The first part starts with Fourier’s treatment of the heat equation which
lead to the theory of Fourier analysis as well as the development of spectral
theory which drove much of the development of functional analysis around
the turn of the last century. In particular, the first chapter tries to intro-
duce and motivate some of the key concepts, the second chapter discuses
basic Hilbert space theory with applications to Fourier series, and the third
chapter develops basic spectral theory for compact self-adjoint operators
with applications to Sturm—Liouville problems. The fourth chapter dis-
cusses what is typically considered as the core results from Banach space
theory. Some further results, in particular those requiring advanced topo-
logical concepts, are moved to an extra chapter such that they can be can
be skipped. Finally, spectral theory for bounded self-adjoint operators is
developed via the framework of C* algebras. Again a bottom-up approach
is used such that the core results are in the first two sections and the rest is
optional. I think that this gives a well-balanced introduction to functional
analysis which contains several optional topics to choose from depending on
personal preferences and time constraints. The main topic missing from my
point of view is spectral theory for unbounded operators. However, this is
beyond a first course and I refer you to my book [39] instead.

In a similar vein, the second part tries to give a succinct introduction
to measure theory. I have chosen the Carathéodory approach because I feel
that it is the most versatile one. Again the first two chapters contain the
core material about measure theory and integration. Measures on R™ are
introduced via distribution (the case of n = 1 is done first) which should
meet the needs of partial differential equations, spectral theory, and prob-
ability theory. There is also an appendix on transforming one-dimensional
measures which should be useful in both spectral theory and probability
theory. Then there is a chapter with core material on L? spaces. Next there
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are two chapters on advanced topics which are to a large extend independent
of each other (again leaving several options to choose from). Finally there is
a chapter on the Fourier transform (including a discussion of Sobolev spaces
in R™) with some basic applications to linear partial differential equations
and a brief chapter on interpolation.

Finally, there is a part on nonlinear functional analysis. The first chapter
discusses analysis in Banach spaces (with a view towards applications in the
calculus of variations and infinite dimensional dynamical systems). Then
there are two chapters on degree theory and fixed-point theorems in finite
and infinite dimensional spaces. These are then applied to the stationary
Navier—Stokes equation and we close with a brief chapter on monotone maps.
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Chapter 1

A first look at Banach
and Hilbert spaces

Functional analysis is an important tool in the investigation of all kind of
problems in pure mathematics, physics, biology, economics, etc.. In fact, it
is hard to find a branch in science where functional analysis is not used.

The main objects are (infinite dimensional) vector spaces with different
concepts of convergence. The classical theory focuses on linear operators
(i.e., functions) between these spaces but nonlinear operators are of course
equally important. However, since one of the most important tools in investi-
gating nonlinear mappings is linearization (differentiation), linear functional
analysis will be our first topic in any case.

1.1. Introduction: Linear partial differential equations

Rather than listing an overwhelming number of classical examples I want to
focus on one: linear partial differential equations. We will use this example
as a guide throughout our first three chapters and will develop all necessary
tools for a successful treatment of our particular problem.

In his investigation of heat conduction Fourier was lead to the (one

dimensional) heat or diffusion equation
2

%u(t,x) = %u(t,m). (1.1)
Here u(t,z) is the temperature distribution in a thin rod at time ¢ at the
point x. It is usually assumed, that the temperature at + = 0 and z = 1
is fixed, say u(t,0) = a and u(¢,1) = b. By considering u(t,z) — u(t,x) —
a— (b—a)z it is clearly no restriction to assume a = b = 0. Moreover, the

3



4 1. A first look at Banach and Hilbert spaces

initial temperature distribution u(0,z) = ug(z) is assumed to be known as
well.

Since finding the solution seems at first sight unfeasable, we could try to
find at least some solutions of (1.1). For example, we could make an ansatz
for u(t, z) as a product of two functions, each of which depends on only one
variable, that is,

u(t,x) = w(t)y(x). (1.2)
Plugging this ansatz into the heat equation we arrive at
w(t)y(x) =y (@)w(t), (1.3)

where the dot refers to differentiation with respect to ¢ and the prime to
differentiation with respect to x. Bringing all ¢, x dependent terms to the
left, right side, respectively, we obtain

w(t)  y'(z)

w(t)  yle)
Accordingly, this ansatz is called separation of variables.

(1.4)

Now if this equation should hold for all ¢ and x, the quotients must be
equal to a constant —\ (we choose —\ instead of A for convenience later on).
That is, we are lead to the equations

—w(t) = lw(t) (1.5)
and
—y'(z) = My(z),  y(0)=y(1) =0, (1.6)
which can easily be solved. The first one gives
w(t) = cre™ M (1.7)

and the second one
y(z) = co cos(VAz) + ez sin(VAz). (1.8)

However, y(z) must also satisfy the boundary conditions y(0) = y(1) = 0.
The first one y(0) = 0 is satisfied if ¢ = 0 and the second one yields (c3 can
be absorbed by w(t))

sin(vV/A) = 0, (1.9)
which holds if A = (mn)2, n € N (in the case A < 0 we get sinh(v/—\) =
0, which cannot be satisfied and explains our choice of sign above). In
summary, we obtain the solutions

un(t,z) := cpe (Tt sin(nmx), n € N. (1.10)

So we have found a large number of solutions, but we still have not dealt
with our initial condition u(0,z) = wug(z). This can be done using the
superposition principle which holds since our equation is linear: Any finite
linear combination of the above solutions will again be a solution. Moreover,
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under suitable conditions on the coefficients we can even consider infinite
linear combinations. In fact, choosing

u(t,z) = Z cpe— (Tt sin(nmx), (1.11)

n=1

where the coeflicients c¢,, decay sufficiently fast, we obtain further solutions
of our equation. Moreover, these solutions satisfy

u(0,x) = Z e sin(nmz) (1.12)
n=1

and expanding the initial conditions into a Fourier series
o0
uo(z) = Z ug,n sin(nmex), (1.13)
n=1

we see that the solution of our original problem is given by (1.11) if we
choose ¢, = ug -

Of course for this last statement to hold we need to ensure that the series
in (1.11) converges and that we can interchange summation and differenti-
ation. You are asked to do so in Problem 1.1.

In fact, many equations in physics can be solved in a similar way:

e Reaction-Diffusion equation:

2
gtu(t,x) - aizu(t, z) + q(z)u(t,z) =0,

u(0, ) = uo(x),

u(t,0) = u(t,1) = 0. (1.14)

Here u(t, ) could be the density of some gas in a pipe and ¢(z) > 0 describes
that a certain amount per time is removed (e.g., by a chemical reaction).

¢ Wave equation:

0? 0?
ﬁu(t,x) 922 (t,z) =0,
ou
u(0, ) = up(z), E(O,x) = vp(x)
u(t,0) = u(t,1) = 0. (1.15)

Here u(t, ) is the displacement of a vibrating string which is fixed at z =0
and x = 1. Since the equation is of second order in time, both the initial
displacement ug(x) and the initial velocity vo(z) of the string need to be
known.
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e Schrodinger equation:

2
—u(t,z) = —;ﬁu(t,x) + q(x)u(t, x),

i@t
u(0,z) = ug(z),
u(t,0) = u(t,1) = 0. (1.16)

Here |u(t,z)|? is the probability distribution of a particle trapped in a box
x € [0,1] and ¢g(x) is a given external potential which describes the forces
acting on the particle.

All these problems (and many others) lead to the investigation of the
following problem

Ly(x) = My(x), L:= ——2 + q(x), (1.17)

subject to the boundary conditions

y(a) = y(b) = 0. (1.18)

Such a problem is called a Sturm—Liouville boundary value problem.
Our example shows that we should prove the following facts about our
Sturm—Liouville problems:

(i) The Sturm-Liouville problem has a countable number of eigen-
values E,, with corresponding eigenfunctions u,(z), that is, uy(z)
satisfies the boundary conditions and Luy(z) = Epun(z).

(ii) The eigenfunctions u,, are complete, that is, any nice function u(z)
can be expanded into a generalized Fourier series

u(z) = Z Cnlin ().
n=1

This problem is very similar to the eigenvalue problem of a matrix and
we are looking for a generalization of the well-known fact that every sym-
metric matrix has an orthonormal basis of eigenvectors. However, our linear
operator L is now acting on some space of functions which is not finite di-
mensional and it is not at all clear what (e.g.) orthogonal should mean
in this context. Moreover, since we need to handle infinite series, we need
convergence and hence we need to define the distance of two functions as
well.

Hence our program looks as follows:

e What is the distance of two functions? This automatically leads
us to the problem of convergence and completeness.
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o If we additionally require the concept of orthogonality, we are lead
to Hilbert spaces which are the proper setting for our eigenvalue
problem.

e Finally, the spectral theorem for compact symmetric operators will
be the solution of our above problem.

Problem 1.1. Suppose > ., |cn| < oo. Show that (1.11) is continuous
for (t,x) € [0,00) x [0,1] and solves the heat equation for (t,z) € (0,00) X
[0,1]. (Hint: Weierstrafs M-test. When can you interchange the order of
summation and differentiation?)

1.2. The Banach space of continuous functions

Our point of departure will be the set of continuous functions C(I) on a
compact interval I := [a,b] C R. Since we want to handle both real and
complex models, we will formulate most results for the more general complex
case only. In fact, most of the time there will be no difference but we will
add a remark in the rare case where the real and complex case do indeed
differ.

One way of declaring a distance, well-known from calculus, is the max-
imum norm:

1£lloo = max |f(z)]. (1.19)

It is not hard to see that with this definition C'(I) becomes a normed vector
space:

A normed vector space X is a vector space X over C (or R) with a

nonnegative function (the norm) ||.|| such that

e ||f|l >0 for f # 0 (positive definiteness),

o |af|| =|al||f]| for all @ € C, f € X (positive homogeneity),

and

o |lf+gll <|IfIl+ llg| for all f,g € X (triangle inequality).
If positive definiteness is dropped from the requirements, one calls ||.|| a
seminorm.

From the triangle inequality we also get the inverse triangle inequal-
ity (Problem 1.2)

WA= Mgl < [1f = gll, (1.20)

which shows that the norm is continuous.

Let me also briefly mention that norms are closely related to convexity.
To this end recall that a subset C' C X is called convex if for every z,y € C
we also have A\x + (1 — M)y € C whenever A € (0,1). Moreover, a mapping
f:C — Ris called convex if f(Az + (1 — N)y) < Af(z) + (1 — ) f(y)
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whenever A € (0, 1) and in our case the triangle inequality plus homogeneity
imply that every norm is convex:

Az 4+ (1= Nyl < Mfzl| + (1 =Nyll,  Ae0,1]. (1.21)

Moreover, choosing A\ = % we get back the triangle inequality upon using
homogeneity. In particular, the triangle inequality could be replaced by

convexity in the definition.

Once we have a norm, we have a distance d(f, g) := ||f — ¢|| and hence
we know when a sequence of vectors f, converges to a vector f (namely
if d(fn, f) — 0). We will write f, — f or lim,, o0 fn, = f, as usual, in this
case. Moreover, a mapping F': X — Y between two normed spaces is called
continuous if f, — f implies F(f,) — F(f). In fact, the norm, vector
addition, and multiplication by scalars are continuous (Problem 1.3).

In addition to the concept of convergence, we have also the concept of
a Cauchy sequence and hence the concept of completeness: A normed
space is called complete if every Cauchy sequence has a limit. A complete
normed space is called a Banach space.

Example. By completeness of the real numbers, R as well as C with the
absolute value as norm are Banach spaces. o

e}

Example. The space ¢! (N) of all complex-valued sequences a = (a;) 52, for

which the norm
o0
lally =" |ay] (1.22)
j=1

is finite is a Banach space.

To show this, we need to verify three things: (i) £!(N) is a vector space
that is closed under addition and scalar multiplication, (ii) ||.||; satisfies the
three requirements for a norm, and (iii) ¢! (N) is complete.

First of all, observe
k k k
D olaj + b5l <D lagl+ D [bsl < llalls + [Ib]s (1.23)
j=1 j=1 j=1

for every finite k. Letting k — oo, we conclude that ¢'(N) is closed under
addition and that the triangle inequality holds. That ¢}(N) is closed under
scalar multiplication together with homogeneity as well as definiteness are
straightforward. It remains to show that £*(N) is complete. Let a™ = (a})324

be a Cauchy sequence; that is, for given € > 0 we can find an V. such that
[a™ —a" ||y < e for m,n > N.. This implies, in particular, |a]* —af| <€ for

every fixed j. Thus a} is a Cauchy sequence for fixed j and, by completeness
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n —

of C, it has a limit: lim,_ . aj

aj. Now consider

k
D laf—af| <e (1.24)
j=1
and take m — oo: i
> laj—af| <e. (1.25)
j=1

Since this holds for all finite k, we even have ||a—a"|; < e. Hence (a—a")
?1(N) and since a” € ¢}(N), we finally conclude a = a" + (a — a") € /}(N
By our estimate ||a — a™||1 < €, our candidate a is indeed the limit of a™. ©

S
).

Example. The previous example can be generalized by considering the
space (F(N) of all complex-valued sequences a = (a;)72; for which the norm

o 1/p
lallp = [ > lagl? ,  pello00), (1.26)
j=1

is finite. By |a; + ;P < 2P max(|a;l, [b;])? = 2P max(|a;[?, |b;|P) < 2P(Ja;|P +
|b;|P) it is a vector space, but the triangle inequality is only easy to see in
the case p = 1. (It is also not hard to see that it fails for p < 1, which
explains our requirement p > 1. See also Problem 1.14.)
To prove it we need the elementary inequality (Problem 1.7)
1 1 1 1
agtia< oy y Ly ass0 g
p q p q
which implies Holder’s inequality
lablly < [allp|bllg (1.28)
for a € (P(N), b € £4(N). In fact, by homogeneity of the norm it suffices to
prove the case ||al|, = ||b]| = 1. But this case follows by choosing o = |a;|?

and 8 = [b;|? in (1.27) and summing over all j. (A different proof based on
convexity will be given in Section 10.2.)

Now using |a; +b;[P < |a;| |a; + b;|P~1 + |bj| |aj + bj|[P~L, we obtain from
Hoélder’s inequality (note (p —1)g = p)
lla + BII5 < llall,ll (@ +0)P g + [1Bll,l/(a + 6P~
= (llally + 15llp)lla + b5~
Hence P is a normed space. That it is complete can be shown as in the case
p =1 (Problem 1.8).

The unit ball with respect to these norms in R? is depicted in Figure 1.
One sees that for p < 1 the unit ball is not convex (explaining once more our
restriction p > 1). Moreover, for 1 < p < oo it is even strictly convex (that
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Figure 1. Unit balls for ||.||, in R?

is, the line segment joining two distinct points is always in the interior).
This is related to the question of equality in the triangle inequality and will
be discussed in Problems 1.11 and 1.12. o

Example. The space ¢>°(N) of all complex-valued bounded sequences a =
(a;)72; together with the norm
lalloo := sup |ay] (1.29)

JEN

is a Banach space (Problem 1.9). Note that with this definition, Holder’s
inequality (1.28) remains true for the cases p =1, ¢ = oo and p = 00, ¢ = 1.
The reason for the notation is explained in Problem 1.13. o

Example. Every closed subspace of a Banach space is again a Banach space.
For example, the space ¢o(N) C ¢°°(N) of all sequences converging to zero is
a closed subspace. In fact, if a € £>°(N)\co(N), then limsup;_, . |a;| =& > 0
and thus |la — b||c > € for every b € ¢p(N). o

Now what about completeness of C'(I)? A sequence of functions f,(z)
converges to f if and only if

Jim I = oo = Jim sup | £(z) — fu(z)| = 0. (1.30)

That is, in the language of real analysis, f,, converges uniformly to f. Now
let us look at the case where f,, is only a Cauchy sequence. Then f,(x) is
clearly a Cauchy sequence of complex numbers for every fixed x € I. In
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particular, by completeness of C, there is a limit f(z) for each x. Thus we
get a limiting function f(x). Moreover, letting m — oo in

\fm(x) — ful2)| <e  VYm,n> N, xel, (1.31)

we see
|f(z) — fu(z)| <€ VYn > N., x € I; (1.32)

that is, f,(z) converges uniformly to f(z). However, up to this point we do
not know whether it is in our vector space C(I), that is, whether it is con-
tinuous. Fortunately, there is a well-known result from real analysis which
tells us that the uniform limit of continuous functions is again continuous:
Fix z € I and € > 0. To show that f is continuous we need to find a § such
that |z — y| < ¢ implies |f(z) — f(y)| < e. Pick n so that || f, — fllec <€/3
and J so that |z — y| < ¢ implies |fn(z) — fu(y)| < /3. Then |z —y| < d

implies
E € €
@)= FO)] < @)= Ja@) 1)~ ) al)~ F0)] < 4545 =
as required. Hence f(x) € C(I) and thus every Cauchy sequence in C(I)
converges. Or, in other words,

Theorem 1.1. C(I) with the mazimum norm is a Banach space.

For finite dimensional vector spaces the concept of a basis plays a crucial
role. In the case of infinite dimensional vector spaces one could define a
basis as a maximal set of linearly independent vectors (known as a Hamel
basis, Problem 1.6). Such a basis has the advantage that it only requires
finite linear combinations. However, the price one has to pay is that such
a basis will be way too large (typically uncountable, cf. Problems 1.5 and
4.1). Since we have the notion of convergence, we can handle countable
linear combinations and try to look for countable bases. We start with a few
definitions.

The set of all finite linear combinations of a set of vectors {uy }nenr € X
is called the span of {u,}n,ea and denoted by

m
span{uy, bnen = {Z ajun;|ng € N,aj € C,m e N} (1.33)
j=1
A set of vectors {up }nen C X is called linearly independent if every finite
subset is. If {u,}Y_; € X, N € NU {00}, is countable, we can throw away
all elements which can be expressed as linear combinations of the previous
ones to obtain a subset of linearly independent vectors which have the same
span.

We will call a countable set of vectors (u,))_; C X a Schauder ba-
sis if every element f € X can be uniquely written as a countable linear
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combination of the basis elements:
N
F=> anun,  an=an(f)€C, (1.34)
n=1

where the sum has to be understood as a limit if N = co (the sum is not re-
quired to converge unconditionally and hence the order of the basis elements
is important). Since we have assumed the coefficients oy, (f) to be uniquely
determined, the vectors are necessarily linearly independent. Moreover, one
can show that the coordinate functionals f +— «,(f) are continuous (cf.
Problem 4.5). A Schauder basis and its corresponding coordinate func-
tionals v}, : X — C, f +— ay,(f) form a so-called biorthogonal system:
ut (up) = Om.n, where
1, n=m,

On,m = {07 n4m, (1.35)

is the Kronecker delta.

Example. The set of vectors 6" = (0)%)men is a Schauder basis for the
Banach space #(N), 1 < p < oc.

Let a = (a;)32, € £P(N) be given and set a™ := Y " | a,d". Then
~ 1/p
la—a™p=1 > la"] —0
j=m+1

since a}' = a; for 1 < j <m and aj" = 0 for j > m. Hence

[o@)
a= g and™
n=1

and (0™)°; is a Schauder basis (uniqueness of the coefficients is left as an
exercise).

Note that (0™)5% is also Schauder basis for c¢o(N) but not for ¢*°(N)
(try to approximate a constant sequence). o

A set whose span is dense is called total, and if we have a countable total
set, we also have a countable dense set (consider only linear combinations
with rational coefficients — show this). A normed vector space containing
a countable dense set is called separable.

Warning: Some authors use the term total in a slightly different way —
see the warning on page 122.

Example. Every Schauder basis is total and thus every Banach space with
a Schauder basis is separable (the converse puzzled mathematicians for quite
some time and was eventually shown to be false by Per Enflo). In particular,
the Banach space ¢P(N) is separable for 1 < p < oc. o
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While we will not give a Schauder basis for C(I) (Problem 1.15), we will
at least show that it is separable. We will do this by showing that every
continuous function can be approximated by polynomials, a result which is
of independent interest. But first we need a lemma.

Lemma 1.2 (Smoothing). Let u,(x) be a sequence of nonnegative continu-
ous functions on [—1,1] such that

/ up(x)der =1 and / Up(z)de — 0, 0 >0. (1.36)
lz[<1 5<|z|<1

(In other words, u, has mass one and concentrates near © =0 asn — c0.)

Then for every f € C[—3, 3] which vanishes at the endpoints, f(—3) =
f(%) =0, we have that

1/2
fulo)i= [ o= sy (137)
—1/2
converges uniformly to f(x).
Proof. Since f is uniformly continuous, for given ¢ we can find a § <

1/2 (independent of x) such that |f(z) — f(y)| < e whenever |z — y| < 4.
Moreover, we can choose n such that |, 5<|y|<1 Un (y)dy < e. Now abbreviate

M = max,e[—1/2,1/2/{1, |f ()]} and note

1/2 1/2
) - / un( — ) f(2)dy| = | f(@)[ |1 - / |yt )] < Me

—1/2

In fact, either the distance of x to one of the boundary points :I:% is smaller
than ¢ and hence |f(z)| < € or otherwise [—9,d] C [z —1/2,2+1/2] and the
difference between one and the integral is smaller than e.

Using this, we have
1/2
() — f(2)] < / un(z — )| f (y) — F(@)\dy + Me
—1/2
- / un(z — )| f () — F()|dy
ly|<1/2,|x—y|<6

+f unlio = )|/ (9) — £(@)ldy + Me
ly|<1/2,|z—y|>6
<e+2Me + Me = (1 + 3M)e, (1.38)

which proves the claim. O
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Note that f,, will be as smooth as u,, hence the title smoothing lemma.
Moreover, f, will be a polynomial if u,, is. The same idea is used to approx-
imate noncontinuous functions by smooth ones (of course the convergence
will no longer be uniform in this case).

Now we are ready to show:

Theorem 1.3 (Weierstra8l). Let I be a compact interval. Then the set of
polynomials is dense in C(I).

. . b)—
Proof. Let f(x) € C(I) be given. By considering f(x)— f(a) —%(x—
a) it is no loss to assume that f vanishes at the boundary points. Moreover,
without restriction, we only consider I = [—3, 1] (why?).
Now the claim follows from Lemma 1.2 using the Landau kernel
1
un(z) = (1 —2?)",
I,

where (using integration by parts)
! 2 n ! 1 +1
I = 1-— nd = 1-— " 1 " d

n! oni1 (0 B n!
(n+1)---(2n+1)  (2n+1)! _%(%4—1)(%—1—71)
Indeed, the first part of (1.36) holds by construction, and the second part
follows from the elementary estimate

222n+1

1
T <I, <2
n

2
which shows f6<|m|<1 Up (z)dr < 2u,(0) < (2n + 1)(1 — 62)" — 0. O

Corollary 1.4. The monomials are total and hence C(I) is separable.

However, (*°(N) is not separable (Problem 1.10)!

Note that while the proof of Theorem 1.3 provides an explicit way of
constructing a sequence of polynomials f,(x) which will converge uniformly
to f(x), this method still has a few drawbacks from a practical point of
view: Suppose we have approximated f by a polynomial of degree n but
our approximation turns out to be insufficient for a certain purpose. First
of all, since our polynomial will not be optimal in general, we could try to
find another polynomial of the same degree giving a better approximation.
However, as this is by no means straightforward, it seems more feasible to
simply increase the degree. However, if we do this all coefficients will change
and we need to start from scratch. This is in contradistinction to a Schauder
basis where we could just add one new element from the basis (and where
it suffices to compute one new coefficient).
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In particular, note that this shows that the monomials are no Schauder
basis for C'(I) since adding monomials incrementally to the expansion gives
a convergent power series whose limit must be analytic.

We will see in the next section that the concept of orthogonality resolves
these problems.

Problem 1.2. Show that ||| — llgll| < |If — glI-

Problem 1.3. Let X be a Banach space. Show that the norm, vector ad-
dition, and multiplication by scalars are continuous. That is, if f, — f,
gn — g, and an — «, then anH - Hf”; ot gn — [+ g, and angn — ag.

Problem 1.4. Let X be a Banach space. Show that 322, | ;]| < oo implies
that

j=1 J=1
exists. The series is called absolutely convergent in this case.

Problem 1.5. While ¢*(N) is separable, it still has room for an uncountable
set of linearly independent vectors. Show this by considering vectors of the
form

a® = (1,a,0?,...), a € (0,1).
(Hint: Recall the Vandermonde determinant. See Problem 4.1 for a gener-
alization.)

Problem 1.6. A Hamel basis is a maximal set of linearly independent
vectors. Show that every vector space X has a Hamel basis {uq}aca. Show
that given a Hamel basis, every x € X can be written as a finite linear
combination r = 22:1 Cjla; where the vectors Ug; and the constants c; are
uniquely determined. (Hint: Use Zorn’s lemma, see Appendiz A, to show
existence.)

Problem 1.7. Prove (1.27). Show that equality occurs precisely if o = 3.
(Hint: Take logarithms on both sides.)

Problem 1.8. Show that (P(N) is complete.
Problem 1.9. Show that {*°(N) is a Banach space.

Problem 1.10. Show that {*°(N) is not separable. (Hint: Consider se-
quences which take only the value one and zero. How many are there? What
is the distance between two such sequences?)

Problem 1.11. Show that there is equality in the Hélder inequality (1.28)
for 1 < p < oo if and only if either a = 0 or |b;|P = ala;|? for all j € N.
Show that we have equality in the triangle inequality for £*(N) if and only if
a;jb; >0 for all j € N. Show that we have equality in the triangle inequality
for (P(N) for 1 < p < oo if and only if a =0 or b = aa with a > 0.
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Problem 1.12. Let X be a normed space. Show that the following condi-
tions are equivalent.

() If |z +yl| = ||l=]| + ||y|| then y = ax for some a >0 or z = 0.
(i) If ||| = llyll = 1 and  # y then |Ax 4+ (1 — Ny| < 1 for all
0<A<
(iii) If 2] = lyll = 1 and = # y then 5]z +y| < 1.

(iv) The function x v ||z||? is strictly convex.

A norm satisfying one of them is called strictly convex.
Show that (P(N) is strictly convex for 1 < p < oo but not for p =1, 0.

Problem 1.13. Show that py < p implies P°(N) C P(N) and ||a||, < [|al|p, -
Moreover, show

Tim lafl, = .

Problem 1.14. Formally extend the definition of P(N) to p € (0,1). Show
that ||.||, does not satisfy the triangle inequality. However, show that it is
a quasinormed space, that is, it satisfies all requirements for a normed
space except for the triangle inequality which is replaced by

la+ 0l < K([lall + (b))
with some constant K > 1. Show, in fact,
la +bll, < 227 (lall, + [bll,),  p € (0,1).

Moreover, show that |.||b satisfies the triangle inequality in this case, but
of course it is no longer homogeneous (but at least you can get an honest
metric d(a,b) = ||a—0b|[h which gives rise to the same topology). (Hint: Show
a4 B < (P +pP)/r <2Vl q 4 B) for0<p <1 and o,3>0.)

Problem 1.15. Show that the following set of functions is a Schauder
basis for C[0,1]: We start with uyi(t) = t, ua(t) = 1 —t and then split
[0,1] into 2™ intervals of equal length and let ugnypiq(t), for 1 < k < 27,
be a piecewise linear peak of height 1 supported in the k’th subinterval:
ugnypr1(t) = max(0,1 — |27 — 2k + 1]) forn € Ng and 1 < k < 27

1.3. The geometry of Hilbert spaces

So it looks like C'(I) has all the properties we want. However, there is
still one thing missing: How should we define orthogonality in C(I)? In
Fuclidean space, two vectors are called orthogonal if their scalar product
vanishes, so we would need a scalar product:
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Suppose §) is a vector space. A map (.,..) : H x H — C is called a
sesquilinear form if it is conjugate linear in the first argument and linear
in the second; that is,

(afi+ozfa,g) = of(f1,9) +a3(f2.9),
<f,04191+042g2> = a1<f’gl>_|_a2<f792>’ alaer(C, (139)

where ‘x’ denotes complex conjugation. A symmetric

(frg) =(9, )" (symmetry)

sesquilinear form is also called a Hermitian form and a positive definite
(f,f)>0for f#0 (positive definite),

Hermitian form is called an inner product or scalar product. Note that
(i) follows in fact from (i) (Problem 1.19). Associated with every scalar
product is a norm

AN = /(s - (1.40)

Only the triangle inequality is nontrivial. It will follow from the Cauchy—
Schwarz inequality below. Until then, just regard (1.40) as a convenient
short hand notation.

Warning: There is no common agreement whether a sesquilinear form
(scalar product) should be linear in the first or in the second argument and
different authors use different conventions.

The pair (9, (.,..)) is called an inner product space. If §) is complete
(with respect to the norm (1.40)), it is called a Hilbert space.

Example. Clearly, C" with the usual scalar product
n
(a,b) := > _a’b, (1.41)
j=1

is a (finite dimensional) Hilbert space. o

Example. A somewhat more interesting example is the Hilbert space ¢?(N),
that is, the set of all complex-valued sequences

{(anz] i ja;f? < oo} (1.42)

with scalar product

(a,0) := Y asb;. (1.43)
j=1
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By the Cauchy—Schwarz inequality for C™ we infer

S oasb| < DY laibl | <D e P P <> la P byl

j=1 Jj=1 Jj=1 Jj=1 Jj=1 Jj=1
that the sum in the definition of the scalar product is absolutely convergent
(and thus well-defined) for a,b € ¢*(N). Observe that the norm |a| =
V/{a,a) is identical to the norm ||a||2 defined in the previous section. In
particular, £2(N) is complete and thus indeed a Hilbert space. o

A vector f € $) is called normalized or a unit vector if ||f| = 1.
Two vectors f,g € $) are called orthogonal or perpendicular (f L g) if
(f,g9) = 0 and parallel if one is a multiple of the other.

If f and g are orthogonal, we have the Pythagorean theorem:

IF+91* =717+ llgl*, Ly, (1.44)

which is one line of computation (do it!).

Suppose u is a unit vector. Then the projection of f in the direction of
u is given by
fi = (u, fHu, (1.45)
and f, defined via
fi:=f—{u, fHu, (1.46)

is perpendicular to u since (u, f1) = (u, f — (u, f)u) = (u, f) — (u, f){u,u) =
0.

f fJ_

fi

Taking any other vector parallel to u, we obtain from (1.44)
1f —aul® = [ f1 + (fyy — aw)|* = | fLI” + | {u, f) —af? (1.47)
and hence f) is the unique vector parallel to u which is closest to f.
As a first consequence we obtain the Cauchy—Bunyakovsky—Schwarz
inequality:

Theorem 1.5 (Cauchy—Schwarz—Bunyakovsky). Let $o be an inner product
space. Then for every f,g € $Ho we have

[l < IfIHIgll (1.48)
with equality if and only if f and g are parallel.
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Proof. It suffices to prove the case ||g|| = 1. But then the claim follows
from || f[1? = [{g, f)I + [lf*. .

We will follow common practice and refer to (1.48) simply as Cauchy—
Schwarz inequality. Note that the Cauchy—Schwarz inequality implies that
the scalar product is continuous in both variables; that is, if f, — f and
gn — g, we have (fn, gn) — (f,9).

As another consequence we infer that the map ||.|| is indeed a norm. In
fact,

1f + gl = IF11” + (£, 9) + g, ) + llall® < (IF1 -+ g ). (1.49)

But let us return to C(I). Can we find a scalar product which has the
maximum norm as associated norm? Unfortunately the answer is no! The
reason is that the maximum norm does not satisfy the parallelogram law
(Problem 1.18).

Theorem 1.6 (Jordan—von Neumann). A norm is associated with a scalar
product if and only if the parallelogram law

I+ gl +11f = gll> =2l £1I” + 2llg/? (1.50)
holds.

In this case the scalar product can be recovered from its norm by virtue
of the polarization identity

(fr9) = % (I +all> = I1f = gl* +illf —igl® =il f +ig?).  (1.51)

Proof. If an inner product space is given, verification of the parallelogram
law and the polarization identity is straightforward (Problem 1.19).

To show the converse, we define

1
s(f.9):= 7 (IF +al” = 1 = gl* +llf —ig]* ~ illf +1ig]?) -

Then s(f, f) = ||fI?> and s(f,g9) = s(g, f)* are straightforward to check.
Moreover, another straightforward computation using the parallelogram law

shows
g+h
s(F.9) + () = 2s(7, 910,

Now choosing h = 0 (and using s(f,0) = 0) shows s(f, g) = 2s(f, ) and thus
s(f,g)+s(f,h) = s(f,g+h). Furthermore, by induction we infer i s(f, g) =
s(f, 3w g); that is, as(f,g) = s(f,ag) for a dense set of positive rational
numbers «. By continuity (which follows from continuity of the norm) this
holds for all @« > 0 and s(f, —g) = —s(f, g), respectively, s(f,ig) =1is(f,g),
finishes the proof. O
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In the case of a real Hilbert space, the polarization identity of course
simplifies to (f,g) = 1(lf +gl> = | f — gII*)-

Note that the parallelogram law and the polarization identity even hold
for sesquilinear forms (Problem 1.19).

But how do we define a scalar product on C(I)? One possibility is

b
(f.g) = / £ (2)g(a)d. (1.52)

The corresponding inner product space is denoted by £2, ,(I). Note that

cont

1< V1o =alll fllo (1.53)

and hence the maximum norm is stronger than the £2,,,, norm.

we have

Suppose we have two norms ||.|[; and ||.||2 on a vector space X. Then
||.||2 is said to be stronger than ||.||; if there is a constant m > 0 such that

1f1lx < mlf]l2. (1.54)
It is straightforward to check the following.

Lemma 1.7. If ||.||2 is stronger than ||.||1, then every ||.|2 Cauchy sequence
is also a ||.][1 Cauchy sequence.

Hence if a function F' : X — Y is continuous in (X, ||.||1), it is also
continuous in (X, ||.[2), and if a set is dense in (X, ||.||2), it is also dense in
(X [-11)-

In particular, £2 ,, is separable since the polynomials are dense. But is
it also complete? Unfortunately the answer is no:

Example. Take I = [0,2] and define

0, 0<z<1-1
falz):=q1+n(z-1), 1-L<a<i, (1.55)
1, 1<z<2.

Then f,(x) is a Cauchy sequence in £2,,, but there is no limit in £2,!

Clearly, the limit should be the step function which is 0 for 0 < z < 1 and
1 for 1 <z < 2, but this step function is discontinuous (Problem 1.22)! ¢

Example. The previous example indicates that we should consider (1.52)
on a larger class of functions, for example on the class of Riemann integrable
functions

R(I):={f:I— C|f is Riemann integrable}
such that the integral makes sense. While this seems natural it implies
another problem: Any function which vanishes outside a set which is neg-
ligible for the integral (e.g. finitely many points) has norm zero! That is,
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Ifll2 = ([, |f(x)|?dz)"/? is only a seminorm on R(I) (Problem 1.21). To
get a norm we consider N'(I) := {f € R(I)|||f|l2 = 0}. By homogeneity and
the triangle inequality N (1) is a subspace and we can consider equivalence
classes of functions which differ by a negligible function from N (I):

L% :=R()/N).

Since || fll2 = ||lgll2 for f — g € N(I) we have a norm on L%,. Moreover,
since this norm inherits the parallelogram law we even have an inner prod-
uct space. However, this space will not be complete unless we replace the
Riemann by the Lebesgue integral. Hence will not pursue this further until
we have the Lebesgue integral at our disposal. o

This shows that in infinite dimensional vector spaces, different norms
will give rise to different convergent sequences! In fact, the key to solving
problems in infinite dimensional spaces is often finding the right norm! This
is something which cannot happen in the finite dimensional case.

Theorem 1.8. If X is a finite dimensional vector space, then all norms
are equivalent. That is, for any two given norms |.||1 and ||.||2, there are
positive constants my and meo such that

£l < 15 < 1. (1.56)

Proof. Choose a basis {u;j}i<j<n such that every f € X can be written
as f = Zj ajuj. Since equivalence of norms is an equivalence relation
(check this!), we can assume that ||.||2 is the usual Euclidean norm: || f||2 =
1225 ajuslle = (32 laj|?)Y/2. Then by the triangle and Cauchy-Schwarz
inequalities,

Il <D laglllugle < [ Mgl 11 £z
j j

and we can choose mg = Zj [Ju]l3.

In particular, if f,, is convergent with respect to ||.||2, it is also convergent
with respect to ||.|[1. Thus [|.||1 is continuous with respect to ||.||2 and attains
its minimum m > 0 on the unit sphere S := {ul||ul|2 = 1} (which is compact
by the Heine-Borel theorem, Theorem B.22). Now choose m; = 1/m. O

Finally, we remark that a real Hilbert space can always be embedded
into a complex Hilbert space. In fact, if $) is a real Hilbert space, then $) x
is a complex Hilbert space if we define

(f1, f2)+(91,92) = (fi+g1, fatg2), (a+iB)(f1, f2) = (afl—ﬁfz,oéfz-é-ﬂﬁ;
1.57
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and

((f1, f2): (91, 92)) = (f1, f2) + (91, 92) +1((f1, 92) — (f2, 1)) (1.58)

Here you should think of (f1, f2) as f1 +ifs. Note that we have a conjugate
linear map C : $ x H — H x 9, (f1, f2) = (f1, —f2) which satisfies C? =1
and (C'f,Cg) = (g, f). In particular, we can get our original Hilbert space
back if we consider Re(f) = 3(f + Cf) = (f1,0).

Problem 1.16. Show that the norm in a Hilbert space satisfies ||f + g|| =
I f1l + llgll of and only if f = ag, a >0, or g =0. Hence Hilbert spaces are
strictly convex (cf. Problem 1.12).

Problem 1.17 (Generalized parallelogram law). Show that, in a Hilbert

space,
Yoozl Y wlP=a Y el

1<j<k<n 1<j<n 1<j<n
The case n =2 is (1.50).

Problem 1.18. Show that the mazimum norm on C[0,1] does not satisfy
the parallelogram law.

Problem 1.19. Suppose 9 is a complex vector space. Let s(f,g) be a

sesquilinear form on Q and q(f) := s(f, f) the associated quadratic form.
Prove the parallelogram law
a(f +9) +a(f —9) = 2q(f) +24(9) (1.59)
and the polarization identity
1 . : ) .
s(f.9) = 7 @(f +9) —a(f —9) +ia(f —ig) —iq(f +ig)).  (1.60)

Show that s(f,g) is symmetric if and only if q(f) is real-valued.
Note, that if Q is a real vector space, then the parallelogram law is un-

changed but the polarization identity in the form s(f,g) = (¢(f+9)—a(f—
g)) will only hold if s(f,g) is symmetric.

Problem 1.20. A sesquilinear form on a complex inner product space is
called bounded if

[s][ == sup |s(f,9)]
IF11=llgll=1
is finite. Similarly, the associated quadratic form q is bounded if

lall == sup |q(f)]
=1
is finite. Show
lall < sl < 2llqll-

(Hint: Use the polarization identity from the previous problem.)
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Problem 1.21. Suppose Q is a vector space. Let s(f,g) be a sesquilinear
form on Q and q(f) := s(f, f) the associated quadratic form. Show that the
Cauchy-Schwarz inequality

[s(f,9)] < a(f)"?a(g)"/? (1.61)

holds if q(f) > 0. In this case q(.)'/? satisfies the triangle inequality and
hence is a seminorm.

(Hint: Consider 0 < q(f + ag) = q(f) + 2Re(a s(f,9)) + |al*q(g) and
choose a =t s(f,9)*/|s(f,g)| witht € R.)

Problem 1.22. Prove the claims made about f,, defined in (1.55), in this
example.

1.4. Completeness

Since £2,,,, is not complete, how can we obtain a Hilbert space from it?

Well, the answer is simple: take the completion.

If X is an (incomplete) normed space, consider the set of all Cauchy
sequences X. Call two Cauchy sequences equivalent if their difference con-
verges to zero and denote by X the set of all equivalence classes. It is easy
to see that X (and X&) inherit the vector space structure from X. Moreover,

Lemma 1.9. If z, is a Cauchy sequence in X, then ||z, is also a Cauchy
sequence and thus converges.

Consequently, the norm of an equivalence class [(z5,)52 ;] can be defined
by [[[(xn)5 ]|l := limy, 0 ||zn|| and is independent of the representative
(show this!). Thus X is a normed space.

Theorem 1.10. X is a Banach space containing X as a dense subspace if
we identify x € X with the equivalence class of all sequences converging to
x.

Proof. (Outline) It remains to show that X is complete. Let &, = [(%n,7)524]
be a Cauchy sequence in X. Then it is not hard to see that & = [(,5)524]
is its limit. U

Let me remark that the completion X is unique. More precisely, every
other complete space which contains X as a dense subset is isomorphic to
X. This can for example be seen by showing that the identity map on X
has a unique extension to X (compare Theorem 1.16 below).

In particular, it is no restriction to assume that a normed vector space

or an inner product space is complete (note that by continuity of the norm
the parallelogram law holds for X if it holds for X).
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Example. The completion of the space £2,,,(I) is denoted by L?(I). While

cont
this defines L?(I) uniquely (up to isomorphisms) it is often inconvenient to

work with equivalence classes of Cauchy sequences. Hence we will give a
different characterization as equivalence classes of square integrable (in the
sense of Lebesgue) functions later.

Similarly, we define LP(I), 1 < p < oo, as the completion of C'(I) with

respect to the norm
b 1/p
= ([ @pas)

The only requirement for a norm which is not immediate is the triangle
inequality (except for p = 1,2) but this can be shown as for ¢ (cf. Prob-
lem 1.25). o

Problem 1.23. Provide a detailed proof of Theorem 1.10.

Problem 1.24. For every f € L*(I) we can define its integral

/Cd f(z)dzx

as the (unique) extension of the corresponding linear functional from C(I)
to LY(I) (by Theorem 1.16 below). Show that this integral is linear and

satisfies
/C f@)dr = / oy + /d " fla)de, / ! f)da

Problem 1.25. Show the Hélder inequality

11
Ifglh <Wflpllglle, — Z+ 5 =1 T<pag<oo,

< (i

and conclude that ||.||, is a norm on C(I). Also conclude that LP(I) C L'(I).

1.5. Compactness

In finite dimensions relatively compact sets are easily identified as they are
precisely the bounded sets by the Heine-Borel theorem (Theorem B.22). In
the infinite dimensional case the situation is more complicated. Before we
look into this with please recall that for a subset U of a Banach space the
following are equivalent (see Corollary B.20 and Lemma B.26):

e U is relatively compact (i.e. its closure is compact)
e every sequence from U has a convergent subsequence

e U is totally bounded (i.e. it has a finite e-cover for every ¢ > 0)
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Example. Consider the bounded sequence (6™)2° in ¢P(N). Since ||6" —
d™||, = 1 for n # m, there is no way to extract a convergent subsequence. <

In particular, the Heine—Borel theorem fails for ¢P(N). In fact, it fails in
any infinite dimensional space.

Theorem 1.11. The closed unit ball in a Banach space X is compact if and
only if X is finite dimensional.

Proof. If X is finite dimensional, then by Theorem 1.8 we can assume
X = C" and the closed unit ball is compact by the Heine-Borel theorem.

Conversely, suppose S = {x € X|||z|| = 1} is compact. Then the
open cover {X \ Ker(/)}sex- has a finite subcover, S C [Jj_; X \ Ker(¢;) =
X\ -, Ker(¢;). Hence (;_; Ker(¢;) = {0} and the map X — C", z
(b1(x), -+ ,Ly(x)) is injective, that is, dim(X) < n. O

Hence one needs criteria when a given subset is relatively compact. Our
strategy will be based on total boundedness and can be outlined as follows:
Project the original set to some finite dimensional space such that the infor-
mation loss can be made arbitrarily small (by increasing the dimension of
the finite dimensional space) and apply Heine-Borel to the finite dimensional
space. This idea is formalized in the following lemma.

Lemma 1.12. Let X be a metric space and K some subset. Assume that
for every € > 0 there is a metric space Yz, a map P. : X — Y, and
some 0 > 0 such that P-(K) is totally bounded and d(x,y) < & whenever
d(P:(z), P-(y)) < 9. Then K 1is totally bounded.

In particular, if X is a Banach space the claim holds if P- can be chosen
a linear map onto a finite dimensional subspace Yz such that ||P:|| < C, P.K
is bounded, and ||(1 — P:)z| < Ce forz € K.

Proof. Fix ¢ > 0. Then by total boundedness of f(K) we can find a d-cover
{Bs(zj)}]—; for f(K). But then {BE(!}"_]L(xj))}?:1 is an e-cover for K since
FH(Bs(x4)) € Be(f~H(x))).

For the last claim note that ||z —y|| < ||(1— P:)z| + ||P-(xz —y)|| + || (1 —
P.)y|| < 3Ce. O

The first application will be to ¢P(N).

Theorem 1.13 (Fréchet). Consider (P(N), 1 < p < oo, and let P,a =
(aiy...,an,0,...) be the projection onto the first n components. A subset
K C P(N) is relatively compact if and only if

(i) it is pointwise bounded, sup,cr |a;| < M;j for all j € N, and
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(ii) for every e > 0 there is some n such that ||(1 — Py)all, < € for all
ack.

Proof. Clearly (i) and (i7) is what is needed for Lemma 1.12.

Conversely, if F' is relatively compact it is bounded. Moreover, given
§ we can choose a finite §-cover {Bs(a’) 7.y for F' and some n such that
(1 = Py)al||, <6 for all 1 < j < m. Now given a € F we have a € Bs(a’)
for some j and hence ||(1—Py)all, < ||(1—Py)(a—a?)||p+|(1—Pn)a’ ||, < 26
as required. O

Example. Fix a € #(Np) if 1 < p < oo or a € ¢g(N) else. Then F :=
{0] |b;] < |a;|} is compact. o

The second application will be to C'(I). A family of functions F' C C(I)
is called (pointwise) equicontinuous if for every ¢ > 0 and every = € [
there is a § > 0 such that

|f(y) — f(z)| <e whenever |y—z|<d, VfeeF. (1.62)
That is, in this case § is required to be independent of the function f € F'.

Theorem 1.14 (Arzela—Ascoli). Let F C C(I) be a family of continuous
functions. Then every sequence from F has a uniformly convergent sub-
sequence if and only if F is equicontinuous and the set {f(xo)|f € F} is
bounded for one xo € I. In this case F is even bounded.

Proof. Suppose F is equicontinuous and pointwise bounded. Fix ¢ > 0.
By compactness of I there are finitely many points zi,...,x, € I such
that the balls By, (xj) cover I, where ¢; is the 6 corresponding to z; as
in the definition of equicontinuity. Now first of all note that, since I is

connected and since xg € B(;j (xj) for some j, we see that F' is bounded:
|f(2)] < supgep [ f(@o)| + ne.

Next consider P : C[0,1] — C™, ¥(f) = (f(x1),..., f(zn)). Then P(F)
is bounded and ||f — g|lco < 3¢ whenever |[|[P(f) — P(g9)|lco < &. Indeed,

just note that for every z there is some j such that x € Bs,(z;) and thus
[f (@) —g(a)| < [f(2) = f(x))| + [f(2;) = g(z;)| + |g(x;) — g(2)| < 3e. Hence
F is relatively compact by Lemma 1.12.

Conversely, suppose F' is relatively compact. Then F is totally bounded
and hence bounded. To see equicontinuity fix x € I, € > 0 and choose a
corresponding e-cover {B:(f;)}}_; for F. Pick § > 0 such that y € Bs(z)
implies | f;(y) — fj(z)] < eforall 1 <j <mn. Then f € B.(f;) for some j and
hence [f(y) — f(2)] < |f(y) = fiW) + |f5(y) = f3@)| + [fi(2) = f(2)] < 3e,

proving equicontinuity. U
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Example. Consider the solution y,,(z) of the initial value problem

y' = sin(ny), y(0) =1.

(Assuming this solution exists — it can in principle be found using sepa-
ration of variables.) Then |y} (z)| < 1 and hence the mean value theorem
shows that the family {y,} € C(]0,1]) is equicontinuous. Hence there is a
uniformly convergent subsequence. o

Problem 1.26. Show that a subset F' C co(N) is relatively compact if and

only if there is a nonnegative sequence a € co(N) such that |b,| < a, for all
ne€Nand allbe F.

Problem 1.27. Find a family in C[0,1] that is equicontinuous but not
bounded.

Problem 1.28. Which of the following families are relatively compact in
Clo,1)?
(i) F={feC'0,1]|fll <1}
(i) F={f€C"0,1[[[fle <1}
(i) = {f € C0, ][ [ flloc < L[If'll2 <1}

1.6. Bounded operators

A linear map A between two normed spaces X and Y will be called a (lin-
ear) operator

A:DA)CX Y. (1.63)

The linear subspace ®(A) on which A is defined is called the domain of A
and is frequently required to be dense. The kernel (also null space)

Ker(A) :={f e D(A)|Af =0} C X (1.64)
and range

Ran(A) := {Af|f € D(A)} = AD(A) CY (1.65)
are defined as usual. Note that a linear map A will be continuous if and

only it is continuous at 0, that is, z, € ®(A) — 0 implies Az,, — 0.

The operator A is called bounded if the operator norm
[Al == sup  JJAflly (1.66)
FeED(A)|Ifllx=1

is finite. This says that A is bounded if the image of the closed unit ball
B1(0) C X is contained in some closed ball B,.(0) C Y of finite radius r
(with the smallest radius being the operator norm). Hence A is bounded if
and only if it maps bounded sets to bounded sets.
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Note that if you replace the norm on X or Y then the operator norm
will of course also change in general. However, if the norms are equivalent
so will be the operator norms.

By construction, a bounded operator is Lipschitz continuous,

[Afly < [[Alllfllx,  f € D(A), (1.67)

and hence continuous. The converse is also true:

Theorem 1.15. An operator A is bounded if and only if it is continuous.

Proof. Suppose A is continuous but not bounded. Then there is a sequence
of unit vectors u, such that ||Auy|| > n. Then f, := 1u, converges to 0 but
|Afnll > 1 does not converge to 0. O

In particular, if X is finite dimensional, then every operator is bounded.
In the infinite dimensional an operator can be unbounded. Moreover, one
and the same operation might be bounded (i.e. continuous) or unbounded,
depending on the norm chosen.

Example. Let X = ?(N) and a € ¢*°(N). Consider the multiplication
operator A : X — X defined by
(Ab)] = ajbj.

Then [(Ab);| < |la|lo|bj| shows [|A]] < |la|loo. In fact, we even have ||A] =
lal|co (show this). o

Example. Consider the vector space of differentiable functions X = C1[0, 1]
and equip it with the norm (cf. Problem 1.31)

[ / .
£l = maxe £(2)] + mae [/(a)

Let Y = C[0,1] and observe that the differential operator A = 4 : X Y

is bounded since

Aflloo = ! < ! = ool
14flloe = mase |/(2)] < mae [£(@)|+ mmae [£/@)] = | o

However, if we consider A = % :D(A) C Y — Y defined on D(A4) =
C1[0,1], then we have an unbounded operator. Indeed, choose

un(x) = sin(nmrz)
which is normalized, ||u,||c = 1, and observe that

Aup(z) = ul(z) = nr cos(nmz)

is unbounded, ||Aup|lc = nm. Note that D(A) contains the set of polyno-
mials and thus is dense by the Weierstral approximation theorem (Theo-
rem 1.3). o
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If A is bounded and densely defined, it is no restriction to assume that
it is defined on all of X.

Theorem 1.16. Let A : D(A) C X — Y be a bounded linear operator
between a normed space X and a Banach space Y. If ©(A) is dense, there
is a unique (continuous) extension of A to X which has the same operator
norm.

Proof. Since a bounded operator maps Cauchy sequences to Cauchy se-
quences, this extension can only be given by

Zf = HILH;OAfm anQ(A)v feX

To show that this definition is independent of the sequence f,, — f, let
gn — f be a second sequence and observe

||Afn - Agn” = HA(fn - gn)H < HAHan - gn“ — 0.

Since for f € D(A) we can choose f,, = f, we see that Af = Af in this case,
that is, A is indeed an extension. From continuity of vector addition and
scalar multiplication it follows that A is linear. Finally, from continuity of
the norm we conclude that the operator norm does not increase. [l

The set of all bounded linear operators from X to Y is denoted by
Z(X,)Y). If X =Y, we write Z(X) := Z(X, X). An operator in .Z(X,C)
is called a bounded linear functional, and the space X* := Z(X,C) is
called the dual space of X. The dual space takes the role of coordinate
functions in a Banach space.

Example. Let X = (P(N). Then the coordinate functions
lj(a) = a;

are bounded linear functionals: |¢;(a)| = |a;| < ||al|, and hence ||¢;]| = 1.
More general, let b € ¢9(N) where % + % = 1. Then

n

ly(a) == ijaj
j=1

is a bounded linear functional satisfying ||4,|| < ||b||, by Holder’s inequality.
In fact, we even have ||{,|| = [[b]|, (Problem 4.15). Note that the first
example is a special case of the second one upon choosing b = ¢”. o

Example. Consider X := C(I). Then for every o € I the point evaluation
lyo(f) == f(x0) is a bounded linear functional. In fact, ||fz,|| = 1 (show
this).
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However, note that £, is unbounded on L2, ,(I)! To see this take
fa(z) = /2 max(0,1 — n|z — xo|) which is a triangle shaped peak sup-
ported on [rg — n~!, w9 + n~!] and normalized according to | full2 = 1
for n sufficiently large such that the support is contained in /. Then

lao(f) = fu(mo) = /22 — oo. This implies that £,, cannot be extended to

the completion of £2,,(I) in a natural way and reflects the fact that the

integral cannot see individual points (changing the value of a function at
one point does not change its integral). o

Example. Consider X = C(I) and let g be some (Riemann or Lebesgue)
integrable function. Then

is a linear functional with norm

g1l = llgll1-
Indeed, first of all note that

b b
10,(f)] < / 9(2)F(@)]dz < |f]]so / 9(2)|dz

shows ||{4|| < [lg|l1. To see that we have equality consider f. = ¢*/(|g| +¢)
and note

b )2 b o2 — 22
(6l = [0z [ gl - 0~ e

Since ||fz]| < 1 and € > 0 is arbitrary this establishes the claim. o

Theorem 1.17. The space £ (X,Y) together with the operator norm (1.66)
is a normed space. It is a Banach space if Y is.

Proof. That (1.66) is indeed a norm is straightforward. If Y is complete and
A, is a Cauchy sequence of operators, then A, f converges to an element
g for every f. Define a new operator A via Af = g. By continuity of
the vector operations, A is linear and by continuity of the norm ||Af| =
lim, oo [|Anfl] < (limp—oo [|Anl)|| f]], it is bounded. Furthermore, given
e > 0, there is some N such that ||A, — A || < € for n,m > N and thus
|Anf—Anfll < el fll. Taking the limit m — oo, we see || A, f—Af]| < el fl];
that is, A, — A. O

The Banach space of bounded linear operators .2 (X) even has a multi-
plication given by composition. Clearly, this multiplication satisfies

(A+B)C =AC+BC, AB+C)=AB+BC, AB,Cec Z(X) (1.68)
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and
(AB)C = A(BC), a(AB) = (0¢A)B=A(aB), «ac€C. (1.69)
Moreover, it is easy to see that we have
[AB|| < [[All[|B]. (1.70)

In other words, .Z(X) is a so-called Banach algebra. However, note that
our multiplication is not commutative (unless X is one-dimensional). We
even have an identity, the identity operator I, satisfying ||I|| = 1.

Problem 1.29. Consider X = C" and let A € £ (X) be a matriz. Equip
X with the norm (show that this is a norm)

HxHa>?=]g5§;\xﬂ

and compute the operator norm ||A| with respect to this norm in terms of
the matrixz entries. Do the same with respect to the norm

lzlli:= D Jayl.
1<j<n

Problem 1.30. Show that the integral operator

1
(K f)(z) = /0 K () (y)dy.

where K (z,y) € C([0,1] x [0,1]), defined on D(K) := C|0,1], is a bounded
operator both in X := C[0,1] (maz norm) and X := £2,,,(0,1). Show that
the norm in the X = C[0,1] case is given by

1
K| = K(z,y)|dy.
1K1 = i [ 1K Gy

Problem 1.31. Let I be a compact interval. Show that the set of dif-
ferentiable functions C1(I) becomes a Banach space if we set || f|loo1 :=

maxger | f(x)| + maxzer | f(z)]-
Problem 1.32. Show that ||AB|| < ||A||||B]| for every A,B € £(X). Con-

clude that the multiplication is continuous: A, — A and B, — B imply
A, B, — AB.

Problem 1.33. Let A € £(X) be a bijection. Show

ATYTt = if o |Af)L

A = e af]
Problem 1.34. Suppose B € £ (X) with ||B|| < 1. Then I+ B is invertible
with

o0

(I+B)"'=> (-1)"B™

n=0
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Consequently for A, B € ZL(X,Y), A+ B is invertible if A is invertible and
1Bl < A7~

Problem 1.35. Let
m .
flz) =) fie, 2| <R,
=0

be a convergent power series with radius of convergence R > 0. Sup-
pose X is a Banach space and A € Z£(X) is a bounded operator with
limsup,, |A™|Y™ < R (note that by ||A™|| < ||A|™ the limsup is finite).
Show that

F(A) =) fA
=0

exists and defines a bounded linear operator. Moreover, if f and g are two
such functions and o € C, then

(f+9)(A) = f(A) +9(4), (af)(A) =af(a), (f9)(A)=F(A)g(A).
(Hint: Problem 1.4.)

Problem 1.36. Show that a linear map £ : X — C is continuous if and only
if its kernel is closed. (Hint: If £ is not continuous, we can find a sequence
of normalized vectors x,, with |((z,)| — oo and a vector y with £(y) = 1.)

1.7. Sums and quotients of Banach spaces

Given two Banach spaces X; and X2 we can define their (direct) sum
X = X1 ® X5 as the Cartesian product X; x Xo together with the norm

(21, 22)|| := ||71]| + [|x2]|. In fact, since all norms on R? are equivalent
(Theorem 1.8), we could as well take ||(z1,z2)| = (||z1||” + |lz2|[?)*/? or
|(z1,22)| := max(||lz1|, |x2|]). We will write X; @, X2 if we want to em-

phasize the norm used. In particular, in the case of Hilbert spaces the choice
p = 2 will ensure that X is again a Hilbert space.

Note that X; and Xs can be regarded as closed subspaces of X1 x Xo
by virtue of the obvious embeddings z1 < (z1,0) and x9 < (0,z2). It is
straightforward to show that X is again a Banach space and to generalize
this concept to finitely many spaces (Problem 1.37).

Given two subspaces M, N C X of a vector space, we can define their
sum as usual: M + N = {z +y|lzr € M, y € N}. In particular, the
decomposition x + y with z € M, y € N is unique iff M NN = {0} and we
will write M + N in this case. It is important to observe, that M + N is
in general different from M @ N since both have different norms. In fact,
M + N might not even be closed.
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Example. Consider X := (P(N). Let M = {a € Xlag, = 0} and N =
{a € X|azn+1 = n3az,}. Then both subspaces are closed and M NN = {0}.
Moreover, M + N is dense since it contains all sequences with finite support.
However, it is not all of X since a, = n% ¢ M + N. Indeed, if we could
write a = b+c € M + N, then ¢y, = # and hence ¢, 1 = 7 contradicting

ce N CX. o

Example. Given a real normed space X its complexification is given by
Xc := X x X together with the (complex) scalar multiplication «a(z,y) =
(Re(a)x—Im(a)y, Re(a)y+Im(a)x). By virtue of our embedding x < (x,0)
you should of course think of (x,y) as  +iy. As a norm one can take (show
this)

1 = t in(t
o+ iyl = ma [l cos(t)e +sin(t)yl.

which satisfies ||z||c = ||z|| and ||x+iy||c = ||x—iy||c. Given two real normed
spaces X1, Xo, every linear operator A : X; — Xo gives rise to a linear
operator Ac : X1 c = Xaoc via Ac(z +iy) = Az +1iAy. Similarly, a bilinear
form s : X x X — R gives rise to a sesquilinear form sc(z1 +iy1, z2 +iy2) :=
s(z1,x2) + s(y1, y2) + i(s(:vl, y2) — s(y1, :Eg)) In particular, if X is a Hilbert
space, so will be X¢.

Note that if you start with a complex normed space and regard it as
a real normed space (by restricting scalar multiplication to real numbers),
complexification will give you a larger space. If you want to get back your
original space, you need to observe that you have an automorphism 7 : X —

X of real spaces satisfying I’z = —x given by multiplication with i. Given
such an automorphism you can define the complex scalar multiplication via
az = Re(a)z + Im(a) . o

We will show below that this cannot happen if one of the spaces is finite
dimensional.

A closed subspace M is called complemented if we can find another
closed subspace N with M NN = {0} and M + N = X. In this case every
x € X can be uniquely written as x = x1 + x9 with 1 € M, z9 € N and
we can define a projection P : X — M, z — x;. By definition P? = P
and we have a complementary projection ) := I — P with Q : X — N,
x +— x3. Moreover, it is straightforward to check M = Ker(Q) = Ran(P)
and N = Ker(P) = Ran(Q). Of course one would like P (and hence also Q)
to be continuous. If we consider the map ¢ : M®N — X, (z1,x2) = x1+x2
then this is equivalent to the question if ¢! is continuous. By the triangle
inequality ¢ is continuous with ||¢|| < 1 and the inverse mapping theorem
(Theorem 4.6) will answer this question affirmative.
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It is important to emphasize, that it is precisely the requirement that N
is closed which makes P continuous (conversely observe that N = Ker(P)
is closed if P is continuous). Without this requirement we can always find
N by a simple application of Zorn’s lemma (order the subspaces which have
trivial intersection with M by inclusion and note that a maximal element has
the required properties). Moreover, the question which closed subspaces can
be complemented is a highly nontrivial one. If M is finite (co)dimensional,
then it can be complemented (see Problems 1.42 and 4.21).

Given a subspace M of a linear space X we can define the quotient
space X/M as the set of all equivalence classes [z] = x + M with respect
to the equivalence relation x =y if t — y € M. It is straightforward to see
that X/M is a vector space when defining [z] + [y] = [z +y] and a[z] = [az]
(show that these definitions are independent of the representative of the
equivalence class). In particular, for a linear operator A : X — Y the linear
space Coker(A) := Y/ Ran(A) is know as the cokernel of A. The dimension
of X/M is known as the codimension of M.

Lemma 1.18. Let M be a closed subspace of a Banach space X. Then
X /M together with the norm

|[z]]] := dist(z, M) = inf ||z + y| (1.71)
yeM
18 a Banach space.

Proof. First of all we need to show that (1.71) is indeed a norm. If ||[z]|| = 0
we must have a sequence y; € M with y; — —z and since M is closed we
conclude = € M, that is [x] = [0] as required. To see ||a[z]|| = |a|||[x]| we
use again the definition

pu— :'f :'f
lofe]| = lllaa]ll = inf flaz +y[ = inf oz + ayl|

o inf Jlo+yl = ladil=]]

The triangle inequality follows with a similar argument and is left as an
exercise.

Thus (1.71) is a norm and it remains to show that X /M is complete. To
this end let [z,,] be a Cauchy sequence. Since it suffices to show that some
subsequence has a limit, we can assume ||[z,,41] — [2,]]| < 27" without loss of
generality. Moreover, by definition of (1.71) we can chose the representatives
xy, such that ||x,+1 — x| < 27" (start with 21 and then chose the remaining
ones inductively). By construction z,, is a Cauchy sequence which has a limit
x € X since X is complete. Moreover, by ||[x,]—[z]|| = ||[zn—2]| < ||zn—x||
we see that [x] is the limit of [z,,]. O
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Observe that ||[z]|] = dist(z, M) = 0 whenever x € M and hence we
only get a semi-norm if M is not closed.

Example. If X := C[0,1] and M :={f € X|f(0) =0} then X/M =C. o

Example. If X := ¢(N), the convergent sequences and M := c¢y(N) the
sequences converging to 0, then X/M = C. In fact, note that every sequence
x € ¢(N) can be written as = y + ae with y € ¢o(N), e = (1,1,1,...), and
a € C its limit. o

Note that by |[|[z]|| < ||z| the quotient map 7 : X — X/M, z — [z] is
bounded with norm at most one. As a small application we note:

Corollary 1.19. Let X be a Banach space and let M, N C X be two closed
subspaces with one of them, say N, finite dimensional. Then M + N is also
closed.

Proof. If 7 : X — X/M denotes the quotient map, then M + N =
7 1(7(N)). Moreover, since 7(N) is finite dimensional it is closed and hence
7 1(7(N)) is closed by continuity. O

Problem 1.37. Let X;, j = 1,...,n, be Banach spaces. Let X be the
Cartesian product X1 X --- x X,, together with the norm

n 2\ P
(ZyoiliaslP) ™) 1< p <o,

maxj=1_.n|zjll, p=oo0.

H(‘rlv"wajn)”p =

Show that X is a Banach space. Show that all norms are equivalent.

Problem 1.38. Let X;, j € N, be Banach spaces. Let X = X, jeny X, be
the set of all elements x = (x;)jen of the Cartesian product for which the
norm

» 1/p

(Syenllesli?) ™, 1<p <o,

maxjen ||z, p = 00,

is finite. Show that X is a Banach space. Show that for 1 < p < oo the

elements with finitely many nonzero terms are dense and conclude that X
is separable if all X; are.

2y ==

Problem 1.39. Let £ be a nontrivial linear functional. Then its kernel has
codimension one.

Problem 1.40. Compute ||[e]|| in £*°(N)/co(N), where e = (1,1,1,...).

Problem 1.41. Suppose A € Z(X,Y). Show that Ker(A) is closed. Sup-
pose M C Ker(A) is a closed subspace. Show that the induced map A -
X/M — y, [z] = Az is a well-defined operator satisfying ||A|| = ||A|| and
Ker(A) = Ker(A)/M. In particular, A is injective for M = Ker(A).
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Problem 1.42. Show that if a closed subspace M of a Banach space X
has finite codimension, then it can be complemented. (Hint: Start with
a basis {[z;]} for X/M and choose a corresponding dual basis {{} with

U ([z4]) = djk-)

1.8. Spaces of continuous and differentiable functions

In this section we introduce a few further sets of continuous and differentiable
functions which are of interest in applications.

First, for any set U C R™ the set of all bounded continuous functions
Cy(U) together with the sup norm

[fllo := sup | f(z) (1.72)
zelU

is a Banach space as can be shown as in Section 1.2 (or use Corollary 1.23).
The space of continuous functions with compact support C.(U) C Cy(U) is

in general not dense and its closure will be denoted by Co(U). If U is open it
can be interpreted as the functions in Cp(U) which vanish at the boundary

Co(U) :={f e C(U)|Ve > 0,3K C U compact : |f(z)] <e, x € U\ K}.
(1.73)
Of course R™ could be replaced by any topological space up to this point.

Moreover, the above norm can be augmented to handle differentiable
functions by considering the space C}(U) of all continuously differentiable
functions for which the following norm

1£lloo == [l flloo + Y 195 fllos (1.74)

j=1

is finite, where 0; = %. Note that ||0; f|| for one j (or all j) is not sufficient
as it is only a seminorm (it vanishes for every constant function). However,
since the sum of seminorms is again a seminorm (Problem 1.44) the above
expression defines indeed a norm. It is also not hard to see that C}(U) is
complete. In fact, let ¥ be a Cauchy sequence, then f*(x) converges uni-
formly to some continuous function f(x) and the same is true for the partial
derivatives 0; f*(x) — g;j(z). Moreover, since f¥(z) = f¥(c,za,...,2m) +
[ O;fE(t,za,. .., xp)dt — f(z) = fle,xa, ..., Tm) + [ gi(t e, ... xm)
we obtain 0; f(x) = g;(z). The remaining derivatives follow analogously and
thus f* — f in CL(U).

To extend this approach to higher derivatives let C*(U) be the set of
all complex-valued functions which have partial derivatives of order up to
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k. For f € C¥(U) and o € NZ we set
olelf
Al T e

An element o € Nj is called a multi-index and |o] is called its order. With
this notation the above considerations can be easily generalized to higher
order derivatives:

Theorem 1.20. Let U C R™ be open. The space CF(U) of all functions
whose partial derivatives up to order k are bounded and continuous form a
Banach space with norm

I Fllook == sup |0af(z)l. (1.76)

o<k zcU

la| = a1 + - + ap. (1.75)

An important subspace is C§(R™), the set of all functions in CF(R™)
for which lim;|_,o [0af(z)| = 0 for all |a| < k. For any function f not
in C¥(R™) there must be a sequence |r;| — oo and some a such that
|00 f(x;)| > &> 0. But then || f — glook > € for every g in C5(R™) and thus
C[’)“ (R™) is a closed subspace. In particular, it is a Banach space of its own.

Note that the space Cé“ (U) could be further refined by requiring the
highest derivatives to be Holder continuous. Recall that a function f: U —
C is called uniformly Hélder continuous with exponent v € (0, 1] if

f(@) — fy
e p H@ W)

(1.77)

x£yeU |l‘ - y|'y
is finite. Clearly, any Holder continuous function is uniformly continuous
and, in the special case v = 1, we obtain the Lipschitz continuous func-

tions.

Example. By the mean value theorem every function f € C}(U) is Lip-
schitz continuous with [f]y < ||0f]|ec, where Of = (O1f,...,0mf) denotes
the gradient. o

Example. The prototypical example of a Holder continuous function is of
course f(x) = 27 on [0,00) with v € (0,1]. In fact, without loss of generality
we can assume 0 < z < y and set t = % € [0,1). Then we have
Yy’ —x7 1-—t7 11—t
(y—ax)y — (1—t)y —1—t
From this one easily gets further examples since the composition of two

Holder continuous functions is again Holder continuous (the exponent being
the product). o

1.

It is easy to verify that this is a seminorm and that the corresponding
space is complete.
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Theorem 1.21. The space C’f’A’(U) of all functions whose partial derivatives
up to order k are bounded and Hélder continuous with exponent v € (0, 1]
form a Banach space with norm

ooy = [1f oo + D [Pafly- (1.78)

|a|=k

Note that by the mean value theorem all derivatives up to order lower
than k are automatically Lipschitz continuous. Moreover, every Holder con-
tinuous function is uniformly continuous and hence has a unique extension
to the closure U (cf. Theorem 1.26). In this sense, the spaces CS’V(U) and
C’l? 7(U) are naturally isomorphic. Consequently, we can also understand
CyY(U) in this fashion since for a function from Cy"7(U) all derivatives
have a continuous extension to U. For a function in Cf(U) this only works
for the derivatives of order up to k& — 1 and hence we define Cf(U) as the
functions from CF(U) for which all derivatives have a continuous extensions
to U. Note that with this definition CF(U) is still a Banach space (since
Cy(U) is a closed subspace of Cy(U)).

While the above spaces are able to cover a wide variety of situations,
there are still cases where the above definitions are not suitable. In fact, for
some of these cases one cannot define a suitable norm and we will postpone
this to Section 5.4.

Note that in all the above spaces we could replace complex-valued by
C™-valued functions.

Problem 1.43. Suppose f : [a,b] — C is Holder continuous with exponent
~v > 1. Show that f is constant.

Problem 1.44. Suppose X is a vector space and ||.||;, 1 < j < n, is a finite
family of seminorms. Show that ||z|| := Y%, ||lzll; is a seminorm. It is a
norm if and only if ||x||; = 0 for all j implies x = 0.

Problem 1.45. Show that Cy(U) is a Banach space when equipped with
the sup norm. Show that C.(U) = Co(U). (Hint: The function m.(z) =
sign(z) max(0, |z| — e) € C(C) might be useful.)

Problem 1.46. Suppose U is bounded. Show C’f’w(U) - Cfm(U) C CHU)
fOT’0<”yl<’)/2§1.

Problem 1.47. Show that the product of two bounded Holder continuous
functions is again Holder continuous with

[F9ly < 1 fllsclgly + [f]5 119l oo
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1.9. Appendix: Continuous functions on metric spaces

For now continuous functions on subsets of R™ will be sufficient for our
purpose. However, once we delve deeper into the subject we will also need
continuous functions on topological spaces X. Luckily most of the results
extend to this case in a more or less straightforward way. The purpose
of the present section is to convince you of this fact and to provide the
corresponding results for easy reference later on. You should skip this section
on first reading and come bak later when need arises.

Let X,Y be topological spaces and let C(X,Y) be the set of all con-
tinuous functions f : X — Y. Set C(X) := C(X,C). Moreover, if Y is a
metric space then C,(X,Y) will denote the set of all bounded continuous
functions, that is, those continuous functions for which sup,cx dy (f(x),v)
is finite for some (and hence for all) y € Y. Note that by the extreme value
theorem C(X,Y) = C(X,Y) if X is compact. For these functions we can
introduce a metric via

(f.9) = sup dy( (2, 9(2). (1.79)
zeX
In fact, the requirements for a metric are readily checked. Of course conver-
gence with respect to this metric implies pointwise convergence but not the
other way round.
Example. Consider X := [0, 1], then f,(x) := max(1—|nz—1|,0) converges
pointwise to 0 (in fact, f,(0) = 0 and f,(z) = 0 on [2,1]) but not with
respect to the above metric since f,(1) = 1. o
This kind of convergence is known as uniform convergence since
for every positive e there is some index N (independent of z) such that
dy (fn(z), f(x)) < e for n > N. In contradistinction, in the case of point-
wise convergence, N is allowed to depend on x. One advantage is that
continuity of the limit function comes for free.

Theorem 1.22. Let X be a topological space andY a metric space. Suppose
fn € C(X,Y) converges uniformly to some function f: X — Y. Then f is
continuous.

Proof. Let x € X be given and write y := f(z). We need to show that
f~Y(Bc:(y)) is a neighborhood of x for every e > 0. So fix e. Then we can find
an N such that d(f,, f) < § for n > N implying fg,l(BE/Q(y)) C f~Y(B:(y))

since d(fn(2),y) < 5 implies d(f(2),y) < d(f(2), fa(2)) + d(fn(2),y) <
5+5=cforn>N. O

Corollary 1.23. Let X be a topological space and Y a complete metric
space. The space Cy(X,Y") together with the metric d is complete.
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Proof. Suppose f, is a Cauchy sequence with respect to d, then f,(x)
is a Cauchy sequence for fixed z and has a limit since Y is complete.
Call this limit f(z). Then dy (f(z), fn(x)) = limp—oo dy (fin(x), fu(z)) <
Sup,,>n A(fm, fn) and since this last expression goes to 0 as n — oo, we see
that f, converges uniformly to f. Moreover, f € C (X,Y) by the previous
theorem so we are done. (]

Let Y be a vector space. By C.(X,Y) C Cp(X,Y) we will denote the set
of continuous functions with compact support. Its closure will be denoted
by Co(X,Y) := C.(X,Y) C Cp(X,Y). Of course if X is compact all these
spaces agree C.(X,Y) = Cop(X,Y) = Cp(X,Y) = C(X,Y). In the general
case one at least assumes X to be locally compact since if we take a closed
neighborhood V' of f(x) # 0 which does not contain 0, then f~(U) will be a
compact neighborhood of x. Hence without this assumption f must vanish
on every point which does not have a compact neighborhood and C.(X,Y)

will not be sufficiently rich.

Example. Let X be a separable and locally compact metric space and
Y =C". Then

Co(X,C") ={f € Cp(X,C")| Ve > 0,3K C X compact : (1.80)
[f(z)] <&, z€ X\ K}

To see this denote the set on the right-hand side by C. Let K,, be an
increasing sequence of compact sets with K,,, ,/* X (Lemma B.25) and let
©m be a corresponding sequence as in Urysohn’s lemma (Lemma B.28).
Then for f € C the sequence f,, = pnf € C.(X,C") will converge to f.
Conversely, if f,, € C.(X,C"™) converges to f € Cy(X,C"), then given € > 0
choose K = supp(fy,) for some m with d(fn,, f) < e.

In the case where X is an open subset of R” this says that Co(X,Y) are
those which vanish at the boundary (including the case as |z| — oo if X is
unbounded). o

Lemma 1.24. If X is a separable and locally compact space then Cy(X,C")
s separable.

Proof. Choose a countable base B for X and let Z the collection of all
balls in C™ with rational radius and center. Given O1,...,0,, € B and
Ii,....,I, € T we say that f € C.(X,C") is adapted to these sets if
supp(f) € UjL, O; and f(O;) C I;. The set of all tuples (Oj,I;)1<j<m
is countable and for each tuple we choose a corresponding adapted function
(if there exists one at all). Then the set of these functions F is dense. It suf-
fices to show that the closure of F contains C.(X,C"). Solet f € C.(X,C")
and let € > 0 be given. Then for every x € X there is some neighborhood
O(x) € Bsuch that | f(z)—f(y)| < € for y € O(z). Since supp(f) is compact,
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it can be covered by O(x1),...,O(zyp,). In particular f(O(x;)) € B:(f(x}))
and we can find a ball I; of radius at most 2¢ with f(O(z;)) C I;. Now let
g be the function from F which is adapted to (O(z;), I;)1<j<m and observe
that |f(z) — g(z)| < 4e since x € O(x;) implies f(x),g(z) € I;. O

Let X,Y be metric spaces. A function f € C(X,Y) is called uniformly
continuous if for every € > 0 there is a d > 0 such that

dy (f(z), fy)) <e whenever dx(z,y) <. (1.81)

Note that with the usual definition of continuity on fixes x and then chooses
0 depending on x. Here § has to be independent of x. If the domain is
compact, this extra condition comes for free.

Theorem 1.25. Let X be a compact metric space and Y a metric space.
Then every f € C(X,Y) is uniformly continuous.

Proof. Suppose the claim were wrong. Fix € > 0. Then for every 4,, = %
we can find x,, y, with dx(2n,yn) < o, but dy(f(xn), f(yn)) > €. Since
X is compact we can assume that z, converges to some x € X (after pass-
ing to a subsequence if necessary). Then we also have y, — x implying

dy (f(zn), f(yn)) — 0, a contradiction. O

Note that a uniformly continuous function maps Cauchy sequences to
Cauchy sequences. This fact can be used to extend a uniformly continuous
function to boundary points.

Theorem 1.26. Let X be a metric space and Y a complete metric space.
A uniformly continuous function f: A C X — Y has a unique continuous
extension f: A — Y. This extension is again uniformly continuous.

Proof. If there is an extension at all, it must be given by f(x) = lim, o0 f (),
where z,, € A is some sequence converging to € A. Indeed, since z,, con-
verges, f(x,) is Cauchy and hence has a limit since Y is assumed complete.
Moreover, uniqueness of limits shows that f(z) is independent of the se-
quence chosen. Also f(x) = f(x) for x € A by continuity. To see that f is
uniformly continuous, let € > 0 be given and choose a § which works for f.
Then for given z, y with dx (z,y) < g we can find Z,7 € A with dx (z,z) < g
and dy (f(z), f(x)) < ¢ as well as dx(§,y) < 3 and dy(f(), [(y) <

Hence dy (f(z), f(y)) < dv(f(z), f(Z)) + dy (f(2), f(§)) + dv (f(2), f(y)) <
3e. U

Next we want to identify relatively compact subsets in C'(X,Y). A
family of functions F' C C(X,Y) is called (uniformly) equicontinuous if
for every € > 0 there is a § > 0 such that

dy (f(z), f(y)) <e whenever dx(z,y) <9, VfEeEF. (1.82)
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That is, in this case ¢ is required to not only be independent of x € X but
also independent of the function f € F.

Theorem 1.27 (Arzela—Ascoli). Let X be a compact metric space and 'Y a
complete metric space. Let FF C C(X,Y) be a family of continuous functions.
Then every sequence from F has a uniformly convergent subsequence if and
only if F is equicontinuous and the set {f(x)|f € F} is bounded for every
x € X. In this case F is even bounded.

Proof. First of all note that if F' is equicontinuous and the set {f(z)|f € F'}
is bounded for all « then F' is bounded. To see this fix € and cover X by
balls Bs(x;). Then d(f(z),y) < max;supscpd(f(z;),y)+¢ for every z € X
and every f € F.

Now let f,, be a sequence from F'. Let {z;}32; be a dense subset of X (cf.
Corollary B.21). We will first construct a subsequence which converges on
this dense subset using a diagonal series argument: Since f,,(x1) is bounded,

we can choose a subsequence qul)(x) such that f,S,l)(:cl) converges (Bolzano—

Weierstra$). Similarly we can extract a subsequence f,(f) (x) from f,sl)(x)
which converges at xo (and hence also at x; since it is a subsequence of
fll) (x)). By induction we get a sequence fT(Lj)(J:) converging at z1,...,z;.
The diagonal sequence f,(z) = () () will hence converge for all = x;
(why?). We will show that it converges uniformly for all z:

Fix € > 0 and chose § such that dy (fn(2), fu(y)) < § for dx(z,y) <.
The balls Bs(z;) cover X and by compactness even finitely many, say 1 <
J < p, suffice. Furthermore, choose N such that dy (f(z;), fu(x;)) < § for
n,m>N:and 1 <75 <p.

Now pick = and note that « € Bs(x;) for some j. Thus

dy (fm (@), fa(2)) <dy (fin (@), fin(25)) + dy (fn(25), fu(2;))
+dy (fu(z)), fa(z)) <€

for n,m > N, which shows that fn is Cauchy with respect to the maximum
norm. By completeness of C(K) it has a limit.

To see the converse first note that if {f(x)|f € F'} were unbounded
for some z, then there would be a sequence of functions f,, such that
dy (fn(z), fo) — co. A contradiction. Similarly, if F' were not equicontinu-
ous, there must be an g9 > 0 such that for every n € N there is a function
fn € F and points x,, y, with dx(x,,y,) < % and dy (fn(zn), fn(yn)) > €o.
By passing to a subsequence we can assume x,, — x and hence also y,, — x.
Moreover, passing to yet another subsquence we can assume that f, — f

uniformly. But then 0 = dy (f(z), f(2)) = limy,— 00 dy (fn(2n), fu(yn)) > €o,
a contradiction. O
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In many situations a certain property can be seen for a class of nice
functions and then extended to a more general class of functions by ap-
proximation. In this respect it is important to identify classes of functions
which allow to approximate all functions. That is, in our present situation
we are looking for functions which are dense in C'(X,Y’). For example, the
classical Weierstrafl approximation theorem (see Theorem 1.3 below for an
elementary approach) says that the polynomials are dense in C([a,b]) for
any compact interval. Here we will present a generalization of this result.
For its formulation observe that C'(X) is not only a vector space but also
comes with a natural product, given by pointwise multiplication of func-
tions, which turns it into an algebra over C. By a subalgebra we will mean a
subspace which is closed under multiplication and by a *-subalgebra we will
mean a subalgebra which is also closed under complex conjugation. The
(*-)subalgebra generated by a sit is of course the smallest (x-)subalgebra
containing this set.

The proof will use the fact that the absolute value can be approximated
by polynomials on [—1,1]. This of course follows from the Weierstrafy ap-
proximation theorem but can also be seen directly by defining the sequence
of polynomials p,, via

t* — Pn (t)2
—s
Then this sequence of polynomials satisfies p,(t) < pp11(t) < |t| and con-
verges pointwise to |t| for ¢ € [—1,1]. Hence by Dini’s theorem (Prob-
lem 1.49) it converges uniformly. By scaling we get the corresponding result
for arbitrary compact subsets of the real line.

pi(t) =0,  puyi(t) = palt) + (1.83)

Theorem 1.28 (Stone—Weierstraf}, real version). Suppose K is a compact
topological space and consider C(K,R). If F C C(K,R) contains the identity
1 and separates points (i.e., for every x1 # xo there is some function f € F
such that f(x1) # f(x2)), then the subalgebra generated by F' is dense.

Proof. Denote by A the subalgebra generated by F. Note that if f € A,
we have |f| € A: Choose a polynomial p,(t) such that |[¢| — p,(t)| < & for
t € f(K) and hence p,(f) — | f].

In particular, if f, g are in A, we also have

max{f,g} = (+9) ;— ’f_g‘, min{f, g} =

(f+9)—If -4l
2

in A.
Now fix f € C(K,R). We need to find some f¢ € A with ||f — f¢]| < e.

First of all, since A separates points, observe that for given y,z € K
there is a function f, . € A such that f,.(y) = f(y) and f,.(2) = f(2)
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(show this). Next, for every y € K there is a neighborhood U(y) such that

fy,z(x) > f(x) —e, xzeU(y),
and since K is compact, finitely many, say U(y1),...,U(y;), cover K. Then

fo=max{fy, ... fy,-} €A

and satisfies f, > f —e by construction. Since f,(z) = f(z) for every z € K,
there is a neighborhood V' (z) such that

fo(x) < f(x)+¢e, zeV(2),
and a corresponding finite cover V(z1),...,V(z). Now

fe=min{f.,....f,,} €A

satisfies f. < f +¢e. Since f — e < f;, for all z; we have f —e < f. and we
have found a required function. O

Theorem 1.29 (Stone—Weierstrafl). Suppose K is a compact topological
space and consider C(K). If F C C(K) contains the identity 1 and separates
points, then the x-subalgebra generated by F' is dense.

Proof. Just observe that F = {Re(f),Im(f)|f € F} satisfies the assump-
tion of the real version. Hence every real-valued continuous function can be
approximated by elements from the subalgebra generated by F; in partic-
ular, this holds for the real and imaginary parts for every given complex-
valued function. Finally, note that the subalgebra spanned by F contains
the x-subalgebra spanned by F' O

Note that the additional requirement of being closed under complex
conjugation is crucial: The functions holomorphic on the unit disc and con-
tinuous on the boundary separate points, but they are not dense (since the
uniform limit of holomorphic functions is again holomorphic).

Corollary 1.30. Suppose K is a compact topological space and consider
C(K). If F C C(K) separates points, then the closure of the x-subalgebra
generated by F is either C(K) or {f € C(K)|f(to) = 0} for some ty € K.

Proof. There are two possibilities: either all f € F vanish at one point
to € K (there can be at most one such point since F' separates points) or
there is no such point.

If there is no such point, then the identity can be approximated by
elements in A: First of all note that |f| € A if f € A, since the polynomials
pn(t) used to prove this fact can be replaced by p, (t) —py, (0) which contain no
constant term. Hence for every point y we can find a nonnegative function
in A which is positive at y and by compactness we can find a finite sum
of such functions which is positive everywhere, say m < f(t) < M. Now
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approximate min(m~1¢,t~1) by polynomials ¢, (t) (again a constant term is
not needed) to conclude that ¢,(f) — f~' € A. Hence 1 = f- f~' € A as
claimed and so A = C'(K) by the Stone-Weierstraf theorem.

If there is such a ty we have A C {f € C(K)|f(to) = 0} and the
identity is clearly missing from A. However, adding the identity to A we
get A+ C = C(K) by the Stone-Weierstral theorem. Moreover, if € C(K)
Wlthf(to)—()wegetf f+aw1thf€Aanda€(C But 0 = f(tg) =
f(to) + @ = a implies f = f € A, that is, A = {f € C(K)|f(tx) =0}. O

Problem 1.48. Suppose X is compact and connected and let F C C(X,Y)
be a family of equicontinuous functions. Then {f(x)|f € F} bounded for
one x implies F' bounded.

Problem 1.49 (Dini’s theorem). Suppose X is compact and let f,, € C(X)
be a sequence of decreasing (or increasing) functions converging pointwise
fu(x) \( f(2) to some function f € C(X). Then f, — f uniformly. (Hint:
Reduce it to the case fr, \y 0 and apply the finite intersection property to
fatlle,00).)

Problem 1. 50 Letk € N and I CR. Show that the x-subalgebra generated
by fx(t) = (=D for one zg € C and k € N is dense in the set Co(I) of
continuous functwns vanishing at infinity:

o for =R ifzoc C\R and k=1 or k=2,

o for I =a,00) if zp € (—o0,a) and k arbitrary,

o for I = (—o0,a]U[b,00) if zo € (a,b) and k odd.
(Hint: Add oo to R to make it compact.)
Problem 1.51. Let U C C\R be a set which has a limit point and is sym-
metric under complex conjugation. Show that the span of {(t—z)"tz € U} is

dense in the set Co(R) of continuous functions vanishing at infinity. (Hint:
The product of two such functions is in the span provided they are different.)

Problem 1.52. Let K C C be a compact set. Show that the set of all
functions f(z) = p(x,y), where p : R? — C is polynomial and z = x + iy, is
dense in C(K).






Chapter 2

Hilbert spaces

2.1. Orthonormal bases

In this section we will investigate orthonormal series and you will notice
hardly any difference between the finite and infinite dimensional cases. Through-
out this chapter $) will be a (complex) Hilbert space.

As our first task, let us generalize the projection into the direction of
one vector:

A set of vectors {u;} is called an orthonormal set if (uj,ui) = 0
for j # k and (uj,u;) = 1. Note that every orthonormal set is linearly
independent (show this).

Lemma 2.1. Suppose {uj};?zl is an orthonormal set. Then every f € H
can be written as

n

F=R+fn f =) {u, Hu, (2.1)

=1

where f| and fi are orthogonal. Moreover, (uj, f1) =0 forall1 < j <n.
In particular,

12 =D g, AP+ LI (2.2)
j=1

Moreover, every f in the span of {u;}7_y satisfies

1F = Fll = 152 (2.3)

with equality holding if and only fo = f- In other words, f is uniquely
characterized as the vector in the span of {uj};?:l closest to f.

47
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Proof. A straightforward calculation shows (uj, f — f) = 0 and hence fj
and f, = f — f are orthogonal. The formula for the norm follows by
applying (1.44) iteratively.

Now, fix a vector
n
f=2_aju
j=1
in the span of {u;}7_;. Then one computes

1f = FIP =1y + Fo = FI2 = L2+ 11y — FIIP
= ILIP+ D lay = (uy, )
j=1

from which the last claim follows. O

From (2.2) we obtain Bessel’s inequality
D HE < IFIP (2.4)
j=1

with equality holding if and only if f lies in the span of {u;}7_;.

Of course, since we cannot assume ) to be a finite dimensional vec-
tor space, we need to generalize Lemma 2.1 to arbitrary orthonormal sets
{uj}jes. We start by assuming that J is countable. Then Bessel’s inequality
(2.4) shows that

2
> 1w, )l (2.5)
JjeJ
converges absolutely. Moreover, for any finite subset K C J we have
2 2
1Y Cugs Hrusll =Y [{uys )] (2.6)
JEK JEK
by the Pythagorean theorem and thus Zjej<uj, f)u; is a Cauchy sequence
if and only if Z]EJ |(uj, £)|? is. Now let J be arbitrary. Again, Bessel’s
inequality shows that for any given € > 0 there are at most finitely many

j for which [(u;, f)| > € (namely at most || f||/¢). Hence there are at most
countably many j for which |(u;, f)| > 0. Thus it follows that

> g P (2.7)
jedJ
is well defined (as a countable sum over the nonzero terms) and (by com-
pleteness) so is
> (uy, fiuy. (2.8)
jeJ
Furthermore, it is also independent of the order of summation.
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In particular, by continuity of the scalar product we see that Lemma 2.1
can be generalized to arbitrary orthonormal sets.

Theorem 2.2. Suppose {u;j}jcs is an orthonormal set in a Hilbert space
. Then every f € § can be written as

F=h+fn f =), Hu, (2.9)
Jj€J
where f and f1 are orthogonal. Moreover, (uj, f1) =0 for all j € J. In
particular,

AP =D gy AP+ I1FLI2. (2.10)
jeJ

Furthermore, every f € span{u;}jes satisfies

1f = Fll = 152 (2.11)

with equality holding if and only z'ff = f|- In other words, f is uniquely
characterized as the vector in span{u;};cs closest to f.

Proof. The first part follows as in Lemma 2.1 using continuity of the scalar
product. The same is true for the last part except for the fact that every
f € span{u;}cs can be written as f = ZjeJ ajuj (i.e., f = fi). To see this,
let f, € span{u;};jcs converge to f. Then || f—f,|* = ‘|fH—an2+HfJ_||2 —0
implies f, — f” and f; =0. (]

Note that from Bessel’s inequality (which of course still holds), it follows
that the map f — f) is continuous.

Of course we are particularly interested in the case where every f € $
can be written as > ;(u;, f)u;. In this case we will call the orthonormal
set {u;}jcs an orthonormal basis (ONB).

If $ is separable it is easy to construct an orthonormal basis. In fact,
if ) is separable, then there exists a countable total set { fj}évzl. Here
N € N if § is finite dimensional and N = oo otherwise. After throwing
away some vectors, we can assume that f, 11 cannot be expressed as a linear

combination of the vectors f1, ..., f,. Now we can construct an orthonormal
set as follows: We begin by normalizing fi:
fi
Uy = . (2.12)
£

Next we take fo and remove the component parallel to u; and normalize
again:

DR Sl CUES Y (2.13)

Nl fe = (u, fo)ual”
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Proceeding like this, we define recursively
-1
- fn — Z?:l <uj7 fn>uj
n = — :
1fn = 22521 (ugs ) usl
This procedure is known as Gram—Schmidt orthogonalization. Hence
we obtain an orthonormal set {u; }jN:1 such that span{u;}7_; = span{f;}7_,

(2.14)

for any finite n and thus also for n = N (if N = c0). Since {fj}j-v:l is total,
S0 1s {u]}évzl Now suppose there is some f = f|+ f1 € $ for which f, # 0.
Since {uj}év:l is total, we can find a f in its span such that || f — f|| < || fL|,
contradicting (2.11). Hence we infer that {u; };VZI is an orthonormal basis.

Theorem 2.3. FEvery separable Hilbert space has a countable orthonormal
basis.

Example. In £2,(—1,1), we can orthogonalize the monomials f,(z) = 2"

(which are total by the Weierstrafl approximation theorem — Theorem 1.3).
The resulting polynomials are up to a normalization equal to the Legendre
polynomials

Po(z) =1, Pi(z) =z, Pyla)= ?””22_1 (2.15)

(which are normalized such that P,(1) = 1). o
Example. The set of functions

up(z) = Leim”, n € Z, (2.16)

V2T
2

forms an orthonormal basis for = £,,,(0,27). The corresponding or-
thogonal expansion is just the ordinary Fourier series. We will discuss this
example in detail in Section 2.5. o

The following equivalent properties also characterize a basis.

Theorem 2.4. For an orthonormal set {u;};cs in a Hilbert space §, the
following conditions are equivalent:
(i) {uj}jes is a mazimal orthogonal set.
(ii) For every vector f € $ we have
f=" (uj, fru;. (2.17)
jeJ
(iii) For every vector f € $ we have Parseval’s relation
P17 =D 1wy, NI (2.18)
jeJ
(iv) (uj, f) =0 for all j € J implies f = 0.
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Proof. We will use the notation from Theorem 2.2.

(i) = (ii): If fi # 0, then we can normalize f| to obtain a unit vector f|
which is orthogonal to all vectors u;. But then {u;};c; U {f,} would be a
larger orthonormal set, contradicting the maximality of {u;};e..

(ii) = (iii): This follows since (ii) implies f; = 0.

(iii) = (iv): If (f,u;) = 0 for all j € J, we conclude ||f||*> = 0 and hence
f=0.

(iv) = (i): If {u;};cs were not maximal, there would be a unit vector g such
that {u;};cs U{g} is a larger orthonormal set. But (uj,g) =0 for all j € J
implies g = 0 by (iv), a contradiction. O

By continuity of the norm it suffices to check (iii), and hence also (ii),
for f in a dense set. In fact, by the inverse triangle inequality for £2(N) and
the Bessel inequality we have

D Mg, AP = Hup )P < D Wugo f=g) 2 [> [y, £+ )2

JjeJ jeJ jedJ jeJ
< |f = glllf +4ll (2.19)
implying ZjeJ |<uj7fn>‘2 — ZjeJ |<uj’ f>’2 if fr, — f.

It is not surprising that if there is one countable basis, then it follows
that every other basis is countable as well.

Theorem 2.5. In a Hilbert space $ every orthonormal basis has the same
cardinality.

Proof. Let {u;};cs and {v; }rer be two orthonormal bases. We first look at
the case where one of them, say the first, is finite dimensional: J = {1,...n}.
Suppose the other basis has at least n elements {1,...n} C K. Then v, =
Z?Zl Uy juj, where Uy ; = (uj,vg). By 05 = (vj,v6) = >, U5 Uk, we
seeuj =y U ,j Uk showing that K cannot have more than n elements.
Now let us turn to the case where both J and K are infinite. Set
K; = {k € K|(vg,u;) # 0}. Since these are the expansion coefficients
of u; with respect to {vy }rex, this set is countable (and nonempty). Hence
the set K = Ujes K satisfies |K| < |J x N| = |J| (Theorem A.9) But
k € K\ K implies v = 0 and hence K = K. So |K| < |.J| and reversing the
roles of J and K shows |K| = |J|. O

The cardinality of an orthonormal basis is also called the Hilbert space
dimension of $.

It even turns out that, up to unitary equivalence, there is only one
separable infinite dimensional Hilbert space:
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A bijective linear operator U € £($1,$2) is called unitary if U pre-
serves scalar products:

<Ugan>2:<gvf>17 gafeﬁl- (220)
By the polarization identity, (1.51) this is the case if and only if U preserves
norms: ||Ufll2 = ||f|1 for all f € $; (note the a norm preserving linear

operator is automatically injective). The two Hilbert spaces £; and $)2 are
called unitarily equivalent in this case.

Let $) be a separable infinite dimensional Hilbert space and let {u;} en
be any orthogonal basis. Then the map U : § — *(N), f — ((uj, f))jen
is unitary. Indeed by Theorem 2.4 (iii) it is norm preserving and hence injec-
tive. To see that it is onto, let a € £2(N) and observe that by || D imm U I? =
diem la;j|? the vector f := > jen aju; is well defined and satisfies a; =
(uj, f). In particular,

Theorem 2.6. Any separable infinite dimensional Hilbert space is unitarily
equivalent to (*(N).

Of course the same argument shows that every finite dimensional Hilbert
space of dimension n is unitarily equivalent to C™ with the usual scalar
product.

Finally we briefly turn to the case where $) is not separable.

Theorem 2.7. Fvery Hilbert space has an orthonormal basis.

Proof. To prove this we need to resort to Zorn’s lemma (see Appendix A):
The collection of all orthonormal sets in $) can be partially ordered by in-
clusion. Moreover, every linearly ordered chain has an upper bound (the
union of all sets in the chain). Hence Zorn’s lemma implies the existence of
a maximal element, that is, an orthonormal set which is not a proper subset
of every other orthonormal set. O

Hence, if {u;} e is an orthogonal basis, we can show that ) is unitarily
equivalent to ¢2(.J) and, by prescribing .J, we can find a Hilbert space of any
given dimension. Here £2(.J) is the set of all complex valued functions (a;) e
where at most countably many values are nonzero and Zje sla;? < oc.

Example. Define the set of almost periodic functions AP(R) as the
closure of the set of trigonometric polynomials

n
f(t) = Zakewkt, ap € C, 0, e R,
k=1

with respect to the sup norm. In particular AP(R) C Cy(R) is a Banach
space when equipped with the sup norm. Since the trigonometric polynomi-
als form an algebra, it is even a Banach algebra. Using the Stone—Weierstrafl
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theorem one can verify that every periodic function is almost periodic (make
the approximation on one period and note that you get the rest of R for free
from periodicity) but the converse is not true (e.g. 't +eiV2t is not periodic).

It is not difficult to show that every almost periodic function has a mean
value

MUr—ml/ 7t

T—oo0 2T

and one can show that
(fig):==M(f"g)

defines a scalar product on AP(R) (only positivity is nontrivial and it will
not be shown here). Note that ||f|| < ||f|lee. Abbreviating eg(t) = ¢ one
computes M(eg) = 0if 6 # 0 and M(eg) = 1. In particular, {eg}per is an
uncountable orthonormal set and

Ft) = f(0) = (e, f) = M(e—of)

maps AP(R) isometrically (with respect to ||.||) into ¢2(R). This map is
however not surjective (take e.g. a Fourier series which converges in mean
square but not uniformly — see later). o

Problem 2.1. Given some vectors fi,..., fn we define their Gram deter-
minant as

F(flv R fn) := det (<fj7 fk>)1§j,k§n )

Show that the Gram determinant is nonzero if and only if the vectors are
linearly independent. Moreover, show that in this case

_ F(flafnag)

. 2
dist(g,span{fu,... fn})" = "7

and

F%wwhﬁfﬂﬁﬁ

with equality if the vectors are orthogonal. (Hint: How does I' change when
you apply the Gram—Schmidt procedure?)

Problem 2.2. Let {u;} be some orthonormal basis. Show that a bounded
linear operator A is uniquely determined by its matriz elements Aj, =
(uj, Auy) with respect to this basis.

Problem 2.3. Give an example of a nonempty closed bounded subset of a
Hilbert space which does not contain an element with minimal norm.
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2.2. The projection theorem and the Riesz lemma

Let M C § be a subset. Then M+ = {f|{g,f) = 0,Vg € M} is called
the orthogonal complement of M. By continuity of the scalar prod-
uct it follows that M~ is a closed linear subspace and by linearity that
(span(M))+ = M+. For example, we have H* = {0} since any vector in $H+
must be in particular orthogonal to all vectors in some orthonormal basis.

Theorem 2.8 (Projection theorem). Let M be a closed linear subspace of
a Hilbert space ). Then every [ € §) can be uniquely written as f = f+ f1

with f € M and f, € M~ One writes
Mo M=9 (2.21)

i this situation.

Proof. Since M is closed, it is a Hilbert space and has an orthonormal
basis {u;}jcs. Hence the existence part follows from Theorem 2.2. To see
uniqueness, suppose there is another decomposition f = f; + fi. Then

fiy = fy=FfL—fre MM+t ={o}. 0

Corollary 2.9. Every orthogonal set {u;}jc; can be extended to an orthog-
onal basis.

Proof. Just add an orthogonal basis for ({u;};e/)*. O

Moreover, Theorem 2.8 implies that to every f € £ we can assign a
unique vector f; which is the vector in M closest to f. The rest, f — fj,
lies in M~*. The operator Py f := J is called the orthogonal projection
corresponding to M. Note that we have

Py =Py and  (Pyg, f) = {9, Puf) (2.22)

since (Pug, f) = (g, fy) = (9,Puf). Clearly we have Py f = f —
Py f = fi. Furthermore, (2.22) uniquely characterizes orthogonal pro-
jections (Problem 2.6).

Moreover, if M is a closed subspace, we have Py i1 = [ — Py =
I — (I — Py) = Py; that is, M+ = M. If M is an arbitrary subset, we
have at least

M+t = span(M). (2.23)

Note that by $1 = {0} we see that M+ = {0} if and only if M is total.

Finally we turn to linear functionals, that is, to operators ¢ : $§ — C.
By the Cauchy-Schwarz inequality we know that £, : f — (g, f) is a bounded
linear functional (with norm ||g||). In turns out that, in a Hilbert space,
every bounded linear functional can be written in this way.
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Theorem 2.10 (Riesz lemma). Suppose £ is a bounded linear functional on
a Hilbert space $). Then there is a unique vector g € $) such that £(f) = (g, f)
forall f € 9.

In other words, a Hilbert space is equivalent to its own dual space H* = §
via the map f +— (f,.) which is a conjugate linear isometric bijection between

£ and H*.

Proof. If ¢ = 0, we can choose g = 0. Otherwise Ker(¢) = {f|¢(f) = 0}
is a proper subspace and we can find a unit vector § € Ker(ﬁ)J—. For every
f €% we have ¢(f)g —£(g)f € Ker(¢) and hence

0=1(g,(f)g —Ug)f) = L(f) — €g)(3. f)-
In other words, we can choose g = £(§)*g. To see uniqueness, let g1, g2 be

two such vectors. Then (g1 — g2, f) = (g1, f) — (92, [) = £(f) — £(f) = 0 for
every f € §, which shows g1 — g2 € H+ = {0}. O

In particular, this shows that $* is again a Hilbert space whose scalar
product (in terms of the above identification) is given by ((f,.), (g, .))s* =

(fi9)".

We can even get a unitary map between $) and $H* but such a map is
not unique. To this end note that every Hilbert space has a conjugation C'
which generalizes taking the complex conjugate of every coordinate. In fact,
choosing an orthonormal basis (and different choices will produce different
maps in general) we can set

jeJ jeJ
Then C is conjugate linear, isometric |Cf| = | f||, and idempotent C? = L.

Note also (C'f,Cg) = (f,g)*. As promised, the map f — (C'f,.) is a unitary
map from $) to H*.

Problem 2.4. Suppose U : $§ — $ is unitary and M C $. Show that
UM+ = (UM)*.

Problem 2.5. Show that an orthogonal projection Py; # 0 has norm one.
Problem 2.6. Suppose P € £ ($) satisfies
P*=P  and  (Pf,g)=(f,Pg)
and set M = Ran(P). Show
o Pf=f for fe M and M s closed,
e g€ Mt implies Pg € M+ and thus Pg = 0,
and conclude P = Py;. In particular

$ = Ker(P) & Ran(P), Ker(P) = (I — P)$, Ran(P) = P$.
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2.3. Operators defined via forms

One of the key results about linear maps is that they are uniquely deter-
mined once we know the images of some basis vectors. In fact, the matrix el-
ements with respect to some basis uniquely determine a linear map. Clearly
this raises the question how this results extends to the infinite dimensional
setting. As a first result we show that the Riesz lemma, Theorem 2.10,
implies that a bounded operator A is uniquely determined by its associ-
ated sesquilinear form (g, Af). In fact, there is a one-to-one correspondence
between bounded operators and bounded sesquilinear forms:

Lemma 2.11. Suppose s : H1 X Ho — C is a bounded sesquilinear form;

that 1is,
5(9, /)l < Cliglls, 1115, (2.24)
Then there is a unique bounded operator A € £ ($1,$2) such that
5(9,f) = (9, Af) .- (2.25)
Moreover, the norm of A is given by
[Al= " sup  [{g,Af)q,| < C. (2.26)

lgllsy=I1flln, =1

Proof. For every f € $); we have an associated bounded linear functional
ls(g) == s(g, f)* on $H2. By Theorem 2.10 there is a corresponding h € $2
(depending on f) such that £;(g) = (h, g)g,, that is s(g, f) = (g, h)s, and
we can define A via Af := h. It is not hard to check that A is linear and
from
IAfIIR, = (Af, Af)n, = s(AS. ) < CllAf 6.1l fll6n

we infer ||Af|ls, < C||flls,, which shows that A is bounded with ||A] < C.
Equation (2.26) is left as an exercise (Problem 2.9). O

Note that if {uy }rerx C 91 and {v;},cs C 92 are some orthogonal bases,
then the matrix elements A; ;. := (v;, Aug) g, for all (j,k) € J x K uniquely
determine (g, Af)g, for arbitrary f € 91, g € 92 (just expand f,g with
respect to these bases) and thus A by our theorem.

Example. Consider /2(N) and let A € .Z(¢(N)) be some bounded operator.
Let Aj = (87, AS%) be its matrix elements such that

(o.0]
(Aa); = Ajrax.
k=1
Here the sum converges in ¢?(N) and hence, in particular, for every fixed
J. Moreover, choosing a = apAj, for k < n and a}} = 0 for k > n with
an = (X [Aj))? we see an = |(Aa");| < [|A[[la”|| = [|A]. Thus
PO |Ajr|? < ||A|? and the sum is even absolutely convergent. o
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Moreover, for A € Z($) the polarization identity (Problem 1.19) im-
plies that A is already uniquely determined by its quadratic form ga(f) :=

(f,Af).

As a first application we introduce the adjoint operator via Lemma 2.11
as the operator associated with the sesquilinear form s(f, g) := (Af, g)¢,.

Theorem 2.12. For every bounded operator A € £ ($1,92) there is a
unique bounded operator A* € £ ($2,$1) defined via

<f7 A*g>ﬁ1 = <Af, g>~62' (2'27)

A bounded operator A € Z($)) satisfying A* = A is called self-adjoint.
Note that ga-(f) = (Af, f) = qa(f)* and hence a bounded operator is self-
adjoint if and only if its quadratic form is real-valued.

Example. Iff) :=C" and A := (ajk)1§j7k§n, then A* = (altj)lﬁj,kﬁn' <&
Example. If I € Z(9) is the identity, then I* = I o

Example. Consider the linear functional ¢ : $§ — C, f — (g, f). Then by
the definition (f,*a) = £(f)*a = (f, ag) we obtain /* : C — 9, a — ag. ©

Example. Let § := (?(N), a € ¢*°(N) and consider the multiplication
operator

(Ab)j = ajbj.
Then
(0.) (o]
(Abyc) =Y (ajbj)"ej =Y bi(aje;) = (b, A%¢)
j=1 j=1
with (A*c); = ajcj, that is, A* is the multiplication operator with a*. o

Example. Let ) := /2(N) and consider the shift operators defined via
(Sia)j = Q41

with the convention that ag = 0. That is, S~ shifts a sequence to the right
and fills up the left most place by zero and ST shifts a sequence to the left
dropping the left most place:

Si(a17a27a37” ) - (0,@1,(127' ")7 S+(a1,a2,a3,- ) - (CLQ,CL37CL47"‘).

Then

(S"a,b)=> a;_ibj =Y atbjy1 = (a,STb),
j=2 j=1

which shows that (S7)* = ST. Using symmetry of the scalar product we
also get (b, S~a) = (Stb,a), that is, (ST)* = S~.
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Note that ST is a left inverse of S—, STS~ = I, but not a right inverse
as STST # 1. This is different from the finite dimensional case, where a left
inverse is also a right inverse and vice versa. o

Example. Suppose U € £ ($1,$2) is unitary. Then U* = U~!. This fol-
lows from Lemma 2.11 since (f, g)s, = (Uf,Ug)|nr, = (f,U*Ug)g, implies
U*U = I,. Since U is bijective we can multiply this last equation from the
right with U~! to obtain the claim. Of course this calculation shows that
the converse is also true, that is U € Z(91,$2) is unitary if and only if
Ur=U"1 o

A few simple properties of taking adjoints are listed below.

Lemma 2.13. Let A, B € £($1,92), C € L(H2,93), and o € C. Then
(i) (A+ B)* = A* + B*, (aA)* = a* A*,
(il) A =
(iii) (CA)* A*C*
(iv) [|A*[| = [|A]l and [|A[]* = [[A*Al| = || AA*]|.

Proof. (i)isobvious. (ii) follows from (g, A** f)g, = (A%g, f)9, = (9, Af)s,-
(iii) follows from (g, (CA)f)s, = (C*g, Af)g, = (A*C*g, f)g,. (iv) follows
using (2.26) from

[A*[ = sup [, A"g)s, [ = sup  [(Af,9)n,l

17119, =llgllo=1 1115, =llglloy =1
= sup [{g, Af)s,| = (Al

”fHYJl:”ng)Qzl

and
|A"All = sup  [(f,A"Ag)s,[ =  sup  [(Af, Ag)s,|
[£ll5,=llglla,=1 1fll51=llgllo,=1
= sup [Af|* = ||Al>,
fllo; =1
where we have used that [(Af, Ag)g,| attains its maximum when Af and
Ag are parallel (compare Theorem 1.5). O
Note that ||Al| = |[|A*|| implies that taking adjoints is a continuous op-
eration. For later use also note that (Problem 2.11)
Ker(A*) = Ran(A)™*. (2.28)

For the remainder of this section we restrict to the case of one Hilbert
space. A sesquilinear form s : ) x $) — C is called nonnegative if s(f, f) >0
and we will call A € Z($)) nonnegative, A > 0, if its associated sesquilin-
ear form is. We will write A > B if A — B > 0. Observe that nonnegative
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operators are self-adjoint (as their quadratic forms are real-valued — here
it is important that the underlying space is complex).

Example. For any operator A the operators A*A and AA* are both
nonnegative. In fact (f, A*Af) = (Af Af) = ||Af||> > 0 and similarly
(f,AA*f) = | A*f|]* > 0. °

Lemma 2.14. Suppose A € Z(9) satisfies A > €l for some ¢ > 0. Then
A is a bijection with bounded inverse, [[A71]| < 1.

Proof. By definition | | < (f, Af) < || fII|Af]l and thus || f] < [Af].
In particular, Af = 0 implies f = 0 and thus for every g € Ran(A) there is
a unique f = A~'g. Moreover, by [[A7'g| = ||f|| < e[| Af[| =e7"||g]| the
operator A~! is bounded. So if g, € Ran(A) converges to some g € §, then
fn = A~ lg, converges to some f. Taking limits in g, = Af, shows that
g = Af is in the range of A, that is, the range of A is closed. To show that
Ran(A) = $ we pick h € Ran(A)*. Then 0 = (h, Ah) > ||h||> shows h = 0
and thus Ran(A)* = {0}. O

Combining the last two results we obtain the famous Lax—Milgram the-
orem which plays an important role in theory of elliptic partial differential
equations.

Theorem 2.15 (Lax-Milgram). Let s : $ x $ — C be a sesquilinear form
which is

e bounded, |s(f,g)| < C|f| llgll, and
e coercive, s(f, f) > e||f||? for some e > 0.

Then for every g € $ there is a unique f € 9 such that
s(h,f)=(h.g),  VheSH. (2.29)

Proof. Let A be the operator associated with s. Then A > ¢ and f =
A~ lg. O
Example. Consider §) = ¢?(N) and introduce the operator

(Aa)j = —aj+1 + 2aj — aj_l

which is a discrete version of a second derivative (discrete one-dimensional
Laplace operator). Here we use the convention ag = 0, that is, (Aa); =
—ag + 2a1. In terms of the shift operators S + we can write

A=-ST42-8 =(ST-1)(S™ 1)
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and using (S*)* = ST we obtain
sa(a,b) = (8™ = 1a, (S~ = 1)b) =Y (a;-1 — a;)*(bj—1 — bj).
j=1
In particular, this shows A > 0. Moreover, we have |s4(a,b)| < 4]|all2||b||2
or equivalently ||A] < 4.
Next, let
(Qa); = qja;
for some sequence g € ¢°°(N). Then

sg(a,b) = Z qja;b;
j=1

and [sg(a,b)| < ||qllsc]|al|2]|b]]2 or equivalently ||Q]| < [|¢|loo- If in addition
q; > € > 0, then sa1g(a,b) = sa(a,b) + sg(a,b) satisfies the assumptions
of the Lax—Milgram theorem and

(A+Q)a=b
has a unique solution a = (4 + Q)b for every given b € ¢?(Z). Moreover,
since (A + Q)™ ! is bounded, this solution depends continuously on b. o

Problem 2.7. Let $H1, 2 be Hilbert spaces and let u € $H1, v € Ha. Show
that the operator

Af = (u,f>v

is bounded and compute its norm. Compute the adjoint of A.

Problem 2.8. Show that under the assumptions of Problem 1.35 one has
FA)" = f#(A*) where [#(z) = f(2*)".

Problem 2.9. Prove (2.26). (Hint: Use || f|| = sup|q=1 [{9, f)| — compare
Theorem 1.5.)

Problem 2.10. Suppose A € £($1,$2) has a bounded inverse A~! €
ZL(92,91). Show (A~H)* = (A*)~L.

Problem 2.11. Show (2.28).

Problem 2.12. Show that every operator A € £ (%) can be written as the
linear combination of two self-adjoint operators Re(A) := (A + A*) and
Im(A) := (A — A*). Moreover, every self-adjoint operator can be written
as a linear combination of two unitary operators. (Hint: For the last part

consider f1(z) = z £iV1 — 22 and Problems 1.35, 2.8.)

Problem 2.13 (Abstract Dirichlet problem). Show that the solution of
(2.29) is also the unique minimizer of

Re(%s(h, h) — <h,g>).
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2.4. Orthogonal sums and tensor products

Given two Hilbert spaces $1 and $)2, we define their orthogonal sum
1 D N2 to be the set of all pairs (f1, f2) € H1 x Ha together with the scalar
product

((91,92), (f1, f2)) = (91, [1) 5, + (92, f2)5,- (2.30)

It is left as an exercise to verify that $; @ $9 is again a Hilbert space.
Moreover, $); can be identified with {(f1,0)|f1 € 1}, and we can regard
1 as a subspace of 1 P Ho, and similarly for $5. With this convention
we have ${ = 9o. It is also customary to write f; @ fo instead of (fi, fo).
In the same way we can define the orthogonal sum @;L:l $); of any finite
number of Hilbert spaces.

Example. For example we have @?:1 C = C™ and hence we will write

@?:lﬁ = 57-)” o

More generally, let §;, j € N, be a countable collection of Hilbert spaces
and define

D5 =D il fi €95 D Ifills, <ol (2.31)
j=1 j=1 j=1

which becomes a Hilbert space with the scalar product

Do i) = {9 fi)s, (2.32)
=1 =1 =1
Example. P2, C = 2(N). o

Similarly, if $ and § are two Hilbert spaces, we define their tensor
product as follows: The elements should be products f® f of elements f € §
and f € . Hence we start with the set of all finite linear combinations of
elements of § x y:)

F($,9) =D ai(fi, (i, f5) € 9 x H, aj € C}. (2.33)

J=1

Since we want (fi+ f2)® f = (@ f+ Lo f, fo(fi+f) = f@fi+ @ fa,
and (af) @ f = f @ (af) = a(f @ f) we consider F($,$)/N($,$), where

N($,9) =span{ > a;Be(fj, fr) — O _ifi, > Befr)} (2.34)
j=1 k=1

Jk=1

and write f ® f for the equivalence class of (f, f ). By construction, every
element in this quotient space is a linear combination of elements of the type

f&ef.
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Next, we want to define a scalar product such that

(fofged) =90 (2.35)

holds. To this end we set

sOY (£, £): D Brlgrs ) = Y ciBelfis ar)o(Fin kg, (2.36)
j=1 k=1

J,k=1

which is a symmetric sesquilinear form on F($, ). Moreover, one verifies

that s(f,g) = 0 for arbitrary f € F($,9) and g € N'($,9) and thus

O i fi® > Broe®dr) = Y ;Belfi gr)o(Fir i) (2.37)
k=1

j=1 = 7,k=1

is a symmetric sesquilinear form on F (£, ) /N (£, 9). To show that this is in
fact a scalar product, we need to ensure positivity. Let f =) . o fi® f; #0
and pick orthonormal bases u;, Gy, for span{ f; }, span{ f; }, respectively. Then

= ojpu @i, e =Y oi{uy, fi)s i, fi)g (2.38)
gk i
and we compute

(£, )= legl* > 0. (2.39)
4.k

The completion of F($),9)/N (.‘7)3.‘;)) with respect to the induced norm is
called the tensor product H ® $ of $H and .

Lemma 2.16. If u;, 4y are orthonormal bases for §, Jr:), respectively, then
uj ® Uy is an orthonormal basis for H ® $.

Proof. That u; ® 4, is an orthonormal set is immediate from (2.35). More-
over, since span{u;}, span{u} are dense in ), $), respectively, it is easy to
see that u; ® 4 is dense in F($,9)/N($,9). But the latter is dense in
HH. O

Note that this in particular implies dim($) ® ) = dim($) dim($).
Example. We have $ @ C" = H™. o

Example. We have ¢2(N)®¢?(N) = ¢/2(N x N) by virtue of the identification
(ajk) = > ik a;r6? @ 5F where 87 is the standard basis for ¢2(N). In fact,
this follows from the previous lemma as in the proof of Theorem 2.6. o
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It is straightforward to extend the tensor product to any finite number
of Hilbert spaces. We even note

(éﬁj) ®H= é(ﬁj ®9), (2.40)

where equality has to be understood in the sense that both spaces are uni-
tarily equivalent by virtue of the identification

O _mer=>_fiof. (2.41)
j=1 =1

Problem 2.14. Show that f @ f =0 if and only if f =0 or f = 0.

Problem 2.15. We have f ® f = g® g # 0 if and only if there is some
a € C\ {0} such that f = ag and f = a~'3.

Problem 2.16. Show (2.40).

2.5. Applications to Fourier series

We have already encountered the Fourier sine series during our treatment
of the heat equation in Section 1.1. Given an integrable function f we can
define its Fourier series

S(f)(x) == % +3 " ag cos(kz) + by sin(kz), (2.42)
keN
where the corresponding Fourier coefficients are given by
1 (7 1 (7
ay = / cos(kz) f(x)dz, by = / sin(kzx) f(z)dz. (2.43)
™ J_x T™J—x

At this point (2.42) is just a formal expression and it was (and to some
extend still is) a fundamental question in mathematics to understand in
what sense the above series converges. For example, does it converge at
a given point (e.g. at every point of continuity) or when does it converge
uniformly? We will give some first answers in the present section and then
come back later to this when we have further tools at our disposal.

For our purpose the complex form

S(f)x) =D fre™,  fi:

keZ

1 T

:% -

e ™ f(y)dy (2.44)

will be more convenient. The connection is given via fij = @. In this
case the n’th partial sum can be written as

Su(f)@)i= 3 fe = = " Duw—y)f)dy, (245)

2 J_,
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Figure 1. The Dirichlet kernels D1, D2, and D3

where
n

Da(a) = 3 ek = Sin(s(gl(;/l; )2)”’”) (2.46)

k=—n
is known as the Dirichlet kernel (to obtain the second form observe that
the left-hand side is a geometric series). Note that D, (—z) = —D,(z) and
that | D, (x)| has a global maximum D,,(0) = 2n+ 1 at = 0. Moreover, by
Sn(1) =1 we see that [ Dy (x)dz = 1.
Since

/ e FrellTdr = 276y (2.47)

—T
the functions e (z) = (21)~'/2e** are orthonormal in L?(—m,7) and hence
the Fourier series is just the expansion with respect to this orthogonal set.

Hence we obtain

Theorem 2.17. For every square integrable function f € L*(—n,7), the
Fourier coefficients fr are square summable

™

Sk =y [ 1@ (2.45)

kezZ -

and the Fourier series converges to f in the sense of L?. Moreover, this is
a continuous bijection between L*(—m,m) and (*(Z).

Proof. To show this theorem it suffices to show that the functions e; form
a basis. This will follow from Theorem 2.19 below (see the discussion after
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this theorem). It will also follow as a special case of Theorem 3.11 below
(see the examples after this theorem) as well as from the Stone-Weierstra8
theorem — Problem 2.19. g

This gives a satisfactory answer in the Hilbert space L?(—m, w) but does
not answer the question about pointwise or uniform convergence. The latter
will be the case if the Fourier coefficients are summable. First of all we note
that for integrable functions the Fourier coefficients will at least tend to
ZEro.

Lemma 2.18 (Riemann—Lebesgue lemma). Suppose f is integrable, then
the Fourier coefficients converge to zero.

Proof. By our previous theorem this holds for continuous functions. But
the map f — f is bounded from C[—m, 7] C L*(—m, ) to ¢o(Z) (the se-
quences vanishing as |k| — o0) since |fi| < (27)7!||f]l1 and there is a
unique extension to all of L(—m, ). O

It turns out that this result is best possible in general and we cannot
say more without additional assumptions on f. For example, if f is periodic
and differentiable, then integration by parts shows

™
fi=gmr | e @) (2.49)
Then, since both k™! and the Fourier coefficients of f’ are square summable,
we conclude that fk are summable and hence the Fourier series converges
uniformly. So we have a simple sufficient criterion for summability of the
Fourier coefficients, but can it be improved? Of course continuity of f is
a necessary condition but this alone will not even be enough for pointwise
convergence as we will see in the example on page 103. Moreover, continuity
will not tell us more about the decay of the Fourier coefficients than what
we already know in the integrable case from the Riemann-Lebesgue lemma
(see the example on page 104).

A few improvements are easy: First of all, piecewise continuously differ-
entiable would be sufficient for this argument. Or, slightly more general, an
absolutely continuous function whose derivative is square integrable would
also do (cf. Lemma 11.50). However, even for an absolutely continuous func-
tion the Fourier coefficients might not be summable: For an absolutely con-
tinuous function f we have a derivative which is integrable (Theorem 11.49)
and hence the above formula combined with the Riemann—Lebesgue lemma
implies fj, = o(%). But on the other hand we can choose a summable se-

quence c¢; which does not obey this asymptotic requirement, say ¢ = % for
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F3(z)

Fo(x)

Fy (@)

iy

Figure 2. The Fejér kernels Fi, F», and F3

k =1% and ¢;, = 0 else. Then

flz) = Z cpelh® = Z l%eil% (2.50)

kEZ leN

is a function with summable Fourier coefficients f, = c (by uniform con-
vergence we can interchange summation and integration) but which is not
absolutely continuous. There are further criteria for summability of the
Fourier coefficients but no simple necessary and sufficient one.

Note however, that the situation looks much brighter if one looks at
mean values

5,00 = 1Y suN@ =5 [ Fale-wiwids (250
k=0 T

where

14 1 (sin(na/2)\’
n Di(x) = n < sin(x/2) ) (2:52)

is the Fejér kernel. To see the second form we use the closed form for the
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Dirichlet kernel to obtain

n—1 . n—1
np () = S Sk +1/2)2) 1 S k2
Fal@) kzo sin(z/2) Sin(m/Q)I kzo

1 o eix/Qei”“ -1\ _1- cos(nx) _ sin(nxz/2)?
sin(z/2) elr —1 2sin(z/2)? sin(x/2)2 "

The main difference to the Dirichlet kernel is positivity: Fj,(x) > 0. Of
course the property ffﬁ F,(x)dx =1 is inherited from the Dirichlet kernel.

Theorem 2.19 (Fejér). Suppose f is continuous and periodic with period
27. Then S,(f) — f uniformly.

Proof. Let us set F,, = 0 outside [—m,7]. Then F,(z) < W{S/Q)Q for
d < |z| < 7 implies that a straightforward adaption of Lemma 1.2 to the
periodic case is applicable. O

In particular, this shows that the functions {ey } ez are total in Cpe, [—7, 7]
(continuous periodic functions) and hence also in LP(—7,7) for 1 < p < oo
(Problem 2.18).

Note that this result shows that if S(f)(z) converges for a continuous
function, then it must converge to f(z). We also remark that one can extend
this result (see Lemma 10.19) to show that for f € LP(—m,m), 1 < p < o0,
one has S,,(f) — f in the sense of LP. As a consequence note that the Fourier
coefficients uniquely determine f for integrable f (for square integrable f
this follows from Theorem 2.17).

Finally, we look at pointwise convergence.

Theorem 2.20. Suppose
T — X0
is integrable (e.g. f is Hélder continuous), then

lim > f(k)e™™ = f(xo). (2.54)
k=—m

m,n— 00

Proof. Without loss of generality we can assume xy = 0 (by shifting z —
x — xo modulo 27 implying f, — e~#%0 f.) and f(z¢) = 0 (by linearity since
the claim is trivial for constant functions). Then by assumption

g(x) = S

elr — 1
— 1)g(x) implies

iz

is integrable and f(x) = (e

e = Gr—1— Gk
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and hence
n
Z fk = g—m—l - gn
k=m
Now the claim follows from the Riemann—Lebesgue lemma. U

If one looks at symmetric partial sums S, (f) we can do even better.

Corollary 2.21 (Dirichlet-Dini criterion). Suppose there is some « such
that
flzo+2) + f(wo —2) — 20

x

is integrable. Then Sy(f)(xo) — a.

Proof. Without loss of generality we can assume zg = 0. Now observe
(since Dy (—z) = Dy(x))
f(@) + f(=x) = 2a

Sn(f)(0) = a+ Sn(9)(0),  g(z)= 5
and apply the previous result. O

Problem 2.17. Compute the Fourier series of D, and F,.
Problem 2.18. Show that Cpe,|—7, 7| is dense in LP(—m, ) for 1 < p < oco.

Problem 2.19. Show that the functions ¢, (z) = \/%eim, n € Z, form an

orthonormal basis for § = L*(—m,n). (Hint: Start with K = [—7, 7| where
—m and w are identified and use the Stone—Weierstraf§ theorem.)



Chapter 8

Compact operators

Typically, linear operators are much more difficult to analyze than matrices
and many new phenomena appear which are not present in the finite dimen-
sional case. So we have to be modest and slowly work our way up. A class
of operators which still preserves some of the nice properties of matrices is
the class of compact operators to be discussed in this chapter.

3.1. Compact operators

A linear operator A : X — Y defined between normed spaces X, Y is called
compact if every sequence Af, has a convergent subsequence whenever
fn is bounded. Equivalently (cf. Corollary B.20), A is compact if it maps
bounded sets to relatively compact ones. The set of all compact operators
is denoted by ¢ (X,Y). If X =Y we will just write €(X) := ¢ (X, X) as
usual.

Example. Every linear map between finite dimensional spaces is compact
by the Bolzano—Weierstrafl theorem. Slightly more general, an operator is
compact if its range is finite dimensional. o

The following elementary properties of compact operators are left as an
exercise (Problem 3.1):

Theorem 3.1. Let X, Y, and Z be normed spaces. Every compact linear
operator is bounded, €(X,Y) C Z(X,Y). Linear combinations of compact
operators are compact, that is, € (X,Y) is a subspace of £ (X,Y). Moreover,
the product of a bounded and a compact operator is again compact, that
is, A € L(X,)Y), Be €(Y,Z) or Ac ¥X,Y), Be Z(Y,Z) implies
BAec¥(X,Z).
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In particular, the set of compact operators €(X) is an ideal of the set
of bounded operators. Moreover, if X is a Banach space this ideal is even
closed:

Theorem 3.2. Suppose X is a normed and Y a Banach space. Let A, €
€ (X,Y) be a convergent sequence of compact operators. Then the limit A
18 again compact.

Proof. Let f;o) be a bounded sequence. Choose a subsequence f;l) such
that A; f](l) converges. From f;l) choose another subsequence f]@) such

that As f]@) converges and so on. Since f](") might disappear as n — o0,
we consider the diagonal sequence f; := f](j).
subsequence of f](") for 7 > n and hence A, f; is Cauchy for every fixed n.

Now

By construction, f; is a

[AS; = Afell = (A = An)(f5 = fr) + An(f5 — fi)|l
<A = Aullllf5 = full + [ Anfs — Anfill

shows that Af; is Cauchy since the first term can be made arbitrary small
by choosing n large and the second by the Cauchy property of A, f;. O

Example. Let X := ¢P(N) and consider the operator
(Qa); := gja;

for some sequence ¢ = (g;)72; € co(N) converging to zero. Let @, be
associated with ¢ = ¢; for j <n and ¢ =0 for j > n. Then the range of
Q" is finite dimensional and hence @, is compact. Moreover, by ||Q, — Q| =
SUD >, lgj| we see @, — @ and thus @ is also compact by the previous
theorem. o

Example. Let X = C[0,1], Y = C[0,1] (cf. Problem 1.31) then the em-
bedding X — Y is compact. Indeed, a bounded sequence in X has both the
functions and the derivatives uniformly bounded. Hence by the mean value
theorem the functions are equicontinuous and hence there is a uniformly
convergent subsequence by the Arzela—Ascoli theorem (Theorem 1.14). Of
course the same conclusion holds if we take X = C%7[0,1] to be Holder
continuous functions or if we replace [0, 1] by a compact metric space.  ©

If A: X — Y is a bounded operator there is a unique extension A :
X — Y to the completion by Theorem 1.16. Moreover, if A € €(X,Y),
then A € €(X,Y) is immediate. That we also have A € € (X,Y) will follow
from the next lemma. In particular, it suffices to verify compactness on a
dense set.
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Lemma 3.3. Let X, Y be normed spaces and A € €(X,Y). Let X, Y be
the completion of X, Y, respectively. Then A € €(X,Y), where A is the
unique extension of A.

Proof. Let f, € X be a given bounded sequence. We need to Shovv that
Af, has a convergent subsequence. Pick f;, € X such that || fl— fal <4 3 and

by compactness of A we can assume that Af;) — g. But then lAfn — gl <
[AINfn = fll + |Af7 — gl shows that Af, — g. O

One of the most important examples of compact operators are integral
operators. The proof will be based on the Arzela—Ascoli theorem (Theo-
rem 1.14).

Lemma 3.4. Let X = C([a,b]) or X = L
K : X — X defined by

2 wi(a,b). The integral operator

/ K(z,y)f(y)dy, (3.1)
where K(x,y) € C([a,b] X [a,b]), is compact.

Proof. First of all note that K(.,..) is continuous on [a, b] X [a, b] and hence
uniformly continuous. In particular, for every € > 0 we can find a § > 0
such that |K(y,t) — K(x,t)| < & whenever |y — z| < §. Moreover, ||K||o =

SUPz,ye(a,b] |K(:L‘ y)| < 0.
We begin with the case X = £2,,,(a,b). Let g(z) = K f(x). Then

b
)] S/ (K (2, )] [ f(#)]dE < HKlloo/ [f@)ldt < |[Kloo |11,

where we have used Cauchy—Schwarz in the last step (note that 1| =

Vb — a). Similarly,
b
l9(z) —g(y)| < / [K (y,t) — K (2, t)] [f(t)]dt

b
ge/ £l < <] 1£],

whenever |y — x| < §. Hence, if f,(z) is a bounded sequence in L2 ,(a,b),
then g,(x) = K fy(z) is bounded and equicontinuous and hence has a
uniformly convergent subsequence by the Arzela—Ascoli theorem (Theo-
rem 1.14). But a uniformly convergent sequence is also convergent in the
norm induced by the scalar product. Therefore K is compact.

The case X = C([a,b]) follows by the same argument upon observing

L@l < (0= a)llfloo- O
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Compact operators are very similar to (finite) matrices as we will see in
the next section.

Problem 3.1. Show Theorem 3.1.

Problem 3.2. Show that adjoint of the integral operator K from Lemma 3.4
is the integral operator with kernel K (y,xz)*:

b
(K 1)(a) = [ K(o) fo)dy.
(Hint: Fubini.)

Problem 3.3. Show that the mapping % : C?[a,b] — Cla,b] is compact.
(Hint: Arzela—Ascoli.)

3.2. The spectral theorem for compact symmetric operators

Let $ be an inner product space. A linear operator A is called symmetric
if its domain is dense and if

(9, Af) =(Ag. f)  f,.9€D(A). (3.2)
If A is bounded (with ©®(A) = §), then A is symmetric precisely if A = A*,
that is, if A is self-adjoint. However, for unbounded operators there is a
subtle but important difference between symmetry and self-adjointness.

A number z € C is called eigenvalue of A if there is a nonzero vector
u € D(A) such that
Au = zu. (3.3)
The vector u is called a corresponding eigenvector in this case. The set of
all eigenvectors corresponding to z is called the eigenspace

Ker(A — 2) (3.4)

corresponding to z. Here we have used the shorthand notation A — z for A —
zI. An eigenvalue is called simple if there is only one linearly independent
eigenvector.

Example. Let §) := (2(N) and consider the shift operators (STa); := aj+1
(with ap := 0). Suppose z € C is an eigenvalue, then the corresponding
eigenvector v must satisfy u;+1 = zu;. For S~ the special case j = 0 gives
0 = up = zuy. So either z = 0 and u = u16" or z # 0 and v = 0. Hence
the only eigenvalue is z = 0. For ST we get u; = 2Juy and this will give an
element in #2(N) if and only of |z| < 1. Hence z with |z| < 1 is an eigenvalue.
In both cases all eigenvalues are simple. o

Example. Let § := ¢(N) and consider the multiplication operator (Qa); :=
g;ja; with a bounded sequence ¢ € £>°(N). Suppose z € C is an eigenvalue,
then the corresponding eigenvector u must satisfy (¢; — z)u; = 0. Hence



3.2. The spectral theorem for compact symmetric operators 73

every value ¢; is an eigenvalue with corresponding eigenvector u = §7. If
there is only one j with z = ¢; the eigenvalue is simple (otherwise the num-
bers of independent eigenvectors equals the number of times z appears in
the sequence q). If z is different from all entries of the sequence then u =0
and z is no eigenvalue. o

Note that in the last example @ will be self-adjoint if and only if g is real-
valued and hence if and only if all eigenvalues are real-valued. Moreover, the
corresponding eigenfunctions are orthogonal. This has nothing to do with
the simple structure of our operator and is in fact always true.

Theorem 3.5. Let A be symmetric. Then all eigenvalues are real and
eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. Suppose A is an eigenvalue with corresponding normalized eigen-
vector w. Then A\ = (u, Au) = (Au,u) = \*, which shows that A is real.
Furthermore, if Au; = A\ju;, j = 1,2, we have

()\1 — )\2)<U1,U2> = <AU1,UQ> — <U1,AU2> =0

finishing the proof. U

Note that while eigenvectors corresponding to the same eigenvalue A\ will
in general not automatically be orthogonal, we can of course replace each
set of eigenvectors corresponding to A by an set of orthonormal eigenvectors
having the same linear span (e.g. using Gram—Schmidt orthogonalization).

Example. Let § = ¢*(N) and consider the Jacobi operator J = £(S*+57)
associated with the sequences a; = %, b;j = 0:

1
(Je)j = 5( j+1+¢j-1)

with the convention ¢y = 0. Recall that J* = J. If we look for an eigenvalue
Ju = zu, we need to solve the corresponding recursion u;1 = 2zu; — uj_1
starting from ugp = 0 (our convention) and u; = 1 (normalization). Like
an ordinary differential equation, a linear recursion relations with constant
coefficients can be solved by an exponential ansatz k7 which leads to the
characteristic polynomial k? = 22k — 1. This gives two linearly independent
solutions and our requirements lead us to

ki — =

Note that k= = 2+1/22 — 1 and in the case k = z = %1 the above expression
has to be understood as its limit u;(£1) = (£1)7Tlj. In fact, Tj(z) =
uj—1(2) are polynomials of degree j known as Chebyshev polynomials.
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Now for z € R\ [—-1,1] we have |k| < 1 and u; explodes exponentially.
For z € [~1,1] we have |k| = 1 and hence we can write k = ' with x € R.

Thus u; = Ssiir;(('fg)) is oscillating. So for no value of z € R our potential
eigenvector v is square summable and thus J has no eigenvalues. o

The previous example shows that in the infinite dimensional case sym-
metry is not enough to guarantee existence of even a single eigenvalue. In
order to always get this, we will need an extra condition. In fact, we will
see that compactness provides a suitable extra condition to obtain an or-
thonormal basis of eigenfunctions. The crucial step is to prove existence of
one eigenvalue, the rest then follows as in the finite dimensional case.

Theorem 3.6. Let $ be an inner product space. A symmetric compact
operator A has an eigenvalue a1 which satisfies |ay| = || A]|.

Proof. We set a@ = ||A|| and assume a # 0 (i.e, A # 0) without loss of
generality. Since
|AII? = sup [[Af|* = sup (Af,Af)= sup (f,A%f)
flfl=1 flfl=1 Flfll=1
there exists a normalized sequence u,, such that
2

lim (u,, A%u,) = a?.
n—o0

Since A is compact, it is no restriction to assume that A%u,, converges, say
lim,, 00 AU, = o>u. Now
H(A2 - a2)un|]2 = ||A2unH2 - 20¢2<un, Azun> +at
<202 (a? = (up, A%uy))

(where we have used ||A%u,| < [|A]l||Aun| < [|A|?||un]| = o?) implies
lim,, 00 (A%u, — @?u,) = 0 and hence lim, .o u, = u. In addition, u is
a normalized eigenvector of A2 since (A? — a?)u = 0. Factorizing this last
equation according to (A — a)u = v and (A + a)v = 0 shows that either

v # 0 is an eigenvector corresponding to —« or v = 0 and hence u # 0 is an
eigenvector corresponding to . ([

Note that for a bounded operator A, there cannot be an eigenvalue with
absolute value larger than ||A||, that is, the set of eigenvalues is bounded by
|Al| (Problem 3.4).

Now consider a symmetric compact operator A with eigenvalue oy (as
above) and corresponding normalized eigenvector u;. Setting

91 = {u}t = {f € H|(u, f) = 0} (3.5)
we can restrict A to £ since f € $; implies

<U1, Af> = <AU1, f> = 1 <U1, f> =0 (3.6)
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and hence Af € ;. Denoting this restriction by Aj, it is not hard to see
that A; is again a symmetric compact operator. Hence we can apply Theo-
rem 3.6 iteratively to obtain a sequence of eigenvalues o; with corresponding
normalized eigenvectors u;. Moreover, by construction, u; is orthogonal to
all up with k& < j and hence the eigenvectors {u;} form an orthonormal
set. By construction we also have |oj| = ||4;] < [|[4j-1]| = |eyj—1]. This
procedure will not stop unless $) is finite dimensional. However, note that
a; = 0 for j > n might happen if A, = 0.

Theorem 3.7 (Hilbert). Suppose $) is an infinite dimensional Hilbert space
and A : $ — $ is a compact symmetric operator. Then there exists a se-
quence of real eigenvalues aj converging to 0. The corresponding normalized
eigenvectors uj form an orthonormal set and every f € ) can be written as

f= {uj, flu; +h, (3.7)

j=1
where h is in the kernel of A, that is, Ah = 0.

In particular, if 0 is not an eigenvalue, then the eigenvectors form an
orthonormal basis (in addition, $) need not be complete in this case).

Proof. Existence of the eigenvalues «; and the corresponding eigenvectors
u; has already been established. Since the sequence |« ;| is decreasing it has a
limit € > 0 and we have |a;| > e. If this limit is nonzero, then v; = a;
a bounded sequence (||v;|| < 1) for which Av; has no convergent subsequence

Uj 18

since ||Av; — Avg|? = ||uj — ux]|? = 2, a contradiction.

Next, setting

n

fn = Z<uj7f>uj7

j=1
we have

since f — f, € 9, and ||A4,|| = |an|. Letting n — oo shows A(foo — f) =0
proving (3.7). Finally, note that without completeness f, might not be
well-defined unless h = 0. (|

By applying A to (3.7) we obtain the following canonical form of compact
symmetric operators.

Corollary 3.8. Every compact symmetric operator A can be written as

N
Af =" ag{uy, fuy, (3.8)

Jj=1
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where aj are the nonzero eigenvalues with corresponding eigenvectors u;
from the previous theorem.

Remark: There are two cases where our procedure might fail to con-
struct an orthonormal basis of eigenvectors. One case is where there is
an infinite number of nonzero eigenvalues. In this case a,, never reaches 0
and all eigenvectors corresponding to 0 are missed. In the other case, 0 is
reached, but there might not be a countable basis and hence again some of
the eigenvectors corresponding to 0 are missed. In any case, by adding vec-
tors from the kernel (which are automatically eigenvectors), one can always
extend the eigenvectors u; to an orthonormal basis of eigenvectors.

Corollary 3.9. FEvery compact symmetric operator A has an associated
orthonormal basis of eigenvectors {u;}jcs. The corresponding unitary map
U:9— (), f— {{uj, f)}jes diagonalizes A in the sense that UAU ! is
the operator which multiplies each basis vector 67 = Uuj by the corresponding
eigenvalue ;.

Example. Let a,b € ¢p(N) be real-valued sequences and consider the oper-
ator

(Jc)j = ajcjt1 +bjc; +aj_1ci_1.
If A, B denote the multiplication operators by the sequences a, b, respec-
tively, then we already know that A and B are compact. Moreover, using
the shift operators ST we can write

J=AST+ B+ S A,

which shows that J is self-adjoint since A* = A, B* = B, and (S*)* =
ST. Hence we can conclude that J has a countable number of eigenvalues
converging to zero and a corresponding orthonormal basis of eigenvectors. ¢

In particular, in the new picture it is easy to define functions of our
operator (thus extending the functional calculus from Problem 1.35). To
this end set ¥ := {¢;}jcs and denote by B(K) the Banach algebra of
bounded functions F': K — C together with the sup norm.

Corollary 3.10 (Functional calculus). Let A be a compact symmetric op-
erator with associated orthonormal basis of eigenvectors {u;}jes and corre-
sponding eigenvalues {a;}jes. Suppose F' € B(X), then

F(A)f = Flaj){uy, f)u (3.9)
jed
defines a continuous algebra homomorphism from the the Banach algebra

B(X) to the algebra £ ($) with 1(A) =1 and I(A) = A. Moreover F(A)* =
F*(A), where F* is the function which takes complex conjugate values.
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Proof. This is straightforward to check for multiplication operators in £2(.J)
and hence the result follows by the previous corollary. ([

In many applications F' will be given by a function on R (or at least on
[—[|All,]|A]|]) and since only the values F'(a;) are used two functions which
agree on all eigenvalues will give the same result.

As a brief application we will say a few words about general spectral
theory for bounded operators A € £ (X) in a Banach space X. In the finite
dimensional case, the spectrum is precisely the set of eigenvalues. In the
infinite dimensional case one defines the spectrum as

o(A):={zeC]3A-2)"1e2(X)) (3.10)

It is important to emphasize that the inverse is required to exist as a bounded
operator. Hence there are several ways in which this can fail: First of all,
A — z could not be injective. In this case z is an eigenvalue and thus all
eigenvalues belong to the spectrum. Secondly, it could not be surjective.
And finally, even if it is bijective it could be unbounded. However, it will
follow form the open mapping theorem that this last case cannot happen for
a bounded operator. The inverse of A — z for z & o(A) is known as the re-
solvent of A and plays a crucial role in spectral theory. Using Problem 1.34
one can show that the complement of the spectrum is open, and hence the
spectrum is closed. Since we will discuss this in detail in Chapter 6 we will
not pursue this here but only look at our special case of symmetric compact
operators.

To compute the inverse of A — z we will use the functional calculus: To

this end consider F(«a) = alz. Of course this function is unbounded on
R but if z is neither an eigenvalue nor zero it is bounded on ¥ and hence

satisfies our requirements. Then

Ra(z)f =) -

jeJ J

— {5, Fly (3.11)
satisfies (A — 2)Ra(z) = Ra(2)(A — z) =1, that is, Ra(z) = (A—2)"! €
Z(9). Of course, if z is an eigenvalue, then the above formula breaks down.
However, in the infinite dimensional case it also breaks down if z = 0 even
if 0 is not an eigenvalue! In this case the above definition will still give an
operator which is the inverse of A — z, however, since the sequence o s
unbounded, so will be the corresponding multiplication operator in £2(.J)
and the sum in (3.11) will only converge if {a;1<uj,f>}jej € %(J). So
in the infinite dimensional case 0 is in the spectrum even if it is not an
eigenvalue. In particular,

a(A) = {aj}jer. (3.12)
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Moreover, if we use D % — 1 e can rewrite this as
oj—z z(aj—z) z
1 al Qs
_ J . .
Ra(z)f == 1> (uj, fluj — f
2\~ aj—=z
J=1

where it suffices to take the sum over all nonzero eigenvalues.
This is all we need and it remains to apply these results to Sturm-—

Liouville operators.

Problem 3.4. Show that if A is bounded, then every eigenvalue o satisfies
laf < Al

Problem 3.5. Find the eigenvalues and eigenfunctions of the integral op-
erator

mmm:ﬂummw@@

in L2,,,(0,1), where u(x) and v(z) are some given continuous functions.

Problem 3.6. Find the eigenvalues and eigenfunctions of the integral op-
erator

1
(Kﬂ@%=2é(%w—x—y+wﬂw@
in £2,,,(0,1).

cont

3.3. Applications to Sturm—Liouville operators

Now, after all this hard work, we can show that our Sturm—Liouville operator

d2
L:= ) +q(z), (3.13)
where ¢ is continuous and real, defined on
D(L) = {f € C*[0,1]|£(0) = f(1) = 0} C £2,,4(0,1), (3.14)

has an orthonormal basis of eigenfunctions.

The corresponding eigenvalue equation Lu = zu explicitly reads
—u"(z) + q(z)u(x) = 2u(x). (3.15)

It is a second order homogeneous linear ordinary differential equations and
hence has two linearly independent solutions. In particular, specifying two
initial conditions, e.g. u(0) = 0,4/(0) = 1 determines the solution uniquely.
Hence, if we require u(0) = 0, the solution is determined up to a multiple
and consequently the additional requirement u(1) = 0 cannot be satisfied
by a nontrivial solution in general. However, there might be some z € C for
which the solution corresponding to the initial conditions «(0) = 0,4/(0) = 1
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happens to satisfy u(1) = 0 and these are precisely the eigenvalues we are
looking for.

Note that the fact that £2,(0,1) is not complete causes no problems
since we can always replace it by its completion $ = L?(0,1). A thorough
investigation of this completion will be given later, at this point this is not

essential.

We first verify that L is symmetric:

(f.Lg) = /f (z) + q(2)g(x))dz

/f ) ( d:1:+/ f(z (x)dz
/ ) g(x)da + /0 F@) q@)g@)de  (3.16)

=(Lf,g).

Here we have used integration by parts twice (the boundary terms vanish
due to our boundary conditions f(0) = f(1) = 0 and ¢g(0) = g(1) = 0).

Of course we want to apply Theorem 3.7 and for this we would need to
show that L is compact. But this task is bound to fail, since L is not even
bounded (see the example on page 28)!

So here comes the trick: If L is unbounded its inverse L~! might still
be bounded. Moreover, L~! might even be compact and this is the case
here! Since L might not be injective (0 might be an eigenvalue), we consider
Rp(z) := (L — 2)7!, z € C, which is also known as the resolvent of L.

In order to compute the resolvent, we need to solve the inhomogeneous
equation (L — z)f = g. This can be done using the variation of constants
formula from ordinary differential equations which determines the solution
up to an arbitrary solution of the homogeneous equation. This homogeneous
equation has to be chosen such that f € ©(L), that is, such that f(0) =

f()=o.
Define

f(z) :W(/Ox u_(z,t)g(t)dt>
1
+W< / (= 1)g(t)dr), (3.17)

where uy(z,x) are the solutions of the homogeneous differential equation
—ull (z,2)+(q(z) — 2)us(z, z) = 0 satisfying the initial conditions u_(z,0) =
0, u__(z,0) = 1 respectively uy(z,1) =0, v/ (2,1) = 1 and

W(z) := W(ug(2),u—(2)) = u_(z,2)uy(z,2) —u_(z,z)u (z,z) (3.18)
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is the Wronski determinant, which is independent of x (check this!).

Then clearly f(0) = 0 since u_(z,0) = 0 and similarly f(1) = 0 since
u4(z,1) = 0. Furthermore, f is differentiable and a straightforward compu-
tation verifies

Pia) =2 [Cu ngto)

+ u_m(/z(j;)/(/xl u+(z,t)g(t)dt). (3.19)

Thus we can differentiate once more giving

) =B ([T e ngto)

u_(z,x)" !
é%@>(/)UAAUMOﬁ)—9@)
~(4(z) - )/ (z) — (). (8.20)

In summary, f is in the domain of L and satisfies (L — 2)f = g.

Note that z is an eigenvalue if and only if W (z) = 0. In fact, in this case
u4(z,z) and u_(z, z) are linearly dependent and hence u, (z,z) = cu_(z, )
with ¢ = u4(2,0). Evaluating this last identity at z = 0 shows u4(2,0) =
cu_(z,0) = 0 that u_(z, z) satisfies both boundary conditions and is thus
an eigenfunction.

Introducing the Green function

1 ws(ma)u (2,0, @31,
Gz 2,8) W (uy(2),u—(z)) { uy(z, t)u_(z,x), x<t, (3.21)

we see that (L — z)~! is given by

1
(L —2)"tg(z) = / G(z,x,t)g(t)dt. (3.22)
0

Moreover, from G(z,z,t) = G(z,t, ) it follows that (L — 2)~! is symmetric
for z € R (Problem 3.7) and from Lemma 3.4 it follows that it is compact.
Hence Theorem 3.7 applies to (L — 2z)~! once we show that we can find a
real z which is not an eigenvalue.

Theorem 3.11. The Sturm—-Liouwville operator L has a countable number
of discrete and simple eigenvalues E, which accumulate only at oo. They
are bounded from below and can hence be ordered as follows:

min q(x) <Ey<FEi<---. (3.23)
z€la,b]
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The corresponding normalized eigenfunctions u, form an orthonormal basis
for £2,(0,1), that is, every f € £L2,,,(0,1) can be written as

o0

f(x) = Z<um f>un(x) (3‘24)

n=0

Moreover, for f € D(L) this series is uniformly convergent.

Proof. If E; is an eigenvalue with corresponding normalized eigenfunction
u; we have

1
E; = (uj, Lu;) = / (@) + g(@)]u; (2)|2dz) > min q(z)  (3.25)
0 z€[0,1]
where we have used integration by parts as in (3.16). Hence the eigenvalues
are bounded from below.

Now pick a value A € R such that Rp()\) exists (A < mingejo 1) q(7)
say). By Lemma 3.4 Rp(\) is compact and by Lemma 3.3 this remains
true if we replace £2,,,(0,1) by its completion. By Theorem 3.7 there are
eigenvalues o, of Rp(\) with corresponding elgenfunctlons Uy,. Moreover,
Rp(Mun = anuy is equivalent to Lu, = (A + g )un, which shows that
E, = )\+ — are eigenvalues of L with correspondmg eigenfunctions u,. Now
everythmg follows from Theorem 3.7 except that the eigenvalues are simple.
To show this, observe that if u, and v, are two different eigenfunctions
corresponding to E,, then u,(0) = v,(0) = 0 implies W (uy,v,) = 0 and
hence u,, and v,, are linearly dependent.

To show that (3.24) converges uniformly if f € ©(L) we begin by writing
f=Rr(Ng, g € Ln,(0,1), implying

>, Fun() = > (RLA)un, ghun(z) =Y an(tn, g)un(z).
n=0 n=0 n=0

Moreover, the Cauchy—Schwarz inequality shows

n

n
Zaj<u], ghuj(x)| < Z ()9 9 Z |aju;(2)
j=m

j=m

Now, by (2.18), > 72, |(uj, 9)|* = ||g||* and hence the first term is part of a
convergent series. Similarly, the second term can be estimated independent
of = since

1
antn(x) = Rp,(Nup(x) = /0 G\, z, )up(t)dt = (up, G\, 2, .))
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implies

n

o0 1
S Jagus (@) < 3 Jug, GOz, NP = /0 GO . )2t < MV,
j=0

j=m

where M()) := max, ;c(01]|G(\, 7,t)|, again by (2.18). O

Moreover, it is even possible to weaken our assumptions for uniform

convergence. To this end we consider the sequilinear form associated with
L:

1
st(f,) = (f,Lg) = /O (F(2)d (@) + @) f(@) g()) dz  (3.26)

for f,g € ©(L), where we have used integration by parts as in (3.16). In
fact, the above formula continues to hold for f in a slightly larger class of
functions,

Q(L) == {f € G,[0,1]|f(0) = f(1) = 0} 2 D(L), (3.27)

which we call the form domain of L. Here Cjla,b] denotes the set of
piecewise continuously differentiable functions f in the sense that f is con-
tinuously differentiable except for a finite number of points at which it is
continuous and the derivative has limits from the left and right. In fact, any
class of functions for which the partial integration needed to obtain (3.26)
can be justified would be good enough (e.g. the set of absolutely continuous
functions to be discussed in Section 11.8).

Lemma 3.12. For a regular Sturm—Liouville problem (3.24) converges uni-
formly provided f € Q(L).

Proof. By replacing L — L — qo for qo > ming¢jg1)g(z) we can assume
q(z) > 0 without loss of generality. (This will shift the eigenvalues E,, —
E, — qo and leave the eigenvectors unchanged.) In particular, we have
qr(f) = si(f,f) > 0 after this change. By (3.26) we also have E; =
(uj, Lug) = qr(u;) > 0.

Now let f € Q(L) and consider (3.24). Then, observing that sz (f,g) is
a symmetric sesquilinear form (after our shift it is even a scalar product) as



3.3. Applications to Sturm—Liouville operators 83

well as sz.(f,u;) = Ej(f,u;) one obtains

n n

0<qr(f- Z<ujaf>uj) =qr(f) — Z<ujaf>3L(f7Uj)
Jj=m j=m
Z u]’ SL u]7 + Z u]a ukv >$L(uj7uk)
Jj=m J.k=m

=qr(f) = Y Ejl{u, /)
j=m
which implies
D>~ Biltu, £)F < an().

In particular, note that this estimate applies to f(y) = G(A\, z,y). Now

we can proceed as in the proof of the previous theorem (with A = 0 and
~1

oy = Ej )

Z\(uj,fm \—ZE!% (uj, G(0,z,.))]
1/2

> Billui, HP Y Ejl(u;, G0, 2,.))”
j=m Jj=m

< qr(f)"?qu(G(0, 2, )"/,
where we have used the Cauchy—Schwarz inequality for the weighted scalar

product (fj,g;) = >_; f;9;E;. Finally note that ¢z (G(0, ,.)) is continuous
with respect to x and hence can be estimated by its maximum over [0,1]. O

Another consequence of the computations in the previous proof is also
worthwhile noting:

Corollary 3.13. We have

o0

Gleo ) = 3 (@) (), (3.28)

=0 Ej —Z

where the sum is uniformly convergent. Moreover, we have the following

trace formula
1 00
(z,2,7) 3.29
| =3 - (3.29)

j=0
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Proof. Using the conventions from the proof of the previous lemma we
compute

1
(uj, G(0,2,.)) = /0 G(0,z,y)u;(y)dy = Rr(0)u;(x) = B 'u;()

which already proves (3.28) if x is kept fixed and the convergence of the
sum is regarded in L? with respect to y. However, the calculations from our
previous lemma show

o)

1]“J ZE |(uj, G(0, 2, )| < qr(G(0,,.))
=0

which proves uniform convergence of our sum
E;
Z B )] < b e (G0,2.) s (G 0., ),

where we have used the Cauchy—Schwarz inequality for the weighted scalar
product (fj, ;) — >; f;ngj_l.

Finally, the last claim follows upon computing the integral using (3.28)
and observing [ju;|| = 1. O

Example. Let us look at the Sturm—Liouville problem with ¢ = 0. Then
the underlying differential equation is

—u"(z) = zu(x)

whose solution is given by u(z) = ¢; sin(y/zx) + ¢2 cos(y/zx). The solution
satisfying the boundary condition at the left endpoint is u_(z, z) = sin(y/zx)
and it will be an eigenfunction if and only if u_(z,1) = sin(y/z) = 0. Hence
the corresponding eigenvalues and normalized eigenfunctions are

E, =7m2n?%, up(z) = V2sin(nrz), n € N.

Moreover, every function f € $ can be expanded into a Fourier sine
series

] 1
:nz:lfnun(x), fn ::/0 un () f(z)dz,

which is convergent with respect to our scalar product. If f € C}[0,1] with
f(0) = f(1) = 0 the series will converge uniformly. For an application of
the trace formula see Problem 3.10. o

Example. We could also look at the same equation as in the previous
problem but with different boundary conditions

'(0) =4/(1) = 0.
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Then

1 n=>0
By= 0%, ug(a) =1 ’
V2cos(nmz), n€N.
Moreover, every function f € £y can be expanded into a Fourier cosine
series

o0 1
fm:;mmm n:A%mmm,

which is convergent with respect to our scalar product. o

Example. Combining the last two examples we see that every symmetric
function on [—1,1] can be expanded into a Fourier cosine series and every
anti-symmetric function into a Fourier sine series. Moreover, since every

function f(x) can be written as the sum of a symmetric function W

and an anti-symmetric function M, it can be expanded into a Fourier
series. Hence we recover Theorem 2.17. o

Problem 3.7. Show that for our Sturm-Liouville operator ui(z,z)* =
ut(2z*,x). Conclude R (z)" = Rr(2*). (Hint: Problem 3.2.)

Problem 3.8. Show that the resolvent Ra(z) = (A—z)~! (provided it exists
and is densely defined) of a symmetric operator A is again symmetric for
z € R. (Hint: g € D(R4(2)) if and only if g = (A—2)f for some f € D(A).)
Problem 3.9. Suppose Ey > 0 and equip Q(L) with the scalar product sy,.
Show that

f(.%') = 3L<G(07 xz, ')7 f)
In other words, point evaluations are continuous functionals associated with

the vectors G(0,z,.) € Q(L). In this context, G(0,z,y) is called a repro-
ducing kernel.

Problem 3.10. Show that

oo

Z 21 :1—7T\/2C0t(71'\/5)’ LEC\N.
o nt -z 2z

In particular, for z = 0 this gives Euler’s solution of the Basel problem:

72—7.
=n 6

In fact, comparing the power series of both sides at z = 0 gives

n?k 2(2k)! ’ ’
n=1
where By, are the Bernoulli numbers defined via %5 = > ;2 %zk.

(Hint: Use the trace formula (3.29).)
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Problem 3.11. Consider the Sturm—Liouville problem on a compact inter-
val [a,b] with domain

D(L) = {f € C?[a,0]| f'(a) — af(a) = f'(b) — Bf(b) = 0}
for some real constants «, B € R. Show that Theorem 3.11 continues to hold
except for the lower bound on the eigenvalues.

3.4. Estimating eigenvalues

In general, there is no way of computing eigenvalues and their corresponding
eigenfunctions explicitly. Hence it is important to be able to determine the
eigenvalues at least approximately.

Let A be a self-adjoint operator which has a lowest eigenvalue a; (e.g.,
A is a Sturm—Liouville operator). Suppose we have a vector f which is an
approximation for the eigenvector u; of this lowest eigenvalue ;. Moreover,
suppose we can write

A;:Zaj<uj,.>uj, D(A) :={f € 91 lay{u;, f)I* < oo}, (3.30)

j=1
where {u;}jen is an orthonormal basis of eigenvectors. Since o is supposed
to be the lowest eigenvalue we have a; > o for all j € N.

Writing f = Zj Yiuj, v; = (uj, f), one computes

(LAD = (1)) amu) =Y ailyl%, feD(A), (3.31)
j=1 J=1
and we clearly have
a; < W, fedD(A), (3.32)

with equality for f = w;. In particular, any f will provide an upper bound
and if we add some free parameters to f, one can optimize them and obtain
quite good upper bounds for the first eigenvalue. For example we could
take some orthogonal basis, take a finite number of coefficients and optimize
them. This is known as the Rayleigh—Ritz method.

Example. Consider the Sturm—Liouville operator L with potential ¢(z) = z
and Dirichlet boundary conditions f(0) = f(1) = 0 on the interval [0, 1]. Our
starting point is the quadratic form

1
a(f) = {f.Lf) = /0 (I @) + q(@)|f (2)]?)de
which gives us the lower bound

(f.Lf) > min q(x) =0.
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While the corresponding differential equation can in principle be solved in
terms of Airy functions, there is no closed form for the eigenvalues.

First of all we can improve the above bound upon observing 0 < ¢(z) <1
which implies

(fiLof) <{f,Lf) <{f,(Lo+1)f),  feD(L)=D(Lo),

where Lg is the Sturm-Liouville operator corresponding to g(x) = 0. Since
the lowest eigenvalue of L is 72 we obtain

< E<nm’+1

for the lowest eigenvalue F; of L.

Moreover, using the lowest eigenfunction fi(z) = v/2sin(mz) of Lo one
obtains the improved upper bound

1
Ey < (fi,Lf1) =7+ 5 ~ 10.3696.

Taking the second eigenfunction fo(z) = v/2sin(27z) of Lo we can make the
ansatz f(x) = (14+42)"Y2(f1(z) + v f2(x)) which gives

(FLH) =74 5+ 1oy (3% — ).

2 1+4~2 972
. . . .. o 32 ..
The right-hand side has a unique minimum at v = ST Vi03i 20 S1Ving
the bound
5 1 /1024 + 72978
By <-4 - — ~ 10.3685
1S5 Ty 1872

which coincides with the exact eigenvalue up to five digits. o

But is there also something one can say about the next eigenvalues?
Suppose we know the first eigenfunction u;. Then we can restrict A to
the orthogonal complement of u; and proceed as before: FEs will be the
minimum of (f, Af) over all f restricted to this subspace. If we restrict to
the orthogonal complement of an approximating eigenfunction fi, there will
still be a component in the direction of u; left and hence the infimum of the
expectations will be lower than FE5. Thus the optimal choice f; = u; will
give the maximal value Fs.

Theorem 3.14 (Max-min). Let A be a symetric operator and let a; < g <
-+ < an be eigenvalues of A with corresponding orthonormal eigenvectors
UL, U,y ..., UN. SUPPOSE

N
A= aj(uy, Ju;+ A (3.33)
j=1
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with A > apn. Then

aj = sup inf LA, 1<j<N, 3.34
/ fl,...,fj_l er(f17~-'7fj—1)< > ( )

where
U(fr,- ) ={f €DA|IfI =1, fespan{fi,..., f;}7}.  (3.35)

Proof. We have

inf LA < ay.
er(fl,...,fj71)<f D=y

In fact, set f = Zi:l Yrug and choose 7 such that f € U(fi,..., fj-1).
Then

J
(AL =) ok < oy
k=1

and the claim follows.

Conversely, let v = (ug, f) and write f = Z£:1 vk + f. Then

N
1 o

FeU(ui,...;uj—1) JeU (ur,...uj—

Of course if we are interested in the largest eigenvalues all we have to
do is consider —A.

Note that this immediately gives an estimate for eigenvalues if we have
a corresponding estimate for the operators. To this end we will write

A<B & (AN <(f,Bf), feDAND(B).  (3.36)
Corollary 3.15. Suppose A and B are symmetric operators with corre-
sponding eigenvalues oj and B; as in the previous theorem. If A < B and
D(B) CD(A) then aj < f;.

Proof. By assumption we have (f, Af) < (f, Bf) for f € ©(B) implying

inf AN < inf A < inf ,Bf),
fGUA(f17~--,fj71)<f 2 fGUB(f1,~~:fj71)<f h erB(f17~--’fj71)<f h

where we have indicated the dependence of U on the operator via a subscript.
Taking the sup on both sides the claim follows. O

Example. Let L be again our Sturm-Liouville operator and Ly the cor-
responding operator with g(z) = 0. Set ¢ = minp<y<i¢(z) and ¢4 =
maxo<z<1¢(x). Then Lo+ g— < L < Ly + g4+ implies

w°n? +q_ < E, <7°n® +q,.
In particular, we have proven the famous Weyl asymptotic

E, =7m*n?+0(1)
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for the eigenvalues. o

There is also an alternative version which can be proven similar (Prob-
lem 3.12):

Theorem 3.16 (Min-max). Let A be as in the previous theorem. Then

o = inf sup AL, 3.37
I V;CD(A),dim(V;)=j fev, 7||fH:1<f f> ( )

where the inf is taken over subspaces with the indicated properties.
Problem 3.12. Prove Theorem 3.16.

Problem 3.13. Suppose A, A, are self-adjoint, bounded and A, — A.
Then ay(Ayn) — ar(A). (Hint: For B self-adjoint ||B|| < € is equivalent to
—e<B<e¢.)

3.5. Singular value decomposition of compact operators

Our first aim is to find a generalization of Corollary 3.8 for general com-
pact operators between Hilbert spaces. The key observation is that if K €
€ ($1,92) is compact, then K*K € €($1) is compact and symmetric and
thus, by Corollary 3.8, there is a countable orthonormal set {u;} C $; and
nonzero real numbers 52- # 0 such that

K*Kf = Z (uj, f (3.38)

Moreover, ||Ku;|? = (u;, K*Kuj) = <uj,532 uj) = sj shows that we can set

85 1= HKUJH > 0. (339)

The numbers s; = s;(K) are called singular values of K. There are either
finitely many singular values or they converge to zero.

Theorem 3.17 (Singular value decomposition of compact operators). Let
K € € ($1,92) be compact and let s; be the singular values of K and {u;} C
1 corresponding orthonormal eigenvectors of K*K. Then

K= Z si(uj, )vj, (3.40)

where vj = s; Ku] The norm of K is given by the largest singular value

1] = maes; (). (3.41)

Moreover, the vectors {vj} C 2 are again orthonormal and satisfy K*v; =

sjuj. In particular, vj are eigenvectors of KK* corresponding to the eigen-

values s?.
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Proof. For any f € $); we can write

F= (uj, fHuj+ fo
J
with f; € Ker(K*K) = Ker(K) (Problem 3.14). Then
Kf =) {uj f)]Ku; =3 si(uj f)v;

J J

as required. Furthermore,
(vj, o) = (sj86) " H(Kuj, Kug) = (sjs5) H(K*Kuj, ug) = sjs; " (uj, ug)

shows that {v;} are orthonormal. By definition K*v; = S;lK*Ku]' = 5,

which also shows KK*v; = s;Ku; = s?v]

Finally, (3.41) follows using Bessel’s inequality
HKfHQ—HZSJ wj, foj|? = Zs% uj f) < (maes; (K)?) 111

where equality holds for f = uj, if s;, = max; s;(K). O

If K € €(9) is self-adjoint, then u; = o;v;, 0]2- = 1, are the eigenvectors
of K and o0;s; are the corresponding eigenvalues. In particular, for a self-
adjoint operators the singular values are the absolute values of the nonzero
eigenvalues.

The above theorem also gives rise to the polar decomposition
K =U|K| = |K*|U, (3.42)
where

K| = VE*K =) sj(uj, Juj, |K*|=VEEK* =) s;(vj,.)v; (3.43)
i i

are self-adjoint (in fact nonnegative) and

U:= ij, Dv; (3.44)

is an isometry from Ran(K*) = span{u;} onto Ran(K') = span{v;}.
From the max-min theorem (Theorem 3.14) we obtain:

Lemma 3.18. Let K € €(91,92) be compact; then

s;(K) = min sup  [|[Kf], (3.45)
Jrosfi=1 feU(fi,fiot)

where U(f1,...,f;) ={fem||fll=1, fe span{fl,...,fj}L}.
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In particular, note
si(AK) < [[Alls;(K),  s;(KA) <[ Alls;(K) (3.46)

whenever K is compact and A is bounded (the second estimate follows from
the first by taking adjoints).

An operator K € Z($1,92) is called a finite rank operator if its
range is finite dimensional. The dimension

rank(K) = dim Ran(K)
is called the rank of K. Since for a compact operator

Ran(K) = span{v;} (3.47)

we see that a compact operator is finite rank if and only if the sum in (3.40)
is finite. Note that the finite rank operators form an ideal in £(£)) just as
the compact operators do. Moreover, every finite rank operator is compact
by the Heine—Borel theorem (Theorem B.22).

Now truncating the sum in the canonical form gives us a simple way to
approximate compact operators by finite rank ones. Moreover, this is in fact
the best approximation within the class of finite rank operators:

Lemma 3.19. Let K € €(H1,92) be compact and let its singular values be
ordered. Then

(K) = i K- F|, 3.48
5(K) = min K| (3.45)
with equality for
j—1
Fi_q:= Z Sk Uk, -) Vg (3.49)
k=1

In particular, the closure of the ideal of finite rank operators in £ () is the
ideal of compact operators.

Proof. That there is equality for F' = F;_; follows from (3.41). In general,
the restriction of F' to span{ui,...u;} will have a nontrivial kernel. Let
f= Zi&:l ajuj be a normalized element of this kernel, then (K —F)f|? =
IKFI? = Y0y lowsi]” > s7.

In particular, every compact operator can be approximated by finite
rank ones and since the limit of compact operators is compact, we cannot
get more than the compact operators. O

Two more consequences are worthwhile noting.

Corollary 3.20. An operator K € £($1,$2) is compact if and only if
K*K is.
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Proof. Just observe that K*K compact is all that was used to show The-
orem 3.17. O

Corollary 3.21. An operator K € £($1,92) is compact (finite rank) if
and only K* € £ ($2,91) is. In fact, s;(K) = s;(K*) and

K* =" s;(vj, Ju;. (3.50)

J

Proof. First of all note that (3.50) follows from (3.40) since taking ad-
joints is continuous and ((uj,.)v;)* = (vj,.)u; (cf. Problem 2.7). The rest is
straightforward. ([l

From this last lemma one easily gets a number of useful inequalities for
the singular values:

Corollary 3.22. Let K and Ky be compact and let s;(K1) and s;j(K2) be
ordered. Then

(1) sjrr—1(K1+ K2) < sj(K1) + sk(K2),

(ii) sj+r-1(K1K2) < 55(K1)sk(K2),
(i) [s;(K1) — s (K2)] < [[ K1 — Kaf|.

Proof. Let F} be of rank j — 1 and F» of rank k — 1 such that [|K; — Fi|| =
Sj(Kl) and HK2 — F2|| = Sk(Kz). Then Sj+]€_1(K1 + Kg) < H(Kl + Kg) —
(I + B)|| = |[K1 — Fr|| + || K2 — Fa|| = sj(K1) + sip(K2) since Fy + F is of
rank at most 7+ k — 2.

Similarly F' = Fy(Ks— Fy)+ K1 F5 is of rank at most j+k —2 and hence
sj+k-1(K1K2) < [K1 Ky — F|| = [|[(Ky — F1)(Ky — B)|| < || Ky — Fuflf| K2 —
Byl = sj(K1)sk(K2).

Next, choosing k = 1 and replacing Ko — Ko — K1 in (i) gives s;(K3) <
5j(K1)+ || K2 — K1]|. Reversing the roles gives s;(K1) < sj(K2)+ || K1 — Ka||
and proves (iii). O

Example. On might hope that item (i) from the previous corollary can be
improved to s;(K1 + K2) < sj(K1) + s;(K2). However, this is not the case
as the following example shows:

1 0 0 0
K= <0 0)’ Ko = <0 1>‘
Then 1 = s3(K1 + K2) £ s2(K1) + s2(K32) = 0. ¢

Problem 3.14. Show that Ker(A*A) = Ker(A) for any A € Z(91,92).

Problem 3.15. Let K be multiplication by a sequence k € co(N) in the
Hilbert space ¢2(N). What are the singular values of K ?
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Problem 3.16. Let K be multiplication by a sequence k € co(N) in the
Hilbert space £*(N) and consider L = KS~. What are the singular values of
L? Does L have any eigenvalues?

Problem 3.17. Let K € € (91, 92) be compact and let its singular values be
ordered. Let M C $1, N C 1 be subspaces whith corresponding orthogonal
projections Py, Py, respectively. Then

(K)= mi K- KPy||= mi K — PyK
sj(K) dimr?]\l/g<jH M| din?(lll\f1;<jH NE],

where the minimum is taken over all subspaces with the indicated dimension.
Moreover, we have equality for

M = span{uk}f;ll, N = span{vk}i;ll.
3.6. Hilbert—Schmidt and trace class operators

We can further subdivide the class of compact operators €' ($)) according to
the decay of their singular values. We define

Kl = (3 ssm) (351)

J
plus corresponding spaces

Tp($) = {K € C(H)|[Kllp < oo}, (3.52)

which are known as Schatten p-classes. Even though our notation hints
at the fact that ||.||, is a norm, we will only prove this here for p = 1,2 (the
only nontrivial part is the triangle inequality). Note that by (3.41)

KN < K]l (3.53)
and that by s;(K) = s;(K*) we have
1K |y = (1K |- (3.54)

The two most important cases are p = 1 and p = 2: Jo($)) is the space
of Hilbert—Schmidt operators and [7;(%)) is the space of trace class
operators.

Example. Any multiplication operator by a sequence from ¢P(N) is in the
Schatten p-class of £ = £2(N). o

Example. By virtue of the Weyl asymptotics (see the example on 88) the
resolvent of our Sturm-Liouville operator is trace class. o

Example. Let k be a periodic function which is square integrable over
[, 7|. Then the integral operator

k)@ =5 [ " k(y — 2)f(y)dy

:% .
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has the eigenfunctions u;(z) = (27)~"/2e7% with corresponding eigenvalues
l%j, j € Z, where l%j are the Fourier coefficients of k. Since {u;} ez is an ONB
we have found all eigenvalues. In particular, the Fourier transform maps K
to the multiplication operator with the sequence of its eigenvalues fcj. Hence
the singular values are the absolute values of the nonzero eigenvalues and
(3.40) reads

K= Z kj<Uj, )uj
JEL
Moreover, since the eigenvalues are in £2(Z) we see that K is a Hilbert—

Schmidt operator. If k is continuous with summable Fourier coefficients
(e.g. k€ CF, [—m, ), then K is trace class. o

We first prove an alternate definition for the Hilbert—Schmidt norm.
Lemma 3.23. A bounded operator K is Hilbert—-Schmidt if and only if
D K wj|f* < oo (3.55)

JjeJ
for some orthonormal basis and
1/2
2
1Kl = (3 IKwsl?) (3.56)
JjeJ
for every orthonormal basis in this case.
Proof. First of all note that (3.55) implies that K is compact. To see this,
let P, be the projection onto the space spanned by the first n elements of

the orthonormal basis {w;}. Then K, = KP, is finite rank and converges
to K since

1/2
I = Ka) £l = 11 eyl < 3 lesl Kyl < (3 I 2) IifL

j>n j>n j>n

where f =3, cjw;.
The rest follows from (3.40) and

Yo wil? = ok, Kwy)P = (K o, wy) [P = 1K v
i . k.j k

= su(K)? = ||K|3.
k

Here we have used span{v;,} = Ker(K*)* = Ran(K) in the first step. O

Corollary 3.24. The Hilbert—Schmidt norm satisfies the triangle inequality
and hence is indeed a norm.
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Proof. This follows from (3.56) upon using the triangle inequality for $
and for £2(J). O

Now we can show

Lemma 3.25. The set of Hilbert-Schmidt operators forms an ideal in £ ($))
and

K Allz < [[A[IK]l2,  respectively, —[[AK||z < [[A][[|IK]]2. (3.57)

Proof. If K; and K> are Hilbert—Schmidt operators, then so is their sum
since

1/2 1/2

1K+ Kollz = (N0 + Ka)wyl) < (D (K |+ [1K2wy)?)
jeJ jeJ
< K2 + (K22,
where we have used the triangle inequality for ¢2(.J).
Let K be Hilbert—Schmidt and A bounded. Then AK is compact and
JAK| =) JAKw,|* < AP [1Kw;])* = AP K113
J J

For K A just consider adjoints. [l

Example. Consider /2(N) and let K be some compact operator. Let K ik =
(67, K6%) = (K67), be its matrix elements such that

e8]
(Ka)j = Z Kjkak.
k=1

Then, choosing w; = ¢/ in (3.56) we get

° o\ 1/2 X 2\ /2
1Kl = (Do IEa72) ™ = (32D 1Kal?)
j=1 =1 k=1

Hence K is Hilbert—Schmidt if and only if its matrix elements are in ¢*(N x
N) and the Hilbert-Schmidt norm coincides with the #2(N x N) norm of
the matrix elements. Especially in the finite dimensional case the Hilbert—
Schmidt norm is also known as Frobenius norm.

Of course the same calculation shows that a bounded operator is Hilbert—
Schmidt if and only if its matrix elements (w;, Kwy) with respect to some
orthonormal basis {w;};jec; are in ¢*(J x J) and the Hilbert-Schmidt norm
coincides with the #2(J x J) norm of the matrix elements. o

Example. Let I = [a,b] be a compact interval. Suppose K : L?(I) — C(I)
is continuous, then K : L?(I) — L?(I) is Hilbert-Schmidt with Hilbert—
Schmidt norm [[K||2 < v/b —aM, where M := || K||2(1)50(1)-
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To see this start by observing that point evaluations are continuous
functionals on C'(I) and hence f — (K f)(x) is a continuous linear functional
on L?(I) satisfying |(K f)(z)| < M||f||. By the Riesz lemma there is some
K, € L*(I) with |K,|| < M such that

(K f)(z) = (Kz, f)

and hence for any orthonormal basis {w;};en we have

ST IEwy) @) =Y (K w)? = | K ||* < M2

jEN jeN
But then
b b
S Kw P =3 [ lww@) s = [ (3 Iw)@)P) ds
jEN jENYE @ " jeN
< (b—a)M?
as claimed. o

Since Hilbert—Schmidt operators turn out easy to identify (cf. also Sec-
tion 10.5), it is important to relate J1($) with J2($):

Lemma 3.26. An operator is trace class if and only if it can be written as
the product of two Hilbert-Schmidt operators, K = K1Ks, and in this case
we have

1K1 < K 2] Kz l2- (3.58)

Proof. Using (3.40) (where we can extend u, and v, to orthonormal bases
if necessary) and Cauchy—Schwarz we have

1K =3 (vn, Ku) = > [(Kfvn, Kouy)]
n

n
. 1/2
< (S IK vl X 1 Koual?) " = 1K o Kol
n n

and hence K = K7 K5 is trace class if both K7 and K9 are Hilbert—Schmidt
operators. To see the converse, let K be given by (3.40) and choose K; =

225 V/8i(K) (uj, v, respectively, Ko =37 \/s;(K)(uj, .)u;. O
Now we can also explain the name trace class:

Lemma 3.27. If K is trace class, then for every orthonormal basis {w,}
the trace
tr(K) =Y (wn, Kwy) (3.59)

n
is finite,
[tr(K)| < [| K], (3.60)

and independent of the orthonormal basis.
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Proof. If we write K = K;Ks with K;, Ko Hilbert—Schmidt, then the
Cauchy—Schwarz inequality implies |tr(K)| < ||K7|2]| K2ll2 < ||K|l1. More-
over, if {w,} is another orthonormal basis, we have

Z<wnaK1K2wn> = Z<Kikwn;K2wn> = Z(Kikwnvwm><wm;K2wn>

n n n,m
= Z<K§Um)wn><wnaKlvm> = Z<K§7j}va1U~}m>
m,n m

= (b, Ko K1),
m

In the special case w = w we see tr(K1K2) = tr(K2K7) and the general case
now shows that the trace is independent of the orthonormal basis. O

Clearly for self-adjoint trace class operators, the trace is the sum over
all eigenvalues (counted with their multiplicity). To see this, one just has to
choose the orthonormal basis to consist of eigenfunctions. This is even true
for all trace class operators and is known as Lidskij trace theorem (see [31]
for an easy to read introduction).

Example. We already mentioned that the resolvent of our Sturm—Liouville
operator is trace class. Choosing a basis of eigenfunctions we see that the
trace of the resolvent is the sum over its eigenvalues and combining this with
our trace formula (3.29) gives

r(Ru(:) = Y

j—Z

1
/ G(z,x,z)dz
0

Jj=0
for z € C no eigenvalue. o

Example. For our integral operator K from the example on page 93 we
have in the trace class case

tr(K) =Y k; = k(0).
JEZ
Note that this can again be interpreted as the integral over the diagonal
(2m)Yk(z — ) = (27) " 1k(0) of the kernel. o

We also note the following elementary properties of the trace:

Lemma 3.28. Suppose K, K1, Ko are trace class and A is bounded.

(i) The trace is linear.

(ii) tr(K*) = tr(K)*.
(i) If K1 < Ko, then tr(K;) < tr(K32).
(iv) tr(AK) = tr(KA).
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Proof. (i) and (ii) are straightforward. (iii) follows from K; < Kj if and
only if (f, K1f) < (f, Kaof) for every f € $). (iv) By Problem 2.12 and (i),
it is no restriction to assume that A is unitary. Let {w,} be some ONB and
note that {w, = Aw,} is also an ONB. Then

tr(AK) =Y (i, AKt,) = Y (Aw,, AK Aw,)

n n

= Z(wn,KAwn> = tr(KA)

and the claim follows. O

We also mention a useful criterion for K to be trace class.

Lemma 3.29. An operator K is trace class if and only if it can be written
as

K=Y (fj)9; (3.61)
J
for some sequences f;, g; satisfying

> I filllgsl < oo (3.62)
J

Moreover, in this case

1|y = min Y [| £llll951], (3.63)
i

where the minimum is taken over all representations as in (3.61).

Proof. To see that a trace class operator (3.40) can be written in such a
way choose f; = uj, g; = sjv;. This also shows that the minimum in (3.63)
is attained. Conversely note that the sum converges in the operator norm
and hence K is compact. Moreover, for every finite N we have

N

N N N
D sk = (e, Kup) =Y 0> (ke gi)(Four) = D> (ve, 95 (o i)

k=1 k=1 k=1 3 j k=1

N 12 , § 1/2
<> (Z \(vk,gﬁ!?) (Z !<fj’Uk>|2> <> Il £5lllgs -
i \k=1 k=1 j

This also shows that the right-hand side in (3.63) cannot exceed ||K||;. To
see the last claim we choose an ONB {wy} to compute the trace

tr(K) = Z (wy, Kwy) ZZ (wi, (£}, wk) ;) ZZ ((wr, f7)whs 97)
—Z f]?g] O
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An immediate consequence of (3.63) is:

Corollary 3.30. The trace norm satisfies the triangle inequality and hence
is indeed a norm.

Finally, note that
. ) 1/2
1Kl = (bx(]K)Y (3.64)
which shows that J>($)) is in fact a Hilbert space with scalar product given
by
<K1, K2> = tI‘(KikKQ). (365)
Problem 3.18. Let ) := (*(N) and let A be multiplication by a sequence
a = (a;);2,. Show that A is Hilbert-Schmidt if and only if a € 2(N).
Furthermore, show that || All2 = ||a|| in this case.

Problem 3.19. An operator of the form K : £2(N) — (2(N), f, > jen kn+ifj
is called Hankel operator.

e Show that K is Hilbert-Schmidt if and only if EjeNj\ijP < 00
and this number equals || K||2.
o Show that K is Hilbert-Schmidt with ||K|2 < ||c|1 if |k;j| < ¢,

where c; is decreasing and summable.

(Hint: For the first item use summation by parts.)






Chapter 4

The main theorems
about Banach spaces

4.1. The Baire theorem and its consequences

Recall that the interior of a set is the largest open subset (that is, the union
of all open subsets). A set is called nowhere dense if its closure has empty
interior. The key to several important theorems about Banach spaces is the
observation that a Banach space cannot be the countable union of nowhere
dense sets.

Theorem 4.1 (Baire category theorem). Let X be a (nonempty) complete
metric space. Then X cannot be the countable union of nowhere dense sets.

Proof. Suppose X = J;~; X,,. We can assume that the sets X,, are closed
and none of them contains a ball; that is, X \ X, is open and nonempty for
every n. We will construct a Cauchy sequence z,, which stays away from all
Xn.

Since X \ X is open and nonempty, there is a ball B,, (z1) € X \ Xj.
Reducing 7 a little, we can even assume B;, (z1) € X \ X;. Moreover,
since Xy cannot contain B,,(z1), there is some zo € B,,(x1) that is not
in Xs. Since By, (z1) N (X \ X2) is open, there is a closed ball B,,(z2) C
By, (x1) N (X \ X2). Proceeding recursively, we obtain a sequence (here we
use the axion of choice) of balls such that

By (2n) C By, (2n_1) N (X \ X).

Now observe that in every step we can choose r,, as small as we please; hence
without loss of generality 7, — 0. Since by construction z,, € B, (zn) for

101
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n > N, we conclude that x, is Cauchy and converges to some point z € X.

But z € B, (z,) C X \ X,, for every n, contradicting our assumption that
the X, cover X. O

In other words, if X,, C X is a sequence of closed subsets which cover
X, at least one X, contains a ball of radius € > 0.

Example. The set of rational numbers @Q can be written as a countable
union of its elements. This shows that the completeness assumption is cru-
cial. o

Remark: Sets which can be written as the countable union of nowhere
dense sets are said to be of first category or meager. All other sets are
second category or fat. Hence explaining the name category theorem.

Since a closed set is nowhere dense if and only if its complement is
open and dense (cf. Problem B.6), there is a reformulation which is also
worthwhile noting:

Corollary 4.2. Let X be a complete metric space. Then any countable
intersection of open dense sets is again dense.

Proof. Let {O,} be a family of open dense sets whose intersection is not
dense. Then this intersection must be missing some closed ball B.. This
ball will lie in {J,, X,,, where X,, := X \ O,, are closed and nowhere dense.
Now note that Xn := X,, N B; are closed nowhere dense sets in B.. But B,
is a complete metric space, a contradiction. O

Countable intersections of open sets are in some sense the next general
sets after open sets (cf. also Section 8.6) and are called G5 sets (here G
and ¢ stand for the German words Gebiet and Durchschnitt, respectively).
The complement of a G5 set is a countable union of closed sets also known
as an Fy, set (here F' and o stand for the French words fermé and somme,
respectively). The complement of a dense G set will be a countable inter-
section of nowhere dense sets and hence by definition meager. Consequently
properties which hold on a dense G are considered generic in this context.

Example. The irrational numbers are a dense G set in R. To see this, let
T, be an enumeration of the rational numbers and consider the intersection
of the open sets O,, := R\ {z,,}. The rational numbers are hence an Fy
set. <o

Now we are ready for the first important consequence:

Theorem 4.3 (Banach-Steinhaus). Let X be a Banach space and'Y some
normed vector space. Let {A,} € Z(X,Y) be a family of bounded operators.
Then
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o cither {Ay} is uniformly bounded, | Al < C,
o or the set {x € X|sup, ||Aqz| = 00} is a dense Gs.

Proof. Consider the sets

Oy = {a| | Aaz|| > n for all a} = | J{z| |Aaz| > n}, neN

By continuity of A, and the norm, each O, is a union of open sets and hence
open. Now either all of these sets are dense and hence their intersection

[ On = {z| sup || Aaz|| = o0}
neN @

is a dense Gs by Corollary 4.2. Otherwise, X \ O,, is nonempty and open
for one n and we can find a ball of positive radius B:(xg) C X \ O,. Now
observe

[Aayll = [Aaly + 20 — 20)|| < [|Aa(y + z0)|| + [[Aazoll < 2n

X

EIRRE obtain

for [Jy|| <e. Setting y = ¢

2n
[Aaz] < —lz|
€
for every . O

Note that there is also a variant of the Banach—Steinhaus theorem for
pointwise limits of bounded operators which will be discussed in Lemma, 4.32.

Hence there are two ways to use this theorem by excluding one of the two
possible options. Showing that the pointwise bound holds on a sufficiently
large set (e.g. a ball), thereby ruling out the second option, implies a uniform
bound and is known as the uniform boundedness principle.

Corollary 4.4. Let X be a Banach space and'Y some normed vector space.
Let {A,} C Z(X,Y) be a family of bounded operators. Suppose ||Ayz| <
C(z) is bounded for every fized x € X. Then {A,} is uniformly bounded,
[Aall < C.

Conversely, if there is no uniform bound, the pointwise bound must fail
on a dense G5. This is illustrated in the following example.

Example. Consider the Fourier series (2.44) of a continuous periodic func-
tion f € Cper|—m,w| = {f € C|—mn,7]|f(—7) = f(m)}. (Note that this is a
closed subspace of C[—m, 7] and hence a Banach space — it is the kernel of
the linear functional ¢(f) = f(—m)— f(m).) We want to show that for every
fixed « € [—m, 7| there is a dense G; set of functions in Cpe,[—m, 7] for which
the Fourier series will diverge at = (it will even be unbounded).
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Without loss of generality we fix x = 0 as our point. Then the n’th
partial sum gives rise to the linear functional

) i= $u(00) = o= [ Dufa) (e

and it suffices to show that the family {/, },en is not uniformly bounded.
By the example on page 30 (adapted to our present periodic setting) we
have

1
loll = —||Dnl|1-
[€all = 5 1Dall

Now we estimate

L s L [T s 20
IDul =3 [ Do)l > A L3

9 (n+1/2)7 dy 4 1
== Wz E S N
7r/O | sin(y | / o | sin(y k:7r — k

and note that the harmonic series dlverges.

In fact, we can even do better. Let G(x) C Cpe,[—7, 7| be the dense G5
of functions whose Fourier series diverges at . Then, given countably many
points {z;}jen C [—m, 7], the set G = [);cy G(z;) is still a dense G5 by
Corollary 4.2. Hence there is a dense G of functions whose Fourier series
diverges on a given countable set of points. o

Example. Recall that the Fourier coefficients of an absolutely continuous
function satisfy the estimate

U g0

This raises the question if a similar estimate can be true for continuous
functions. More precisely, can we find a sequence c; > 0 such that

|fil < Crer,

where C'y is some constant depending on f. If this were true, the linear
functionals

gk(f) = s ke Z,

satisfy the assumptions of the uniform boundedness principle implying ||{x|| <
C. In other words, we must have an estimate of the type

|Fxl < Cllflloock

which implies 1 < C ¢, upon choosing f(z) = ¢**. Hence our assumption
cannot hold for any sequence c¢; converging to zero and there is no universal
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decay rate for the Fourier coefficients of continuous functions beyond the
fact that they must converge to zero by the Riemann—-Lebesgue lemma. o

The next application is

Theorem 4.5 (Open mapping). Let A € L (X,Y) be a continuous linear
operator between Banach spaces. Then A is open (i.e., maps open sets to
open sets) if and only if it is onto.

Proof. Set BX := BX(0) and similarly for BY (0). By translating balls
(using linearity of A), it suffices to prove that for every € > 0 there is a
§ > 0 such that BY C A(BX).

So let € > 0 be given. Since A is surjective we have

Y =AX=A G nBYX = G A(nBY) = G nA(BZY)
n=1 n=1 n=1

and the Baire theorem implies that for some n, nA(BZX) contains a ball.
Since multiplication by n is a homeomorphism, the same must be true for

n =1, that is, BY (y) C A(BZX). Consequently

BY € —y+A(BX) C A(BY) + A(BX) C A(BY) + A(BX) € A(B).

So it remains to get rid of the closure. To this end choose ¢, > 0 such

that Y ° | &, < ¢ and corresponding 8, — 0 such that B} C A(BZ). Now

for y € Bg; C A(BX) we have z1 € BX such that Az; is arbitrarily close
to y, say y — Az; € By, C A(BX). Hence we can find zo € A(BZ) such

that (y — Ax1) — Axy € B(;Y3 C A(BZX) and proceeding like this a a sequence
r, € A(BX ) such that

En+1 )

n
Yy — ZAl’k € B};H.
k=1

By construction the limit x := Y72 | Az, exists and satisfies z € BX as well
as y = Az € ABX. That is, Bg; C ABX as desired.

Conversely, if A is open, then the image of the unit ball contains again
some ball BY C A(B:X). Hence by scaling BY. C A(B;X) and letting r — oo
we see that A is onto: Y = A(X). O

As an immediate consequence we get the inverse mapping theorem:

Theorem 4.6 (Inverse mapping). Let A € Z(X,Y) be a continuous linear
bijection between Banach spaces. Then A~ is continuous.
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Example. Consider the operator (Aa)}_; = (%aj)?zl in /2(N). Then its
inverse (A_la)?:1 = (ja;)j—; is unbounded (show this!). This is in agree-
ment with our theorem since its range is dense (why?) but not all of ¢£2(N):

For example, (b; = %)]o‘;l ¢ Ran(A) since b = Aa gives the contradiction

[o¢] o (o)
o= 1= [’ => o’ < o0.
j=1 j=1 j=1

This should also be compared with Corollary 4.9 below. o

Example. Consider the Fourier series (2.44) of an integrable function.
Using the inverse function theorem we can show that not every sequence
tending to 0 (which is a necessary condition according to the Riemann—
Lebesgue lemma) arises as the Fourier coefficients of an integrable function:

By the elementary estimate

p 1
7o < o= l£1h
we see that that the mapping F(f) := f continuously maps F : L'(—m,7) —
co(Z) (the Banach space of sequences converging to 0). In fact, this esti-
mate holds for continuous functions and hence there is a unique continuous
extension of F to all of L'(—m,m) by Theorem 1.16. Moreover, it can be
shown that F is injective (for f € L? this follows from Theorem 2.17, the
general case f € L! will be established in the example on page 298). Now
if I were onto, the inverse mapping theorem would show that the inverse is
also continuous, that is, we would have an estimate || f||so > C||f||1 for some

C' > 0. However, considering the Dirichlet kernel D,, we have ||Dy|locc = 1
but || Dy|[1 = oo as shown in the example on page 103. o

Another important consequence is the closed graph theorem. The graph
of an operator A is just

T(A) = {(z, Az)|z € D(A)}. (4.1)

If A is linear, the graph is a subspace of the Banach space X @Y (provided
X and Y are Banach spaces), which is just the Cartesian product together
with the norm

Iz 9) | xey = llzllx + lylly- (4.2)

Note that (z,,,yn) — (z,y) if and only if x,, — = and y,, — y. We say that
A has a closed graph if I'(A) is a closed set in X @Y.

Theorem 4.7 (Closed graph). Let A : X — Y be a linear map from a
Banach space X to another Banach space Y. Then A is continuous if and
only if its graph is closed.
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Proof. IfT'(A) is closed, then it is again a Banach space. Now the projection
m1(x, Ax) = x onto the first component is a continuous bijection onto X.
So by the inverse mapping theorem its inverse m ! is again continuous.
Moreover, the projection m(x, Ax) = Az onto the second component is also
continuous and consequently so is A = mp o ! The converse is easy. [

Remark: The crucial fact here is that A is defined on all of X!

Operators whose graphs are closed are called closed operators. Being
closed is the next option you have once an operator turns out to be un-
bounded. If A is closed, then z,, — = does not guarantee you that Ax,
converges (like continuity would), but it at least guarantees that if Ax,
converges, it converges to the right thing, namely Ax:

e A bounded (with ©(A) = X): z,, — « implies Ax,, — Ax.

o A closed (with ®(A) C X): =, = z, x, € D(A4), and Az, — y
implies x € ©(A) and y = Axz.

If an operator is not closed, you can try to take the closure of its graph,
to obtain a closed operator. If A is bounded this always works (which is
just the content of Theorem 1.16). However, in general, the closure of the
graph might not be the graph of an operator as we might pick up points
(x,y1), (x,y2) € T'(A) with y; # ya. Since I'(A) is a subspace, we also have
(x,y2) — (z,y1) = (0,y2 —y1) € I'(A) in this case and thus I'(A) is the graph
of some operator if and only if

I'(A) n{(0,y)ly € Y} = {(0,0)}. (4.3)

If this is the case, A is called closable and the operator A associated with
I'(A) is called the closure of A.

In particular, A is closable if and only if x,, — 0 and Ax,, — y implies
y = 0. In this case

D(A) ={zr € X|Fz, € D(A), y€Y : 2, — x and Az, — y},
Az =1y. (4.4)

For yet another way of defining the closure see Problem 4.9.
Example. Consider the operator A in ¢P(N) defined by Aa; := ja; on
D(A) = {a € P(N)|a;j # 0 for finitely many j}.

(i). A is closable. In fact, if a™ — 0 and Aa™ — b then we have a7 — 0
and thus jaj — 0= bj for any 7 € N.

(ii). The closure of A is given by

D(A) = {{“ € PN)|(ja)iy € PN)}, 1 <p <oo,
{a € CO(N)K]CL]‘)?il S C()(N)}7 p = 00,
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and Aa; = ja;. In fact, if " — a and Aa™ — b then we have aj — aj and
jaj — bj for any j € N and thus b; = ja; for any j € N. In particular,
(jaj)52q = (b;)521 € £P(N) (co(N) if p = 00). Conversely, suppose (ja;)52, €
P(N) (co(N) if p = c0) and consider

g 10 TS
J 0, j>n.

Then a" — a and Aa" — (ja;)32,.

(iii). Note that the inverse of A is the bounded operator Z_laj =
jta; defined on all of /P(N). Thus A7 is closed. However, since its range

Ran(A ") = ©(A) is dense but not all of /P(N), A " does not map closed
sets to closed sets in general. In particular, the concept of a closed operator
should not be confused with the concept of a closed map in topology!

(iv). Extending the basis vectors {0" } ,en to a Hamel basis (Problem 1.6)
and setting Aa = 0 for every other element from this Hamel basis we obtain
a (still unbounded) operator which is everywhere defined. However, this
extension cannot be closed! o

Example. Here is a simple example of a nonclosable operator: Let X :=
¢%(N) and consider Ba := (352 a;)6" defined on ¢}(N) C ¢%(N). Let aj =

Lfor 1 <j<mnand a} := 0 for j > n. Then [la”|]2 = ﬁ implying a” — 0

but Ba™ = §' 4 0. o
Example. Another example are point evaluations in L2(0,1): Let 29 € [0, 1]
and consider £, : D(ly,) — C, f — f(zg) defined on D(¢,,) := C[0,1] C
L%(0,1). Then f,(x) := max(0, 1 — n|x — xzo|) satisfies f,, — 0 but £y, (fn) =
1. o
Lemma 4.8. Suppose A is closable and A is injective. Then At =a-T
Proof. If we set
I = {(y,2)|(z,y) €T}

then T'(A™1) =T71(A) and

TA D) =T(A) 1 =T(A)  =T@)'=TA". O

Note that A injective does not imply A injective in general.
Example. Let P); be the projection in ¢2(N) on M := {b}*, where b :=
(2_3'/2)]?";1. Explicitly we have Pyra = a — (b,a)b. Then Py restricted to
the space of sequences with finitely many nonzero terms is injective, but its
closure is not. o
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As a consequence of the closed graph theorem we obtain:

Corollary 4.9. Suppose A : D(A) C X — Y is closed and injective. Then
A=Y defined on ©(A~!) = Ran(A) is closed. Moreover, in this case Ran(A)
is closed if and only if A~' is bounded.

The question when Ran(A) is closed plays an important role when in-
vestigating solvability of the equation Ax = y and the last part gives us
a convenient criterion. Moreover, note that A~! is bounded if and only if
there is some ¢ > 0 such that

[Az]| = cllz]l, = € D(A). (4.5)

Indeed, this follows upon setting x = A1y in the above inequality which
also shows that ¢ = ||[A7Y|~! is the best possible constant. Factoring out
the kernel we even get a criterion for the general case:

Corollary 4.10. Suppose A : D(A) C X — Y is closed. Then Ran(A) is
closed if and only if

|Az|| > cdist(x, Ker(A)), r € D(A), (4.6)

for some ¢ > 0.

Proof. Consider the quotient space X := X/Ker(A) and the induced op-
erator A : D(A) = Y where D(A) = D(A)/Ker(A) C X. By construction
Alz] = 0 iff z € Ker(A) and hence A is injective. To see that A is closed we
use 7: X XY = X xY, (z,y) — ([z],y) which is bounded, surjective and
hence open. Moreover, 7(I'(A)) = I'(4). In fact, we even have (z,y) € T'(A)
iff ([z],y) € T(A) and thus 7#(X x Y \I'(4)) = X x Y \ I'(A) implying that
Y \ T'(A) is open. Finally, observing Ran(A4) = Ran(A) we have reduced it
to the previous corollary. ([

There is also another criterion which does not involve the distance to
the kernel.

Corollary 4.11. Suppose A : D(A) € X — Y is closed. Then Ran(A)
is closed if for some given € > 0 and 0 < & < 1 we can find for every
y € Ran(A) a corresponding x € ©(X) such that

ellzll +[ly — Azl < dljyll- (4.7)

Conversely, if Ran(A) is closed this can be done whenever ¢ < c¢d with ¢
from the previous corollary.

Proof. If Ran(A) is closed and ¢ < ¢ there is some x € D(A) with y = Az
and [|Az|| > ||z|| after maybe adding an element from the kernel to 2. This
x satisfies ||z|| + ||y — Az|| = ¢||z|| < d||y|| as required.
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Conversely, fix y € Ran(A) and recursively choose a sequence x,, such
that

ellanll + [(y — ALn—1) — Azn| < dlly — AZpa|l, T = Z Tm-
m<n
In particular, ||y — AZ,| < 0"||y|| as well as ¢||zy| < 0™||y||, which shows
Zp, — x and A%, — y. Hence v € ©(A) and y = T'x € Ran(A). O

The closed graph theorem tells us that closed linear operators can be
defined on all of X if and only if they are bounded. So if we have an
unbounded operator we cannot have both! That is, if we want our operator
to be at least closed, we have to live with domains. This is the reason why in
quantum mechanics most operators are defined on domains. In fact, there
is another important property which does not allow unbounded operators
to be defined on the entire space:

Theorem 4.12 (Hellinger—Toeplitz). Let A : $ — $ be a linear operator on
some Hilbert space $). If A is symmetric, that is (g, Af) = (Ag, f), f,g € 9,
then A is bounded.

Proof. It suffices to prove that A is closed. In fact, f, — f and Af, — ¢
implies

(h,g) = lim (h, Afy) = lim (Ah, f) = (Ah, f) = (h, Af)
for every h € . Hence Af = g. O

Problem 4.1. An infinite dimensional Banach space cannot have a count-
able Hamel basis (see Problem 1.6). (Hint: Apply Baire’s theorem to X, :=
span{u;}7_;.)

Problem 4.2. Let X := C[0,1]. Show that the set of functions which are
nowhere differentiable contains a dense Gg. (Hint: Consider Fy, := {f €
X|3z € [0,1] = |f(z) = f(y)| < klz —y|, Vy € [0,1]}. Show that this
set is closed and nowhere dense. For the first property Bolzano—Weierstrafs
might be useful, for the latter property show that the set of piecewise linear
functions whose slopes are bounded below by some fixed number in absolute
value are dense.)

Problem 4.3. Let X be the space of sequences with finitely many nonzero
terms together with the sup norm. Consider the family of operators { Ay }nen
gwen by (Apa); = jaj, j < n and (Apa)j == 0, j > n. Then this family
is pointwise bounded but not uniformly bounded. Does this contradict the
Banach—Steinhaus theorem?

Problem 4.4. Let X be a complete metric space without isolated points.
Show that a dense Ggs set cannot be countable. (Hint: A single point is
nowhere dense.)
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Problem 4.5. Consider a Schauder basis as in (1.34). Show that the co-
ordinate functionals oy, are continuous. (Hint: Denote the set of all pos-
sible sequences of Schauder coefficients by A and equip it with the norm
|| := sup, || > _p_; awukll; note that A is precisely the set of sequences
for which this norm is finite. By construction the operator A : A — X,
a +— Y agug has norm one. Now show that A is complete and apply the
inverse mapping theorem.)

Problem 4.6. Show that a compact symmetric operator in an infinite-
dimensional Hilbert space cannot be surjective.

Problem 4.7. Show that if A is closed and B bounded, then A+ B is closed.
Show that this in general fails if B is not bounded. (Here A+ B is defined
on DA+ B)=9(A)ND(B).)

Problem 4.8. Show that the differential operator A = % defined on D(A) =
C'0,1] € C[0,1] (sup norm) is a closed operator. (Compare the example in
Section 1.6.)

Problem 4.9. Consider a linear operator A : ®(A) C X — Y, where X
and Y are Banach spaces. Define the graph norm associated with A by

[zlla = llzlx +[[Azlly, 2 D(A). (4.8)

Show that A : ©(A) — Y is bounded if we equip ©(A) with the graph norm.
Show that the completion X g of (D(A),||.]|a) can be regarded as a subset of
X if and only if A is closable. Show that in this case the completion can

be identified with ®(A) and that the closure of A in X coincides with the
extension from Theorem 1.16 of A in X 4.

Problem 4.10. Let X := (*(N) and (Aa); := j aj with D(A) := {a € £2(N)|
(jaj)jen € *(N)} and Ba := (X jen a;j)6t. Then we have seen that A is
closed while B is not closable. Show that A+ B, ®(A+B) =9(A)ND(B) =
D(A) is closed.

4.2. The Hahn—Banach theorem and its consequences

Let X be a Banach space. Recall that we have called the set of all bounded
linear functionals the dual space X* (which is again a Banach space by
Theorem 1.17).

Example. Consider the Banach space ?(N), 1 < p < oco. Taking the
Kronecker deltas 6" as a Schauder basis the n’th term z, of a sequence
x € (P(N) can also be considered as the n’th coordinate of x with respect to
this basis. Moreover, the map l,,(z) = zy, is a bounded linear functional, that
is, I, € P(N)*, since |l,,(z)| = |zn| < ||z]|p. It is a special case of the following
more general example (in fact, we have [,, = lgn). Since the coordinates of
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a vector carry all the information this explains why understanding linear
functionals if of key importance. o

Example. Consider the Banach space #(N), 1 < p < oco. We have al-
ready seen that by Holder’s inequality (1.28) every y € ¢9(N) gives rise to a
bounded linear functional

ly(l') = Zyn-rn (4.9)

neN

whose norm is ||, || = ||y||q (Problem 4.15). But can every element of ¢’(N)*
be written in this form?

Suppose p := 1 and choose [ € £}(N)*. Now define
Yn = 1(6").

Then
[yn| = [L(6™)| < (|7 {[6™[l2 = [|7]]

shows ||y|lo < ||1]|, that is, y € £>°(N). By construction l(x) = [, (x) for every
x € span{d"}. By continuity of [ it even holds for z € span{é"} = /}(N).
Hence the map y + [, is an isomorphism, that is, ¢1(N)* = ¢>*(N). A
similar argument shows #(N)* = ¢¢(N), 1 < p < oo (Problem 4.16). One
usually identifies P(N)* with ¢¢(N) using this canonical isomorphism and
simply writes /P(N)* = ¢9(N). In the case p = oo this is not true, as we will
see soon. o

It turns out that many questions are easier to handle after applying a
linear functional ¢ € X*. For example, suppose z(t) is a function R — X
(or C - X), then £(z(t)) is a function R — C (respectively C — C) for
any ¢ € X*. So to investigate ¢(x(t)) we have all tools from real/complex
analysis at our disposal. But how do we translate this information back to
x(t)? Suppose we have £(z(t)) = £(y(t)) for all £ € X*. Can we conclude
xz(t) = y(t)? The answer is yes and will follow from the Hahn-Banach
theorem.

We first prove the real version from which the complex one then follows
easily.

Theorem 4.13 (Hahn-Banach, real version). Let X be a real vector space
and ¢ : X — R a convex function (i.e., p(Ax+(1=N)y) < Ap(z)+(1=N)p(y)
for A€ (0,1)).

If € is a linear functional defined on some subspace Y C X which satisfies
(y) < ¢(y), y € Y, then there is an extension ¢ to all of X satisfying

l
Uz) < p(x), v € X.
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Proof. Let us first try to extend ¢ in just one direction: Take z ¢ Y and
set Y = span{z,Y}. If there is an extension ¢ to Y it must clearly satisfy

Uy + azx) = L(y) + al(z).

So all we need to do is to choose () such that £(y + ax) < p(y+ ax). But
this is equivalent to

sup ply = ax) = Uy) </l(x) < inf

oy + ax) — ((y)
a>0,yeY —Q T a>0,yeY [0}

and is hence only possible if

e(y1 — arz) — L(y1) < ¢(y2 + asz) — L(y2)

—a a2

for every a1, a9 > 0 and y1,y2 € Y. Rearranging this last equations we see
that we need to show

azl(y1) + arl(y2) < asp(y1 — a1x) + arp(y2 + azx).
Starting with the left-hand side we have

a2l(y1) + arl(ye) = (a1 + a2)l (Ayr + (1 — N)y2)
< (a1 +a2)p Ay + (1 = A)y2)
= (a1 + a2)p (AMy1 — a1z) + (1 = A)(y2 + o))
< arp(y1 — o) + a1p(y2 + awx),

a2
a1tag

To finish the proof we appeal to Zorn’s lemma (see Appendix A): Let E
be the collection of all extensions ¢ satisfying ¢(x) < ¢(x). Then E can be
partially ordered by inclusion (with respect to the domain) and every linear
chain has an upper bound (defined on the union of all domains). Hence there
is a maximal element ¢ by Zorn’s lemma. This element is defined on X, since
if it were not, we could extend it as before contradicting maximality. O

where \ = . Hence one dimension works.

Note that linearity gives us a corresponding lower bound —¢(—x) < I(z),
x € X, for free. In particular, if ¢(x) = @(—=z) then |{(z)| < (x).

Theorem 4.14 (Hahn-Banach, complex version). Let X be a complex vec-
tor space and ¢ : X — R a convexr function satisfying o(azx) < ¢(z) if
la| = 1.

If 0 is a linear functional defined on some subspace Y C X which satisfies

L(y)| < ¢(y), y € Y, then there is an extension ? to all of X satisfying
[U(z)] < o), v € X.

Proof. Set ¢, = Re(¢) and observe
Uz) =Ly (z) — il (iz).
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By our previous theorem, there is a real linear extension {, satisfying £, (x) <
¢(x). Now set {(z) = {(z) — il;(ix). Then {(x) is real linear and by

((iz) = £.(iz) + il (z) = il(x) also complex linear. To show |[/(z)| < ¢(x)

£(x)*

we abbreviate & = =*% and use
|(z)]

|6(z)] = al(z) = l(az) = b(az) < p(az) < (),
which finishes the proof. O

Note that ¢p(az) < ¢(z), |a] =1 is in fact equivalent to p(azx) = ¢(x),
la| = 1.

If £ is a bounded linear functional defined on some subspace, the choice
() = [[£ll[|lz]] implies:

Corollary 4.15. Let X be a normed space and let £ be a bounded linear
Junctional defined on some subspace Y C X. Then there is an extension
{ € X* preserving the norm.

Moreover, we can now easily prove our anticipated result

Corollary 4.16. Let X be a normed space and x € X fized. Suppose
(x) =0 for all £ in some total subset Y C X*. Then x = 0.

Proof. Clearly, if ¢(z) = 0 holds for all ¢ in some total subset, this holds
for all £ € X*. If x # 0 we can construct a bounded linear functional on
span{z} by setting ¢(cx) = « and extending it to X* using the previous
corollary. But this contradicts our assumption. ([

Example. Let us return to our example ¢*°(N). Let ¢(N) C ¢°°(N) be the
subspace of convergent sequences. Set

l(x) = nh_}ngo T, z € ¢(N), (4.10)

then [ is bounded since
@) = lim [ra] < 2] (4.11)
Hence we can extend it to £>°(N) by Corollary 4.15. Then I(z) cannot be
written as [(x) = l,(z) for some y € £1(N) (as in (4.9)) since y,, = [(6") = 0

shows y = 0 and hence ¢, = 0. The problem is that span{é"} = ¢o(N) #
(> (N), where ¢y(N) is the subspace of sequences converging to 0.

Moreover, there is also no other way to identify £>°(N)* with ¢!(N), since
?*(N) is separable whereas £>°(N) is not. This will follow from Lemma 4.21 (iii)
below. o

Another useful consequence is
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Corollary 4.17. Let Y C X be a subspace of a normed vector space and let
zo € X \'Y. Then there exists an £ € X* such that (i) {(y) =0,y €Y, (i)
U(xo) = dist(xo,Y), and (iii) ||¢] = 1.

Proof. Replacing Y by Y we see that it is no restriction to assume that
Y is closed. (Note that zy € X \ 'Y if and only if dist(x,Y) > 0.) Let
Y = span{zo,Y}. Since every element of ¥ can be uniquely written as
Yy + axg we can define

Uy + azp) = a dist(zg, Y).

By construction £ is linear on Y and satisfies (i) and (ii). Moreover, by
dist(20,Y) < |lwg — 2| for every y € Y we have

[€(y + axo)| = |af dist(zo,Y) < |ly + azoll, yeY.

Hence ||| < 1 and there is an extension to X* by Corollary 4.15. To see
that the norm is in fact equal to one, take a sequence y, € Y such that
dist(z,Y) > (1 — 1)||o + yn||. Then

: 1
[€(yn + 0)| = dist(z0,Y) > (1= )[lyn + o]
establishing (iii). 0

Two more straightforward consequences of the last corollary are also
worthwhile noting:

Corollary 4.18. Let Y C X be a subspace of a normed vector space. Then
x €Y if and only if £(x) = 0 for every £ € X* which vanishes on Y.

Corollary 4.19. Let Y be a closed subspace and {xj}?zl be a linearly in-
dependent subset of X. IfY N Span{xj}?zl = {0}, then there exists a
biorthogonal system {{;}7_; C X" such that {j(z) = 0 for j # k,
li(x;) =1 and l(y) =0 fory e Y.

Proof. Fix jo. Since Yj, = Y+span{z; }1<j<n;j=j, is closed (Corollary 1.19),
zj, € Yj, implies dist(z;,,Yj,) > 0 and existence of ¢, follows from Corol-
lary 4.17. U

If we take the bidual (or double dual) X** of a normed space X,
then the Hahn—Banach theorem tells us, that X can be identified with a
subspace of X**. In fact, consider the linear map J : X — X™** defined by
J(x)() = £(z) (i.e., J(x) is evaluation at ). Then

Theorem 4.20. Let X be a normed space. Then J : X — X™** is isometric
(norm preserving).
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Proof. Fix z¢p € X. By |J(zo)(?)| = [(z0)| < ||4]|«]|zo]|| we have at least
||J(x0)|l+x < ||zo]||. Next, by Hahn-Banach there is a linear functional £y with
norm ||4o|l« = 1 such that £y(z¢) = ||zo||. Hence |J(x0)(lo)| = [lo(z0)| =
[zol| shows [[.J (o) [« = [oll- O

Example. This gives another quick way of showing that a normed space
has a completion: Take X = J(X) C X** and recall that a dual space is
always complete (Theorem 1.17). o

Thus J : X — X™ is an isometric embedding. In many cases we even
have J(X) = X* and X is called reflexive in this case.
Example. The Banach spaces ¢P(N) with 1 < p < oo are reflexive: Identify
P(N)* with ¢4(N) (cf. Problem 4.16) and choose z € ¢?(N)**. Then there is
some x € (P(N) such that

2(y) = yizy, oy € LIN) 2 P(N).
JjeN

But this implies z(y) = y(x), that is, z = J(z), and thus J is surjective.
(Warning: It does not suffice to just argue ¢P(N)** = ¢9(N)* = (P(N).)

However, ¢! is not reflexive since ¢!(N)* = ¢>°(N) but £>°(N)* 2 ((N)
as noted earlier. Things get even a bit more explicit if we look at c¢o(N),
where we can identify (cf. Problem 4.17) ¢o(N)* with ¢}(N) and co(N)** with
¢°(N). Under this identification J(co(N)) = ¢o(N) C £°°(N). o

Example. By the same argument, every Hilbert space is reflexive. In fact,
by the Riesz lemma we can identify $* with $ via the (conjugate linear)
map x +— (x,.). Taking z € $* we have, again by the Riesz lemma, that

2(y) = (@, (W: Do = (@, 9)" = {y,2) = J(2)(y). °

Lemma 4.21. Let X be a Banach space.

(i) If X is reflexive, so is every closed subspace.
(ii) X is reflexive if and only if X* is.
(iii) If X* is separable, so is X .

Proof. (i) Let Y be a closed subspace. Denote by j : Y < X the natural
inclusion and define j.. : Y** — X** via (ju (")) (¢) = ¢"(¢]y) for y"" € Y**
and ¢ € X*. Note that j, is isometric by Corollary 4.15. Then

X 25 xw

JT T Jr
Y — Y™
Jy
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commutes. In fact, we have j..(Jy (v))(¢) = Jy (v)(l)y) = L(y) = Jx(y)(£).
Moreover, since Jx is surjective, for every y” € Y** there is an x € X such
that j..(y") = Jx(z). Since j.u(y")(¢) = y"(¢|y) vanishes on all £ € X*
which vanish on Y, so does £(z) = Jx(x)(£) = jux(y")(¢) and thus x € YV
by Corollary 4.18. That is, ju(Y**) = Jx(Y) and Jy = jo Jx oj;lis
surjective.

(ii) Suppose X is reflexive. Then the two maps

(Jx)s: X* — X* (Jx)*: X — X*

x/ — ;(;/OJ)_(I HJH/ — a:”’oJX

are inverse of each other. Moreover, fix z” € X** and let x = Jy'(2").
Then Jx«(2')(2") = 2" (2') = J(z)(2') = 2/ (z) = 2/ (Ji* (")), that is Jx~ =
(Jx )« respectively (Jy+)~! = (Jx)*, which shows X* reflexive if X reflexive.
To see the converse, observe that X* reflexive implies X ** reflexive and hence
Jx(X) = X is reflexive by (i).

(iii) Let {£,}22, be a dense set in X*. Then we can choose =, € X such
that ||z,|| = 1 and £, (z,) > ||n]|/2. We will show that {x,} 2, is total in
X. If it were not, we could find some z € X \ span{z, }5° ; and hence there
is a functional ¢ € X* as in Corollary 4.17. Choose a subsequence ¢,, — £.
Then

10 = gl 2 1€ = b )@m)| = £y (@n)| = o 172,

which implies ¢, — 0 and contradicts [|¢]] = 1. O

If X is reflexive, then the converse of (iii) is also true (since X = X**
separable implies X* separable), but in general this fails as the example
(H(N)* = ¢*°(N) shows. In fact, this can be used to show that a separable
space is not reflexive, by showing that its dual is not separable.

Example. The space C(I) is not reflexive. To see this observe that the
dual space contains point evaluations (., (f) := f(xo), zo € I. Moreover,
for xo # x1 we have ||{3, — €5, || = 2 and hence C(I)* is not separable. You
should appreciate the fact that it was not necessary to know the full dual
space which is quite intricate (see Theorem 12.5). o

Note that the product of two reflexive spaces is also reflexive. In fact,
this even holds for countable products — Problem 4.19.

Problem 4.11. Let X = R3 equipped with the norm |(z,y,2)|1 = |z|+ |y| +
|z| and Y = {(z,y,2)|lr +y = 0, z = 0}. Find at least two extensions of
Uz,y,2) = x from Y to X which preserve the norm. What if we take the
usual Euclidean norm |(z,y, 2)|s = (2> + |y|? + |2[2)1/??

Problem 4.12. Let X be some normed space. Show that

|zl = sup  [£(z)], (4.12)
tev, Jig=1
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where V. C X* is some dense subspace. Show that equality is attained if
V=X
Problem 4.13. Let X be some normed space. By definition we have
[l = sup  |[¢(z)|
z€X,[|lz]|=1
for every £ € X*. One calls £ € X* norm-attaining, if the supremum is
attained, that is, there is some v € X such that ||¢|| = |¢(z)].

Show that in a reflerive Banach space every linear functional is norm-
attaining. Give an example of a linear functional which is not norm-attaining.
For uniqueness see Problem 5.28. (Hint: For the first part apply the previous
problem to X*. For the second part consider Problem 4.17 below.)

Problem 4.14. Let X,Y be some normed spaces and A: D(A) C X — Y.
Show

1Al = sup [((Az)], (4.13)
zeX, ||z||=1; €V, || ]| =1

where V.C Y™ is a dense subspace.

Problem 4.15. Show that ||l,|| = ||y|lq, where I, € (P(N)* as defined in
(4.9). (Hint: Choose x € P such that xnyn = |ynl?.)

Problem 4.16. Show that every l € (P(N)*, 1 < p < 00, can be written as
l(x) = Z YnTn,
neN

with some y € (4(N). (Hint: To see y € (1(N) consider x¥ defined such
that x = |yn|?/yn for n < N with y, # 0 and xY = 0 else. Now look at
M) < EllaNp-)

Problem 4.17. Let ¢o(N) C ¢>°(N) be the subspace of sequences which
converge to 0, and c¢(N) C £°°(N) the subspace of convergent sequences.

(i) Show that co(N), ¢(N) are both Banach spaces and that c¢(N) =
span{co(N), e}, where e = (1,1,1,...) € ¢(N).
(ii) Show that everyl € co(N)* can be written as
l(a) = Z bnay
neN
with some b € (1(N) which satisfies ||bl|1 = ||¢]].
(iii) Show that every l € ¢(N)* can be written as
l(a) = Z byan + bo 7}1_)120 an
neN
with some b € (1(N) which satisfies |bo| + ||b]l1 = ||7]-
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Problem 4.18. Let u, € X be a Schauder basis and suppose the complex
numbers ¢, satisfy |cn| < c||uy||. Is there a bounded linear functional £ € X*
with {(u,) = c, ? (Hint: Consider e.g. X = (*(Z).)

Problem 4.19. Let X = X, jcn X be defined as in Problem 1.38 and let
I%—i—% = 1. Show that for 1 < p < co we have X* = ><q7jeNX;, where the
tdentification is given by

r) =Y yilz),  w=()ene X X5 y=(y)ene X X;.

JeN p,jeN ¢,j€EN
Moreover, if all X; are reflexive, so is X.

Problem 4.20 (Banach limit). Let ¢(N) C ¢°°(N) be the subspace of all
bounded sequences for which the limit of the Cesaro means

1
L(z) = lim — Zl‘k
k=1
exists. Note that ¢(N) C ¢(N) and L(x) = limy,—o0 zp, for z € ¢(N).
Show that L can be extended to all of {>°(N) such that

(i) L is linear,

(i) [L(z)] < [|@]/os,

(iii) L(Sz) = L(x) where (Sx),, = xn41 is the shift operator,
) L(z) > 0 when x, >0 for all n,

(v) liminf, x, < L(x) < limsup x, for all real-valued sequences.

(iv

(Hint: Of course existence follows from Hahn—Banach and (i), (ii) will come
for free. Also (iii) will be inherited from the construction. For (iv) note that
the extension can assumed to be real-valued and investigate L(e — x) for
x >0 with ||x||cc =1 where e = (1,1,1,...). (v) then follows from (iv).)

Problem 4.21. Show that a finite dimensional subspace M of a Banach
space X can be complemented. (Hint: Start with a basis {x;} for M and
choose a corresponding dual basis {{}} with {y(x;) = 6; 5 which can be ea-

tended to X*.)

4.3. The adjoint operator

Given two normed spaces X and Y and a bounded operator A € Z(X,Y)
we can define its adjoint A’ : Y* — X* via A"y =y 0 A, ¢y € Y*. It is
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immediate that A’ is linear and boundedness follows from

A= sup [JAY| =  sup sup  [(A'y) ()]
ey |yll=1 yev=: y=1 \zexX:|je|=1

= sup ( sup Iy’(AfU)|>= sup  |[Az|| = [|A},
yey*:y|l=1 \zeX: |z||=1 zeX: ||z]|=1

where we have used Problem 4.12 to obtain the fourth equality. In summary,

Theorem 4.22. Let A € L(X,Y), then A € L(Y*, X*) with ||A] = | A'||.

Note that for A, B € Z(X,Y) and «, 8 € C we have
(a¢A+ BB) = oA’ + BB’ (4.14)
and for A € Z(X,Y) and B € Z(Y, Z) we have
(BA) = A'B’ (4.15)

which is immediate from the definition. Moreover, note that (Ix) = Ix-
which shows that if A is invertible then so is A’ is with

(A71Y = (4. (4.16)

That A is invertible if A’ is will follow from Theorem 4.26 below.

Example. Given a Hilbert space $) we have the conjugate linear isometry
C:9— 9 f— (f,-). Hence for given A € Z(91,92) we have A'Cof =
(f, A-) = (A*f,.) which shows A’ = C;A*Cy . o

Example. Let X =Y = (P(N), 1 < p < oo, such that X* = (4(N),
% + % = 1. Consider the right shift R € £ (¢/P(N)) given by

Rz = (0,21, x2,...).

Then for y' € ¢4(N)

o0 o0 [ee]
y(Sz) = vi(Ra); =Y yhwj 1= vz,
j=1 =2 j=1

which shows (R'y/), = yp+1 upon choosing x = 6*. Hence R’ = L is the left
shift: Ly = (y2,y3,.-.)- o

Of course we can also consider the doubly adjoint operator A”. Then a
simple computation

A"(Tx (@)(y') = Jx(2)(Ay') = (A'y)(z) = ¢ (Az) = Jy (Az)(y) (4.17)
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shows that the following diagram commutes
A

X — Y
Jx | $Jy
Xy Y
A/l
Consequently
A” rRan(JX): JYAJ_17 A= ngA”JX. (418)

Hence, regarding X as a subspace Jx(X) C X*™ and Y as a subspace
Jy (Y) CY** then A” is an extension of A to X** but with values in Y**.
In particular, note that B € Z(Y™*, X*) is the adjoint of some other operator
B = A’ if and only if B'(Jx(X)) = A"(Jx(X)) C Jy(Y) (for the converse
note that A := J;lB’JX will do the trick). This can be used to show that
not every operator is an adjoint (Problem 4.22).

Theorem 4.23 (Schauder). Suppose X, Y are Banach spaces and A €
Z(X,Y). Then A is compact if and only if A’ is.

Proof. If A is compact, then A(B;*(0)) is relatively compact and hence

K = A(B{(0)) is a compact metric space. Let vy, € Y* be a bounded
sequence and consider the family of functions f,, = y/,|xk € C(K). Then this
family is bounded and equicontinuous since

|fa(y1) = Fu(y2)] < lynllllvr — w2l < Cllyr — 32l

Hence the Arzela—Ascoli theorem (Theorem 1.27) implies existence of a uni-
formly converging subsequence f,;. For this subsequence we have

1Ay, = Ayn, | < sup |y, (Az) = yp, (A2)| = [ fn; = farllo
z€B{X(0)
since A(B{¥(0)) C K is dense. Thus Yn, 1s the required subsequence and A’
is compact.

To see the converse note that if A’ is compact then so is A” by the first
part and hence also A = J;IA”JX. O

Finally we discuss the relation between solvability of Ax = y and the
corresponding adjoint equation A’y’ = 2’. To this end we need the analog
of the orthogonal complement of a set. Given subsets M C X and N C X*
we define their annihilator as

M+ = {0 e X*|{(x) =0Vz € M} = {f € X*|M C Ker({)}
= [ {te X)) =0} = () {=}",
zeM zeM

Ny :={x e X|l(x) =0Yl e N} = [ Ker(t) = [ {¢}. (4.19)
LeN LeN
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In particular, {¢}, = Ker(¢) while {z}+ = Ker(J(x)) (with J : X < X**
the canonical embedding).

Example. In a Hilbert space the annihilator is simply the orthogonal com-
plement. o

The following properties are immediate from the definition (by linearity
and continuity)

e M+ is a closed subspace of X* and M+ = (span(M))*.
e N, is a closed subspace of X and N; = (span(N)) .

Note also that M+ = {0} if and only if span(M) = X (cf. Corollary 4.17)
and N; = {0} if span(N) = X* (cf. Corollary 4.16). The converse of the
last statement is wrong in general.

Example. Consider X := (}(N) and N := {§"},en C (*°(N) =~ X*. Then
span(N) = ¢o(N) but N, = {0}. o

Lemma 4.24. We have (M=*), = span(M) and (N_)* D span(N).

Proof. By the preceding remarks we can assume M, N to be closed sub-
spaces. The first part

(M*), = {z € X|{(z) =0Vl € X* with M C Ker(¢)} = span(M)
is Corollary 4.18 and for the second part one just has to spell out the defi-
nition:
(NL)* = {£ € X*| (] Ker(f) € Ker(¢)} 2 span(N). O
leN

Note that we have equality in the preceding lemma if N is finite di-
mensional (Problem 4.27). Moreover, with a little more machinery one can
show equality if X is reflexive (Problem 5.10). For non-reflexive spaces the
inclusion can be strict as the previous example shows.

Warning: Some authors call a set N C X* total if {N}, = {0}. By the
preceding discussion this is equivalent to our definition if X is reflexive, but
otherwise might differ.

Furthermore, we have the following analog of (2.28).

Lemma 4.25. Suppose X, Y are normed spaces and A € £(X,Y). Then
Ran(A’); = Ker(A) and Ran(A)+ = Ker(A').

Proof. For the first claim observe: z € Ker(4) & Az = 0 < ((Ax) = 0,
Ve X* & (A0)(x) =0,V € X* < x € Ran(A')* .

For the second claim observe: ¢ € Ker(A') & Al =0 < (A0)(x) =0,
Vo € X & ((Az) =0,Vz € X < £ € Ran(A)*. O
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Taking annihilators in these formulas we obtain
Ker(A'); = (Ran(4)'), = Ran(A) (4.20)
and
Ker(A)* = (Ran(4’),)* D Ran(4') (4.21)
which raises the question of equality in the latter.

Theorem 4.26 (Closed range). Suppose X, Y are Banach spaces and A €
Z(X,Y). Then the following items are equiviaent:

(i) Ran(A) is closed.

(ii) Ker(A)* = Ran(4’).
(iii) Ran(A4’) is closed.
(iv) Ker(A4’); = Ran(A).

Proof. (i) & (vi): Immediate from (4.20).

(i) = (ii): Note that if £ € Ran(A’) then £ = A'({) = { o A vanishes
on Ker(A) and hence ¢ € Ker(A)*. Conversely, if ¢ € Ker(A)* we can
set L(y) = E(A_ly) for y € Ran(A) and extend it to all of Y using Corol-
lary 4.15. Here A : X/Ker(A) — Ran(A) is the induced map (cf. Prob-
lem 1.41) which has a bounded inverse by Theorem 4.6. By construction
¢ =A'({) € Ran(4’).

(ii) = (iii): Clear since annihilators are closed.

(iii) = (i): Let Z = Ran(A) and let A: X — Z be the range restriction
of A. Then A’ is injective (since Ker(A’) = Ran(A)* = {0}) and has the
same range Ran(A’) = Ran(A’) (since every linear functional in Z* can be
extended to one in Y* by Corollary 4.15). Hence we can assume Z =Y and
hence A’ injective without loss of generality.

Suppose Ran(A) were not closed. Then, given ¢ > 0 and 0 < § < 1, by
Corollary 4.11 there is some y € Y such that ¢||z|| + ||y — Az| > d||y|| for
all z € X. Hence there is a linear functional ¢ € Y* such that 6 < ||| <1
and [|A?|| < e. Indeed consider X @Y and use Corollary 4.17 to choose
? € (X @®Y)* such that £ vanishes on the closed set V := {(ex, Az)|z € X},
14| = 1, and £(0,y) = dist((0,%), V) (note that (0,y) & V since y # 0). Then
£(.) = £(0,.) is the functional we are looking for since dist((0,y),V) > §||y||
and (A'0)(z) = (0, Ax) = {(—ex,0) = —el(x,0). Now this allows us to
choose ¢, with ||¢,,|| — 1 and ||A’¢,|| — 0 such that Corollary 4.10 implies
that Ran(A’) is not closed. O

With the help of annihilators we can also describe the dual spaces of
subspaces.



124 4. The main theorems about Banach spaces

Theorem 4.27. Let M be a closed subspace of a normed space X. Then
there are canonical isometries

(X/M)* =MLY, M*=X* /Mt (4.22)

Proof. In the first case the isometry is given by ¢ + £ o j, where j : X —
X /M is the quotient map. In the second case &' + M=+ ~ 2/|5;. The details
are easy to check. O

Problem 4.22. Let X =Y = ¢y(N) and recall that X* = (*(N) and X** =
(®(N). Consider the operator A € £ ((*(N)) given by

A:c:(an,O,...).

neN

Show that
Az = (2, 2,...).
Conclude that A is not the adjoint of an operator from £ (co(N)).
Problem 4.23. Show
Ker(A") = Coker(A)*, Coker(A") = Ker(A)*
for A e Z(X,Y) with Ran(A) closed.
Problem 4.24. Let X; be Banach spaces. A sequence of operators A; €
Z(Xj, Xjv1)
Ay Ao An
X1 — X9 — X3--- X, —>Xn_|_1

is said to be exact if Ran(A;) = Ker(A4;41) for 1 < j < n. Show that a
sequence is exact if and only if the corresponding dual sequence

A Al Al
Xi— Xo«— X5 X~ X0y
18 exact.

Problem 4.25. Suppose X is separable. Show that there exists a countable
set N C X* with N; = {0}.

Problem 4.26. Let X be a normed vector space andY C X some subspace.
Show that if Y # X, then for every e € (0,1) there exists an ze with ||z]| = 1
and

inf ||z, —yl| >1—e. 4.23
ylgyllws yl >1—¢ (4.23)

Note: In a Hilbert space the claim holds with € = 0 for any normalized
x in the orthogonal complement of Y and hence x. can be thought of a
replacement of an orthogonal vector. (Hint: Choose a y. € Y which is close
to x and look at x — y..)
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Problem 4.27. Suppose X is a vector space and £, {1,...,¢, are linear
functionals such that (j_, Ker(¢;) C Ker(¢). Then £=37"_,a;l; for some
constants a; € C. (Hint: Find a dual basis x, € X such that £;(xy) = 0j
and look at v — 377 £(x)x;.)

Problem 4.28. Let us write £, — ¢ provided the sequence converges point-
wise, that is, l,(x) — £(z) for all z € X. Let N C X* and suppose £, — {
with £, € N. Show that £ € (N )*.

4.4. Weak convergence

In Section 4.2 we have seen that ¢(x) = 0 for all £ € X* implies =z = 0.
Now what about convergence? Does ¢(x,,) — ¢(x) for every ¢ € X* imply
rn — 27 In fact, in a finite dimensional space component-wise convergence
is equivalent to convergence. Unfortunately in the infinite dimensional this
is no longer true in general:

Example. Let u, be an infinite orthonormal set in some Hilbert space.
Then (g, u,) — 0 for every g since these are just the expansion coefficients
of g which are in ¢2(N) by Bessel’s inequality. Since by the Riesz lemma
(Theorem 2.10), every bounded linear functional is of this form, we have
¢(uy,) — 0 for every bounded linear functional. (Clearly u,, does not converge
to 0, since ||u,|| = 1.) o

If ¢(x,) — £(x) for every ¢ € X* we say that x,, converges weakly to
x and write

w-limz, =z or =z, — . (4.24)
n—oo

Clearly, x, — = implies z,, — z and hence this notion of convergence is
indeed weaker. Moreover, the weak limit is unique, since ¢(z,,) — ¢(z) and
l(xy) — £(Z) imply ¢(x — &) = 0. A sequence x,, is called a weak Cauchy
sequence if {(z,,) is Cauchy (i.e. converges) for every ¢ € X*.

Lemma 4.28. Let X be a Banach space.
(i) z — x, yp — y and o, — «o implies r, + y, — = +y and
Qp Ty — Q.
(ii) zp — x implies ||z|| < liminf ||x,||.

(iv

)

(iii) Every weak Cauchy sequence xy, is bounded: ||z,| < C.
) If X is reflexive, then every weak Cauchy sequence converges weakly.
)

(v) A sequence x,, is Cauchy if and only if ¢(xy,) is Cauchy, uniformly
for 0 € X* with ||¢] = 1.
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Proof. (i) Follows from ¢(a,zyn +yn) = anl(zn) +0(yn) — al(x)+L(y). (i)
Choose ¢ € X* such that ¢(x) = ||z|| (for the limit =) and ||¢|| = 1. Then

llz|| = ¢(x) = liminf ¢(x,) < liminf ||z,].

(iii) For every ¢ we have that |J(zy)(¢)| = |¢(zy)| < C(¢) is bounded. Hence
by the uniform boundedness principle we have ||z, | = ||J(z,)] < C.

(iv) If z,, is a weak Cauchy sequence, then £(z,,) converges and we can define
j(¢) =lim¥(x,). By construction j is a linear functional on X*. Moreover,
by (ii) we have [j(¢)| < sup [[€(zy)] < ||4]| sup ||zn] < C||¢]] which shows
j € X*. Since X is reflexive, j = J(z) for some z € X and by construction
Uxy) — J(x)(€) = £(x), that is, x,, — .

(v) This follows from

l#n = 2w = sup [6(zn — )]
lel=1

(cf. Problem 4.12). O

Item (ii) says that the norm is sequentially weakly lower semicontinuous
(cf. Problem 8.19) while the previous example shows that it is not sequen-
tially weakly continuous (this will in fact be true for any convex function
as we will see later). However, bounded linear operators turn out to be
sequentially weakly continuous (Problem 4.30).

Example. Consider L?(0,1) and recall (see the example on page 84) that
up(z) = V2sin(nmz), n € N,

form an ONB and hence u,, — 0. However, v, = u2 — 1. In fact, one easily
computes

EI (Gt VI S NRE (G )

%
mm (m? + 4k?2) mm

(U, vn) =

and the claim follows from Problem 4.32 since [|v,|| = 1/3. o

Remark: One can equip X with the weakest topology for which all
¢ € X* remain continuous. This topology is called the weak topology and
it is given by taking all finite intersections of inverse images of open sets
as a base. By construction, a sequence will converge in the weak topology
if and only if it converges weakly. By Corollary 4.17 the weak topology is
Hausdorff, but it will not be metrizable in general. In particular, sequences
do not suffice to describe this topology. Nevertheless we will stick with
sequences for now and come back to this more general point of view in
Section 5.3.

In a Hilbert space there is also a simple criterion for a weakly convergent
sequence to converge in norm (see Theorem 5.19 for a generalization).
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Lemma 4.29. Let § be a Hilbert space and let f, — f. Then f, — f if
and only if limsup || fn|] < || f]l-

Proof. By (ii) of the previous lemma we have lim || f,|| = || f|| and hence
1f = fall® = ILF17 = 2Re((f, fa)) + [l full* — 0.
The converse is straightforward. ([

Now we come to the main reason why weakly convergent sequences are
of interest: A typical approach for solving a given equation in a Banach
space is as follows:

(i) Construct a (bounded) sequence x, of approximating solutions
(e.g. by solving the equation restricted to a finite dimensional sub-
space and increasing this subspace).

(ii) Use a compactness argument to extract a convergent subsequence.

(iii) Show that the limit solves the equation.
Our aim here is to provide some results for the step (ii). In a finite di-
mensional vector space the most important compactness criterion is bound-
edness (Heine—Borel theorem, Theorem B.22). In infinite dimensions this

breaks down as we have seen in Theorem 1.11 However, if we are willing to
treat convergence for weak convergence, the situation looks much brighter!

Theorem 4.30. Let X be a reflexive Banach space. Then every bounded
sequence has a weakly convergent subsequence.

Proof. Let z,, be some bounded sequence and consider Y = span{z,}.
Then Y is reflexive by Lemma 4.21 (i). Moreover, by construction Y is
separable and so is Y* by the remark after Lemma 4.21.

Let ¢ be a dense set in Y*. Then by the usual diagonal sequence
argument we can find a subsequence x,, such that ¢x(x,, ) converges for
every k. Denote this subsequence again by z, for notational simplicity.
Then,

1€(zn) = £(@m) | <[€(zn) = Le(zn)ll + 1k (2n) = lr(zm)]
+ [1x(@m) — £(zm) |
208 = Lol + [1€x (2n) — Cr(2m)|
shows that ¢(x,) converges for every ¢ € span{f;} = Y*. Thus there is a
limit by Lemma 4.28 (iv). O
Note that this theorem breaks down if X is not reflexive.

Example. Consider the sequence of vectors 6" (with ¢ = 1 and 4", = 0,
n # m) in P(N), 1 < p < co. Then 6" — 0 for 1 < p < oo. In fact,
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since every | € (P(N)* is of the form [ = [, for some y € (9(N) we have
ly(0™) = yn — 0.

If we consider the same sequence in ¢! (N) there is no weakly convergent
subsequence. In fact, since ,(6") — 0 for every sequence y € ¢*°(N) with
finitely many nonzero entries, the only possible weak limit is zero. On the
other hand choosing the constant sequence y = (1)2, we see [,(0") =1 /4 0,

J
a contradiction. o

Example. Let X = L![-1,1]. Every bounded integrable ¢ gives rise to a
linear functional

0,(f) = / f(@)p(a) da

in L'[—1,1]*. Take some nonnegative u; with compact support, ||u1lj; = 1,
and set ug(z) = kui (k) (implying ||ugl[1 = 1). Then we have

/ ur(@)(x) dz — o (0)

(see Problem 10.24) for every continuous . Furthermore, if uy, — u we
conclude

/ u(@)p() dz = p(0).

In particular, choosing ¢y () = max(0, 1—k|x|) we infer from the dominated
convergence theorem

1= /u(:n)gpk(:z:) dx — /u(az)x{o}(m) dx =0,
a contradiction.

In fact, ug converges to the Dirac measure centered at 0, which is not in
LY-1,1]. o

Note that the above theorem also shows that in an infinite dimensional
reflexive Banach space weak convergence is always weaker than strong con-
vergence since otherwise every bounded sequence had a weakly, and thus by
assumption also norm, convergent subsequence contradicting Theorem 1.11.
In a non-reflexive space this situation can however occur.

Example. In /!(N) every weakly convergent sequence is in fact (norm)
convergent (such Banach spaces are said to have the Schur property).
First of all recall that ¢!(N) ~ ¢°>°(N) and a"™ — 0 implies

b(a") = bgap 0,  Vbe X(N).
k=1
Now suppose we could find a sequence a" — 0 for which liminf,, |[a"|; >

e > 0. After passing to a subsequence we can assume |[a"|; > ¢/2 and
after rescaling the norm even ||a"|; = 1. Now weak convergence a — 0
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implies a7 = 5 (a") — 0 for every fixed j € N. Hence the main contri-
bution to the norm of ¢ must move towards co and we can find a subse-
quence n; and a corresponding increasing sequence of integers k; such that

Dk <h<kyii a,’| > 2. Now set

by, = sign(a,’), ki <k <kj.
Then
_ , . 2 1 1
IS DRNTIEN D DY P
kj§k<kj+1 1§k‘<k]’; k‘j+1§k
contradicting a™ — 0. o

It is also useful to observe that compact operators will turn weakly
convergent into (norm) convergent sequences.

Theorem 4.31. Let A € €(X,Y) be compact. Then x, — x implies Ax,, —
Ax. If X is reflexive the converse is also true.

Proof. If x,, — x we have sup,, ||z,|| < C by Lemma 4.28 (ii). Consequently
Az, is bounded and we can pass to a subsequence such that Az, — y.
Moreover, by Problem 4.30 we even have y = Az and Lemma B.5 shows
Ax, — Azx.

Conversely, if X is reflexive, then by Theorem 4.30 every bounded se-
quence x,, has a subsequence z,, — = and by assumption Az, — =. Hence
A is compact. O

Operators which map weakly convergent sequences to convergent se-
quences are also called completely continuous. However, be warned that
some authors use completely continuous for compact operators. By the
above theorem every compact operator is completely continuous and the
converse also holds in reflexive spaces. However, the last example shows
that the identity map in £*(N) is completely continuous but it is clearly not
compact by Theorem 1.11.

Let me remark that similar concepts can be introduced for operators.
This is of particular importance for the case of unbounded operators, where
convergence in the operator norm makes no sense at all.

A sequence of operators A, is said to converge strongly to A,

slimA,=A4 & Az — Ar VreD(A) CD(A4,). (4.25)

n—o0

It is said to converge weakly to A,

w-limA, =A & Ayx— Az Ve D(A) CD(A4,). (4.26)

n—o0
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Clearly norm convergence implies strong convergence and strong conver-
gence implies weak convergence. If Y is finite dimensional strong and weak
convergence will be the same and this is in particular the case for Y = C.

Example. Consider the operator S, € Z(¢?(N)) which shifts a sequence n
places to the left, that is,

Sn (xl,[L’Q,...) = (Z’n+1,$n+2,...) (427)

and the operator S} € Z(¢?(N)) which shifts a sequence n places to the
right and fills up the first n places with zeros, that is,

S:;(:El,fﬁg,...):(0,...,0,$1,$2,...). (428)

n places
Then S,, converges to zero strongly but not in norm (since ||S,|| = 1) and S}
converges weakly to zero (since (z, S}'y) = (Spz,y)) but not strongly (since
[Spll = ll=l) - o

Lemma 4.32. Suppose A, B, € Z(X,Y) are sequences of bounded oper-
ators.

(i) s-lim A4, = A, s—hm B,, = B, and oy, — « implies 5- hm(A +B,) =

n—00

A+ B and s- hmoznAn = aA.

n—o0

(i) s-lim A, = A implies ||A|| < hmlnf | An ]l

n—oo
(i) If Anx converges for all x € X then ||A,|| < C and there is an
operator A € £ (X,Y) such that s-lim A,, = A.

n—oo
(iv) If Any converges for y in a total set and ||Ay|| < C, then there is
an operator A € £ (X,Y) such that S—Em A, = A
n oo

The same result holds if strong convergence is replaced by weak convergence.

Proof. (i) lim, o (anAy, + Bp)x = lim, oo (anAnx + Brx) = aAx + Bu.
(ii) follows from

|Az|| = lim ||Apz| < liminf ||A,]|
n—o0 n—oo

for every x € ®(A) with ||z]| = 1.

(iii) by linearity of the limit, Az := lim,_,~ Anx is a linear operator. More-
over, since convergent sequences are bounded, ||A,z| < C(z), the uniform
boundedness principle implies | 4,| < C. Hence [|Az| = lim,— 0 [[Anz|| <
Cll]]-

(iv) By taking linear combinations we can replace the total set by a dense
one. Moreover, we can define a linear operator A on this dense set via
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Ay = lim,, 00 Apy. By [|A,|| < C we see ||A|| < C and there is a unique
extension to all of X. Now just use

|Anz — Az < || Anz — Anyl| + |Any — Ayl + [|Ay — Az||
<2C|z —y| + | Any — Ayl

and choose y in the dense subspace such that ||z —y[| < ;% and n large such
that [| Ay — Ay| < 5.

The case of weak convergence is left as an exercise (Problem 4.12 might
be useful). O

Item (iii) of this lemma is sometimes also known as Banach-Steinhaus
theorem. For an application of this lemma see Lemma 10.19.

Example. Let X be a Banach space of functions f : [-m, 7] — C such
the functions {eg(z) := e*¥} .z are total. E.g. X = Cper[—m,m, 1] or X =
LP[—m,m] for 1 < p < oo. Then the Fourier series (2.44) converges on a
total set and hence it will converge on all of X if and only if ||S,|| < C. For
example, if X = Cpe,[—m, 7] then

1
1Sall = sup [ISu(f)l = sup |Su(f)(O)] = o[Dullx
[[flloo=1 [ fllo=1 ™

which is unbounded as we have seen in the example on page 103. In fact,
in this example we have even shown failure of pointwise convergence and
hence this is nothing new. However, if we consider X = L[, 7] we have
(recall the Fejér kernel which satisfies ||F,|[1 = 1 and use (2.52) together
with Sn(Dm) = Dmin(m,n))

ISu01= e 1Su(A)] > Jim_1Sa(Fuls = 1Dal;

and we get that the Fourier series does not converge for every L' function. ¢
Lemma 4.33. Suppose A, € £(Y,Z), B, € L (X,Y) are two sequences of
bounded operators.

(i) s-lim A,, = A and s-lim B,, = B implies s-lim A,,B,, = AB.

(ii) w-lim A4,, = A and s-lim B,, = B implies w-lim A, B,, = AB.

n—oo
(iii) lim A, = A and w-lim B,, = B implies w-lim A, B,, = AB.
n—oo n—oo n—oo
Proof. For the first case just observe

1(AnBp — AB)z|| < |[[(An — A) B[ + [[An|l[|(Bn — B)z|| — 0.

The remaining cases are similar and again left as an exercise. O
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Example. Consider again the last example. Then

S,;:Sn (Jfl,l'Q, .. ) = (0, PN ,0,11n+1,1}‘n+2, .. )
N——
n places

converges to 0 weakly (in fact even strongly) but
SpSk(x1,m0,...) = (w1, 32,...)

does not! Hence the order in the second claim is important. o

For a sequence of linear functionals ¢,, strong convergence is also called
weak-* convergence. That is, the weak-* limit of ¢,, is ¢ if ¢, (z) — £(z) for
all z € X and we will write

whlimz, =2 or x, =z (4.29)
n—oo
in this case. Note that this is not the same as weak convergence on X*
unless X is reflexive: ¢ is the weak limit of ¢,, if

Jj(l,) — j(0) Vje X, (4.30)
whereas for the weak-* limit this is only required for j € J(X) C X** (recall
J(2)(0) = €(z)).

Example. In a Hilbert space weak-* convergence of the linear functionals
(xn,.) is the same as weak convergence of the vectors x,. o

Example. Consider X = ¢o(N), X* ~ (}(N), and X** ~ ¢>(N) with J
corresponding to the inclusion ¢o(N) < ¢°°(N). Then weak convergence on
X* implies

lp(a™ —a) = Zbk(az —ag) — 0
k=1

for all b € ¢>°(N) and weak-* convergence implies that this holds for all b €
co(N). Whereas we already have seen that weak convergence is equivalent to
norm convergence, it is not hard to see that weak-* convergence is equivalent
to the fact that the sequence is bounded and each component converges (cf.
Problem 4.33). o

With this notation it is also possible to slightly generalize Theorem 4.30
(Problem 4.34):

Lemma 4.34 (Helly). Suppose X is a separable Banach space. Then every
bounded sequence £, € X* has a weak-x convergent subsequence.

Example. Let us return to the example after Theorem 4.30. Consider the
Banach space of continuous functions X = C[—1,1]. Using £7(p) = [¢f dx
we can regard L'[—1,1] as a subspace of X*. Then the Dirac measure
centered at 0 is also in X™* and it is the weak-x limit of the sequence u;. ©
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Problem 4.29. Suppose £, — { in X* and x, — = in X. Then £, (z,) —
0(x). Similarly, suppose s-liml, — ¢ and x, — x. Then ly(x,) — £(z).
Does this still hold if s-lim ¢, — ¢ and ©, — x?

Problem 4.30. Show that x,, — x implies Az, — Az for A € L(X,Y).
Conversely, show that if x, — 0 implies Ax,, — 0 then A € L(X,Y).

Problem 4.31. Suppose A,, A € Z(X,Y). Show that s-lim 4,, = A and
lim z,, = x implies lim A, z,, = Ax.

Problem 4.32. Show that if {{;} C X* is some total set, then x, — x if
and only if x,, is bounded and {j(x,) — €;(x) for all j. Show that this is
wrong without the boundedness assumption (Hint: Take e.g. X = (*(N)).

Problem 4.33. Show that if {x;} C X is some total set, then £, — £ if
and only if £, € X* is bounded and £y (z;) — {(x;) for all j.

Problem 4.34. Prove Lemma 4.34.

4.5. Applications to minimizing nonlinear functionals

Finally, let me discuss a simple application of the above ideas to the calcu-
lus of variations. Many problems lead to finding the minimum of a given
function. For example, many physical problems can be described by an en-
ergy functional and one seeks a solution which minimizes this energy. So
we have a Banach space X (typically some function space) and a functional
F: M C X — R (of course this functional will in general be nonlinear). If
M is compact and F' is continuous, then we can proceed as in the finite-
dimensional case to show that there is a minimizer: Start with a sequence x,,
such that F'(x,) — infy; F. By compactness we can assume that x,, — xg
after passing to a subsequence and by continuity F'(z,) — F(xg) = infys F.
Now in the infinite dimensional case we will use weak convergence to get
compactness and hence we will also need weak (sequential) continuity of
F'. However, since there are more weakly than strongly convergent subse-
quences, weak (sequential) continuity is in fact a stronger property than just
continuity!

Example. By Lemma 4.28 (ii) the norm is weakly sequentially lower semi-
continuous but it is in general not weakly sequentially continuous as any
infinite orthonormal set in a Hilbert space converges weakly to 0. However,
note that this problem does not occur for linear maps. This is an immediate
consequence of the very definition of weak convergence (Problem 4.30). ¢

Hence weak continuity might be to much to hope for in concrete appli-
cations. In this respect note that, for our argument to work lower, semicon-
tinuity (cf. Problem 8.19) will already be sufficient:
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Theorem 4.35 (Variational principle). Let X be a reflexive Banach space
and let F: M C X — (—o00,00]. Suppose M is nonempty, weakly sequen-
tially closed and that either F' is weakly coercive, that is F'(x) — oo when-
ever ||z|| — oo, or that M is bounded. If in addition, F' is weakly sequentially
lower semicontinuous, then there exists some xy € M with F(xg) = infys F.

Proof. Without loss of generality we can assume F(x) < oo for some x €
M. As above we start with a sequence xz,, € M such that F(z,) — infys F.
If M = X then the fact that F' is coercive implies that z, is bounded.
Otherwise, it is bounded since we assumed M to be bounded. Hence we can
pass to a subsequence such that z,, — xg with 29 € M since M is assumed
sequentially closed. Now since F'is weakly sequentially lower semicontinuous
we finally get infy; F' = lim,, 00 F'(zy) = liminf,, o F(z,) > F(xg). O

Of course in a metric space the definition of closedness in terms of se-
quences agrees with the corresponding topological definition. In the present
situation sequentially weakly closed implies (sequentially) closed and the
converse holds at least for convex sets.

Lemma 4.36. Suppose M C X is convex. Then M is closed if and only if
it 1s sequentially weakly closed.

Proof. Suppose zx is in the weak sequential closure of M, that is, there is
a sequence r, — xz. If x € M, then by Corollary 5.4 we can find a linear
functional ¢ which separates {z} and M. But this contradicts {(z) = d <
c < l(xy) = L(x). O

Similarly, the same is true with lower semicontinuity. In fact, a slightly
weaker assumption suffices. Let X be a vector space and M C X a convex
subset. A function F': M — R is called quasiconvex if

FAx + (1 = Ny) < max{F(z), F(y)}, Ae(0,1), =xz,ye M. (4.31)

It is called strictly quasiconvex if the inequality is strict for © # y. By
AF(z) + (1 = MF(y) < max{F(x),F(y)} every (strictly) convex function
is (strictly) quasiconvex. The converse is not true as the following example
shows.

Example. Every (strictly) monotone function on R is (strictly) quasicon-
vex. Moreover, the same is true for symmetric functions which are (strictly)
monotone on [0,00). Hence the function F(z) = /|z] is strictly quasicon-
vex. But it is clearly not convex on M = R. o

Now we are ready for the next
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Lemma 4.37. Suppose M C X is a closed convex set and suppose F : M —
R is quasiconvex. Then F' is weakly sequentially lower semicontinuous if and
only if it is (sequentially) lower semicontinuous.

Proof. Suppose F' is lower semicontinuous. If it were not sequentially
lower semicontinuous we could find a sequence x, — z¢ with F(z,) —
a < F(zo). But then z,, € F~!((—o00,a]) for n sufficiently large implying
19 € F71((—00,a)) as this set is convex (Problem 4.36) and closed. But this
gives the contradiction a < F'(x¢) < a. O

Corollary 4.38. Let X be a reflexive Banach space and let M be a nonempty
closed convex subset. If F : M C X — R is quasiconvez, lower semicontinu-
ous, and, if M is unbounded, weakly coercive, then there exists some xg € M
with F(xo) = infy F. If F is strictly quasiconvex then xg is unique.

Proof. It remains to show uniqueness. Let zy and z; be two different
minima. Then F(Azg + (1 — A)z1) < max{F(xo), F(x1)} = infy, F, a con-
tradiction. O

Example. Let X be a reflexive Banach space. Suppose M C X is a
nonempty closed convex set. Then for every x € X there is a point zg € M
with minimal distance, ||x — zp|| = dist(x, M). Indeed, F(z) = dist(z, 2) is
convex, continuous and, if M is unbounded weakly coercive. Hence the claim
follows from Corollary 4.38. Note that the assumption that X is reflexive
is crucial (Problem 4.35). Moreover, we also get that x( is unique if X is
strictly convex (see Problem 1.12). o

Example. Let $ be a Hilbert space and ¢ € $* a linear functional. We will
give a variational proof of the Riesz lemma (Theorem 2.10). To this end
consider

Flz) = %W “Re((z)), ze€h.

Then F' is convex, continuous, and weakly coercive. Hence there is some
xo € $ with F(xo) = infyeq F'(z). Moreover, for fixed z € 9,

2
R =R, e+ F(zo+ex) = F(z0) + eRe((zo,z) — {(z)) + %Hx”Q

is a smooth map which has a minimum at ¢ = 0. Hence its derivative at
e = 0 must vanish: Re((zo,z) —{(z)) = 0 for all z € ). Replacing z — —iz
we also get Im((zo,z) — £(x)) = 0 and hence {(z) = (9, z).

Example. Let $ be a Hilbert space and let us consider the problem of
finding the lowest eigenvalue of a positive operator A > 0. Of course this
is bound to fail since the eigenvalues could accumulate at 0 without 0 be-
ing an eigenvalue (e.g. the multiplication operator with the sequence % in
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/2(N)). Nevertheless it is instructive to see how things can go wrong (and
it underlines the importance of our various assumptions).

To this end consider its quadratic form ga(f) = (f, Af). Then, since
q114/ ? is a seminorm (Problem 1.21) and taking squares is convex, g4 is con-
vex. If we consider it on M = B;(0) we get existence of a minimum from
Theorem 4.35. However this minimum is just g4(0) = 0 which is not very
interesting. In order to obtain a minimal eigenvalue we would need to take
M = S1 = {f|||f|l = 1}, however, this set is not weakly closed (its weak
closure is B1(0) as we will see in the next section). In fact, as pointed out

before, the minimum is in general not attained on M in this case.

Note that our problem with the trivial minimum at 0 would also disap-
pear if we would search for a maximum instead. However, our lemma above
only guarantees us weak sequential lower semicontinuity but not weak se-
quential upper semicontinuity. In fact, note that not even the norm (the
quadratic form of the identity) is weakly sequentially upper continuous (cf.
Lemma 4.28 (ii) versus Lemma 4.29). If we make the additional assumption
that A is compact, then ¢4 is weakly sequentially continuous as can be seen
from Theorem 4.31. Hence for compact operators the maximum is attained
at some vector fy. Of course we will have || fo|| = 1 but is it an eigenvalue?
To see this we resort to a small ruse: Consider the real function

ga(fo+tf) a1+ 2tRe(f, Afo) + t*qa(f)
A T R W v S TR )
which has a maximum at ¢ = 0 for any f € $. Hence we must have
¢'(0) = 2Re(f, (A — ap)fo) = 0 for all f € . Replacing f — if we get
2Im(f, (A — o) fo) = 0 and hence (f,(A — ap)fo) = 0 for all f, that is
Afo = agf. So we have recovered Theorem 3.6. o

Problem 4.35. Consider X = C[0,1] and M = {f] fol f(z)dz =1, f(0) =
0}. Show that M s closed and convex. Show that d(0, M) =1 but there is
no minimizer. If we replace the boundary condition by f(0) = 1 there is a
unique minimizer and for f(0) = 2 there are infinitely many minimizers.

Problem 4.36. Show that F : M — R is quasiconvex if and only if the
sublevel sets F~1((—o0,a]) are convex for every a € R.



Chapter 5

Further topics on
Banach spaces

5.1. The geometric Hahn—Banach theorem

Finally we turn to a geometric version of the Hahn-Banach theorem. Let
X be a vector space. For every subset U C X we define its Minkowski
functional (or gauge)

pu(x) =inf{t > 0|z € tU}. (5.1)

Here tU = {tz|z € U}. Note that 0 € U implies p;(0) = 0 and py(z) will
be finite for all x when U is absorbing, that is, for every x € X there is
some r such that x € aU for every |a| > r. Note that every absorbing set
contains 0 and every neighborhood of 0 in a Banach space is absorbing.

Example. Let X be a Banach space and U = B;(0), then py(z) = ||z
If X = R?2and U = (—1,1) x R then py(x) = |r1|. If X = R? and
U= (-1,1) x {0} then py(z) = |z1] if xz2 = 0 and py(z) = oo else. o

We will only need minimal requirements and it will suffice if X is a
topological vector space, that is, a vector space which carries a topology
such that both vector addition X x X — X and scalar multiplication C x
X — X are continuous mappings. Of course every normed vector space is
a topological vector space with the usual topology generated by open balls.
As in the case of normed linear spaces, X* will denote the vector space of
all continuous linear functionals on X.

137
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Figure 1. Separation of convex sets via a hyperplane

Lemma 5.1. Let X be a vector space and U a convex subset containing 0.
Then

pu(z+y) <pv(x)+pu(y), pu(Az) = Apy(z), A>0.  (5.2)

Moreover, {z|py(z) < 1} C U C {z|py(x) < 1}. If, in addition, X is a
topological vector space and U is open, then U = {z|py(x) < 1}.

Proof. The homogeneity condition p(Az) = Ap(z) for A > 0 is straight-
forward. To see the sublinearity Let ¢,s > 0 with x € tU and y € sU,

then
t x sy _ x+y

t+st t+ss t+s
is in U by convexity. Moreover, py(x +y) < s+t and taking the infimum
over all ¢t and s we find py(z + vy) < pu(z) + pu(y).

Suppose py(z) < 1, then t~'z € U for some ¢t < 1 and thus x € U by
convexity. Similarly, if # € U then t~'x € U for t > 1 by convexity and thus
pu(z) < 1. Finally, let U be open and = € U, then (1 + ¢)x € U for some
e >0 and thus p(z) < (1 +¢)~ L O

Note that (5.2) implies convexity
pua+ (1= Ny) < o) + (1 - Npoly),  Ael,1.  (53)

Theorem 5.2 (geometric Hahn-Banach, real version). Let U, V' be disjoint
nonempty conver subsets of a real topological vector space X and let U be
open. Then there is a linear functional £ € X* and some ¢ € R such that

Uz) < c<{(y), zelU yeV. (5.4)
If V is also open, then the second inequality is also strict.
Proof. Choose zg € U and yg € V, then
W=(U-z0)+(V—-yo)={(x—20) —(y —yo)[r €U,y € V}

is open (since U is), convex (since U and V are) and contains 0. Moreover,
since U and V are disjoint we have zg = yo—x¢ € W. By the previous lemma,
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the associated Minkowski functional py is convex and by the Hahn—Banach
theorem there is a linear functional satisfying

l(tzo) =t,  |[l(z)| <pw(z).

Note that since zg € W we have py(z9) > 1. Moreover, W = {z|py(z) <
1} C {z||¢(z)| < 1} which shows that ¢ is continuous at 0 by scaling and by
translations £ is continuous everywhere.

Finally we again use py(z) < 1 for z € W implying
lz) —Ly)+1=Llxz—y+2) <pw(r—-y+2)<l1

and hence ¢(z) < {(y) for z € U and y € V. Therefore £(U) and ¢(V) are
disjoint convex subsets of R. Finally, let us suppose that there is some x
for which ¢(z1) = sup4(U). Then, by continuity of the map ¢t — x1 + tz
there is some € > 0 such that z; + €29 € U. But this gives a contradiction
(z1)+e = l(x1+ez0) < £(z1). Thus the claim holds with ¢ = sup ¢(U). If V
is also open an analogous argument shows inf (V') < {(y) for ally € V. O

Of course there is also a complex version.

Theorem 5.3 (geometric Hahn-Banach, complex version). Let U, V be
disjoint nonempty convex subsets of a topological vector space X and let U
be open. Then there is a linear functional £ € X* and some ¢ € R such that

Re(4(z)) < ¢ < Re((y)), xelU yeV. (5.5)

If V is also open, then the second inequality is also strict.

Proof. Consider X as a real Banach space. Then there is a continuous
real-linear functional ¢, : X — R by the real version of the geometric Hahn—
Banach theorem. Then ¢(x) = ¢,(x)—if,(iz) is the functional we are looking
for (check this). O

Example. The assumption that one set is open is crucial as the following
example shows. Let X = ¢(N), U = {a € ¢o(N)|3N : ay > 0 and a,, =
0,n > N} and V = {0}. Note that U is convex but not open and that
UNV =(. Suppose we could find a linear functional ¢ as in the geometric
Hahn-Banach theorem (of course we can choose o = £(0) = 0 in this case).
Then by Problem 4.17 there is some b; € £°°(N) such that £(a) = 3772, bja;.
Moreover, we must have b; = £(67) < 0. But then a = (ba, —b1,0,...) € U
and £(a) =0 £ 0. o

Note that two disjoint closed convex sets can be separated strictly if
one of them is compact. However, this will require that every point has
a neighborhood base of convex open sets. Such topological vector spaces
are called locally convex spaces and they will be discussed further in
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Section 5.4. For now we just remark that every normed vector space is
locally convex since balls are convex.

Corollary 5.4. Let U, V be disjoint nonempty closed convex subsets of
a locally convex space X and let U be compact. Then there is a linear
functional £ € X* and some c,d € R such that

Re(l(x)) < d < c < Re({(y)), xelU yeV. (5.6)

Proof. Since V is closed, for every x € U there is a convex open neighbor-
hood N, of 0 such that x + N, does not intersect V. By compactness of
U there are x1, ...z, such that the corresponding neighborhoods z; + %Nz].
cover U. Set N = ﬂ?zl N, which is a convex open neighborhood of 0.
Then

n

n n
1 1 1 1
N C U(xj+§ij)+§N C U(mj+§ij+§ij) = |J(@j+N:,))
j=1

~ 1
U=U+; A

j=1 7j=1

Is a convex open set which is disjoint from V. Hence by the previous theorem
we can find some ¢ such that Re({(z)) < ¢ < Re({(y)) for all x € U and
y € V. Moreover, since ¢(U) is a compact interval [e, d] the claim follows. [

Note that if U and V are absolutely convex (i.e., aU + U C U for
|a| + |B] < 1), then we can write the previous condition equivalently as

)| <d<c<|ly), zelUyeV, (5.7)

since € U implies 0z € U for 6 = sign(¢(x)) and thus |[((x)| = 04(z) =
0(0x) = Re(L(0x)).

From the last corollary we can also obtain versions of Corollaries 4.17
and 4.15 for locally convex vector spaces.

Corollary 5.5. Let Y C X be a subspace of a locally convex space and let
zo € X \'Y. Then there exists an { € X* such that (i) {(y) =0, y €Y and

(ii) 0(zo) = 1.

Proof. Consider ¢ from Corollary 5.4 applied to U = {20} and V =Y. Now
observe that ¢(Y") must be a subspace of C and hence ¢(Y) = {0} implying
Re(f(x0)) < 0. Finally ¢(zo)~'¢ is the required functional. O

Corollary 5.6. Let Y C X be a subspace of a locally convex space and let
£:Y — C be a continuous linear functional. Then there exists a continuous
extension £ € X*.

Proof. Without loss of generality we can assume that ¢ is nonzero such
that we can find zo € y with ¢(xg) = 1. Since Y has the subset topology
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xo & Yp 1= Kgr(ﬁ), where the closure is taken in X. Now Corollary 5.5 gives
a functional ¢ with ¢(zp) = 1 and Yy C Ker(¢). Moreover,

U(z) — l(z) = l(z) — U(z)l(z0) = (x — L(z)20) = O, reY,
since z — {(x)zy € Ker({). O

Problem 5.1. Let X be a topological vector space. Show that U +V is open
if one of the sets is open.

Problem 5.2. Show that Corollary 5.4 fails even in R? unless one set is
compact.

Problem 5.3. Let X be a topological vector space and M C X, N C X*.
Then the corresponding polar, prepolar sets are

M®={le X*||{l(z)| <1Vx e M}, N,={xe€ X||{(x)]<1Vle N},
respectively. Show

(i) M° is closed and absolutely convex.
(ii) My C My implies M3 C M.
(iii) For a # 0 we have (aM)°® = |a| "t M°.
(iv) If M is a subspace we have M° = M+,

The same claims hold for prepolar sets.

Problem 5.4 (Bipolar theorem). Let X be a locally conver space and
suppose M C X s absolutely convez, that is, for |a| + |8 < 1 we have
aM + BM C M. Show (M°), = M. (Hint: Use Corollary 5.4 to show that
for every y & M there is some £ € X* with Re((x)) <1< l(y), v € M.)

5.2. Convex sets and the Krein—Milman theorem

Let X be a locally convex vector space. The intersection of arbitrary convex
sets is again convex. Hence we can define the convex hull of a set U as the
smallest convex set containing U, that is, the intersection of all convex sets
containing U. It is straightforward to show (Problem 5.5) that the convex
hull is given by

n n
hll(U) == {) _Njzjln €N, z; € U, Y XNy =1, A; > 0}. (5.8)

j=1 J=1
A line segment is convex and can be generated as the convex hull of its
endpoints. Similarly, a full triangle is convex and can be generated as the
convex hull of its vertices. However, if we look at a ball, then we need its
entire boundary to recover it as the convex hull. So how can we characterize

those points which determine a convex sets via the convex hull?
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Let K be a set and M C K a nonempty subset. Then M is called
an extremal subset of K if no point of M can be written as a convex

combination of two points unless both are in M: For given z,y € K and
A € (0,1) we have that

A+ (1-NyeM =uzyecl. (5.9)

If M = {x} is extremal, then z is called an extremal point of K. Hence
an extremal point cannot be written as a convex combination of two other
points from K.

Note that we did not require K to be convex. If K is convex, then M is
extremal if and only if K\ M is convex. Note that the nonempty intersection
of extremal sets is extremal. Moreover, if L C M is extremal and M C K
is extremal, then L C K is extremal as well (Problem 5.6).

Example. Consider R? with the norms ||.||,. Then the extremal points of
the closed unit ball (cf. Figure 1) are the boundary points for 1 < p < oo
and the vertices for p = 1, 00. In any case the boundary is an extremal set.
Slightly more general, in a strictly convex space, (ii) of Problem 1.12 says
that the extremal points of the unit ball are precisely its boundary points. ¢

Example. Consider R? and let C = {(z1,72,0) € R3|2? + 22 = 1}. Take
two more points x+ = (0,0,£1) and consider the convex hull K of M =
CU{x4,x_}. Then M is extremal in K and, moreover, every point from
M is an extremal point. However, if we change the two extra points to be
x4 = (1,0,£1), then the point (1,0,0) is no longer extremal. Hence the
extremal points are now M \ {(1,0,0)}. Note in particular that the set of
extremal points is not closed in this case. o

Extremal sets arise naturally when minimizing linear functionals.
Lemma 5.7. Suppose K C X and £ € X*. If
Ky :={z € K|{(z) = inf Re({(y))}
yeK

is nonempty (e.g. if K is compact), then it is extremal in K. If K is closed
and convex, then K, is closed and conver.

Proof. Set m = inf,cx Re(¢(y)). Let z,y € K, A € (0,1) and suppose
Az + (1 — ANy € Ky. Then

m = Re({(Ax+(1-N)y)) = ARe(4(x))+(1—-A)Re({(y)) > Am+(1-A)m =m

with strict inequality if Re(¢(z)) > m or Re({(y)) > m. Hence we must
have x,y € K,. Finally by linearity K, is convex and by continuity it is
closed. 0
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If K is a closed convex set, then nonempty subsets of the type K, are
called faces of K and Hy := {z € X|{(x) = inf,cx Re({(y))} is called a
support hyperplane of K.

Conversely, if K is convex with nonempty interior, then every point z
on the boundary has a supporting hyperplane (observe that the interior is
convex and apply the geometric Hahn—Banach theorem with U = K° and
V ={z}).

Next we want to look into existence of extremal points.

Example. Note that an interior point can never be extremal as it can be
written as convex combination of some neighboring points. In particular,
an open convex set will not have any extremal points (e.g. X, which is also
closed, has no extremal points). Conversely, if K is closed and convex, then
the boundary is extremal since K \ 0K = K° is convex (Problem 5.7). ¢

Example. Suppose X is a strictly convex Banach space. Then every
nonempty compact subset K has an extremal point. Indeed, let z € K
be such that [z]| = sup,ck [|yl|, then x is extremal: If x = Ay + (1 — )z
then [|z| < My|| + (1 — A)[|z]] < ||z| shows that we have equality in the
triangle inequality and hence x = y = z by Problem 1.12 (i). o

Example. In a not strictly convex space the situation is quite different. For
example, consider the closed unit ball in />°(N). Let a € ¢°°(N). If there is
some index j such that A := |a;| < 1 then a = 1b+ 1c where b = a+¢ed’ and
¢ =a— e with e <1— |aj|. Hence the only possible extremal points are
those with |a;| = 1 for all j € N. If we have such an a, then if a = Ab+(1-X\)c
we must have 1 = |Ab, + (1 — Nepn| < Albp| + (1 — A)|en| < 1 and hence
a, = b, = ¢, by strict convexity of the absolute value. Hence all such
sequences are extremal.

However, if we consider ¢p(N) the same argument shows that the closed
unit ball contains no extremal points. In particular, the following lemma
implies that there is no locally convex topology for which the closed unit
ball in ¢y(N) is compact. Together with the Banach—Alaoglu theorem (The-
orem 5.10) this will show that ¢y(N) is not the dual of any Banach space. ©

Lemma 5.8 (Krein—Milman). Let X be a locally convex space. Suppose
K C X is compact and nonempty. Then it contains at least one extremal
point.

Proof. We want to apply Zorn’s lemma. To this end consider the family

M = {M C K|compact and extremal in K}

with the partial order given by reversed inclusion. Since K € M this family
is nonempty. Moreover, given a linear chain C C M we consider M :=(C.
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Then M C K is nonempty by the finite intersection property and since it
is closed also compact. Moreover, as the nonempty intersection of extremal
sets it is also extremal. Hence M € M and thus M has a maximal element.
Denote this maximal element by M.

We will show that M contains precisely one point (which is then ex-
tremal by construction). Indeed, suppose z,y € M. If x # y we can, by
Corollary 5.4, choose a linear functional ¢ € X* with Re(¢(z)) # Re({(y)).
Then by Lemma 5.7 M, C M is extremal in M and hence also in K. But
by Re(¢(x)) # Re({(y)) it cannot contain both x and y contradicting maxi-
mality of M. (|

Finally, we want to recover a convex set as the convex hull of its extremal
points. In our infinite dimensional setting an additional closure will be
necessary in general.

Since the intersection of arbitrary closed convex sets is again closed and
convex we can define the closed convex hull of a set U as the smallest closed
convex set containing U, that is, the intersection of all closed convex sets
containing U. Since the closure of a convex set is again convex (Problem 5.7)
the closed convex hull is simply the closure of the convex hull.

Theorem 5.9 (Krein—Milman). Let X be a locally conver space. Suppose
K C X is conver and compact. Then it is the closed conver hull of its
extremal points.

Proof. Let E be the extremal points and M := hull(F) C K be its closed
convex hull. Suppose x € K \ M and use Corollary 5.4 to choose a linear
functional ¢ € X* with

min Re(£(y)) > Re(¢(x)) > min Re(£(y).

Now consider K; from Lemma 5.7 which is nonempty and hence contains
an extremal point y € E. But y ¢ M, a contradiction. ([

While in the finite dimensional case the closure is not necessary (Prob-
lem 5.8), it is important in general as the following example shows.

Example. Consider the closed unit ball in £*(N). Then the extremal points
are {€%5"|n € N, 6 € R}. Indeed, suppose ||al; = 1 with \ := |a;| € (0,1)
for some j € N. Then a = Ab+ (1 — A)c where b := A7ta;07 and ¢ :=
(1—=X)"Y(a—a;67). Hence the only possible extremal points are of the form
el5™. Moreover, if 96" = A\b+ (1 —\)c we must have 1 = [Ab, + (1 —\)c,| <
Abn| + (1 — X)|en| < 1 and hence a,, = b, = ¢, by strict convexity of
the absolute value. Thus the convex hull of the extremal points are the
sequences from the unit ball which have finitely many terms nonzero. While
the closed unit ball is not compact in the norm topology it will be in the
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weak-* topology by the the Banach—Alaoglu theorem (Theorem 5.10). To
this end note that ¢!(N) 22 cq(N)*. o

Also note that in the infinite dimensional case the extremal points can
be dense.

Example. Let X = C([0,1],R) and consider the convex set K = {f €
CL([0,1],R)|£(0) = 0, || f'|loc < 1}. Note that the functions fi(x) = +x are
extremal. For example, assume

= Af(z)+ (1 - Ng(z)
then

1= Af'(z) + (1= Ng'(z)
which implies f/'(z) = ¢/(x) = 1 and hence f(z) = g(z) = .

To see that there are no other extremal functions, suppose |f/(z)] < 1—¢
on some interval I. Choose a nontrivial continuous function g which is 0
outside I and has integral 0 over I and |||« <. Let G = [ g(t)dt. Then
f= %(f +G) + %(f — @) and hence f is not extremal. Thus fi are the
only extremal points and their (closed) convex is given by fy(z) = Az for
Ae[-1,1].

Of course the problem is thflt K is not closed. Hence we consider the
Lipschitz continuous functions K := {f € C%1([0,1],R)|f(0) = 0, [f]1 < 1}
(this is in fact the closure of K, but this is a bit tricky to see and we
won’t need this here). By the Arzela—Ascoli theorem (Theorem 1.14) K
is relatively compact and since the Lipschitz estimate clearly is preserved
under uniform limits it is even compact.

Now note that piecewise linear functions with f/(x) € {£1} away from
the kinks are extremal in K. Moreover, these functions are dense: Split

[0,1] into n pieces of equal length using z; = L. Set fu(z9) = 0 and
fa(z) = fu(zj) £ (x — ;) for € [xj,xj41] where the sign is chosen such
that |f(zj41) — fa(2j+1)| gets minimal. Then || f — fulloo < 2. o

Problem 5.5. Show that the convex hull is given by (5.8).

Problem 5.6. Show that if L C M is extremal and M C K is extremal,
then L C K is extremal as well.

Problem 5.7. Let X be a topological vector space. Show that the closure
and the interior of a convez set is conver. (Hint: One way of showing the
first claim is to consider the the continuous map f : X x X — X given by
(z,y) — Az + (1 — N\)y and use Problem B.12.)

Problem 5.8 (Carathéodory). Show that for a compact conver set K C R"
every point can be written as convex combination of n + 1 extremal points.
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(Hint: Induction on n. Without loss assume that 0 is an extremal point. If
K is contained in an n — 1 dimensional subspace we are done. Otherwise K
has an open interior. Now for a given point the line through this point and
0 intersects the boundary where we have a corresponding face.)

5.3. Weak topologies

In Section 4.4 we have defined weak convergence for sequences and this raises
the question about a natural topology associated with this convergence. To
this end we define the weak topology on X as the weakest topology for
which all £ € X* remain continuous. Recall that a base for this topology is
given by sets of the form

v+ () 16]71([0,6))) = {7 € X||tj(x) — ()| <&, 1 <j <n},
j=1
reX, ;e X" >0 (510)

In particular, it is straightforward to check that a sequence converges with
respect to this topology if and only if it converges weakly. Since the linear
functionals separate points (cf. Corollary 4.16) the weak topology is Haus-
dorff.

Similarly, we define the weak-* topology on X* as the weakest topol-
ogy for which all j € J(X) C X** remain continuous. In particular, the
weak-* topology is weaker than the weak topology on X* and both are
equal if X is reflexive. Since different linear functionals must differ at least
at one point the weak-* topology is also Hausdorff. A base for the weak-x
topology is given by sets of the form

C+ (1@ (0,25)) = {£ € XF|e(xy) = Uzj)] < e, 1< j < n},
Jj=1
gGX*, ijX, <€j>0.
(5.11)

Note that given a total set {xy, }neny C X of (w.l.o.g.) normalized vectors

o0

- 1 -

d(¢,0) = Z 27‘«3371) — U(wy)| (5.12)

n=1
defines a metric on the unit ball B}(0) C X* which can be shown to generate
the weak-x topology (cf. (iv) of Lemma 4.32). Hence Lemma 4.34 could also
be stated as B} (0) C X* being weak-* compact. This is in fact true without

assuming X to be separable and is known as Banach—Alaoglu theorem.

Theorem 5.10 (Banach-Alaoglu). Let X be a Banach space. Then B (0) C
X* is compact in the weak-+ topology.



5.3. Weak topologies 147

Proof. Abbreviate B = BiX(0), B* = B* (0), and B, = BH 1(0). Consider
the (injective) map ® : X* — CX given by |®(¢)(z)| = ¢(z) and identify X*
with ®(X™*). Then the weak-* topology on X* coincides with the relative
topology on ®(X*) C C¥X (recall that the product topology on C¥ is the
weakest topology which makes all point evaluations continuous). Moreover,
O(0) < |||||||| implies ®(B*) C X ex By where the last product is compact
by Tychonoff’s theorem. Hence it suffices to show that ®(B*) is closed. To
this end let [ € ®(B*). We need to show that [ is linear and bounded. Fix
x1,29 € X, a € C, and consider the open neighborhood

{he

of [. Since U(l) N QD(X *) is nonempty we can choose an element h from
this intersection to show |l(z1 + axs) — l(z1) — al(z2)| < 3e. Since € > 0
is arbitrary we conclude [(z1 + az2) = l(x1) — al(xz). Moreover, |I(z1)| <
|h(z1)] + & < ||z1]| + € shows ||/|| < 1 and thus [ € ®(B*). O

|h x1+x2)fl(x1+am2)] <g, }
(z1)| <&, |aflh(zg) — U(z2)] <&

Since the weak topology is weaker than the norm topology every weakly
closed set is also (norm) closed. Moreover, the weak closure of a set will in
general be larger than the norm closure. However, for convex sets both will
coincide. In fact, we have the following characterization in terms of closed
(affine) half-spaces, that is, sets of the form {z € X|Re(/(x)) < a} for
some £ € X* and some o € R.

Theorem 5.11 (Mazur). The weak as well as the norm closure of a convex
set K is the intersection of all half-spaces containing K. In particular, a
conver set K C X is weakly closed if and only if it is closed.

Proof. Since the intersection of closed-half spaces is (weakly) closed, it
suffices to show that for every = not in the (weak) closure there is a closed
half-plane not containing x. Moreover, if x is not in the weak closure it is also
not in the norm closure (the norm closure is contained in the weak closure)
and by Theorem 5.3 with U = Bdist(x K)(7) and V' = K there is a functional
¢ € X* such that K C Re(¢)"1([c,00)) and = & Re(¢)~*([c, 00)). O

Example. Suppose X is infinite dimensional. The weak closure S of
S = {x € X||jz|| = 1} is the closed unit ball B;(0). Indeed, since B;(0)
is convex the previous lemma shows S* C Bj(0). Conversely, if z € B;(0)
is not in the weak closure, then there must be an open neighborhood = +
Uj=1 1¢;171([0,€)) not contained in the weak closure. Since X is infinite
dimensional we can find a nonzero element xo € (;_, Ker(¢;) such that the

affine line & +tz is in this neighborhood and hence also avoids S*. But this
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is impossible since by the intermediate value theorem there is some ¢y > 0
such that ||z + toxzo|| = 1. Hence B;(0) € S". o

Note that this example also shows that in an infinite dimensional space
the weak and norm topologies are always different! In a finite dimensional
space both topologies of course agree.

Corollary 5.12 (Mazur lemma). Suppose xp — x, then there are convex
combinations y = Z?ﬁl Ak, (with Zyil Mej =1 and A j > 0) such that
Y — .

Proof. Let K = {3°7_; N\jz;ln € N, Y70 Aj = 1, A; > 0} be the convex
hull of the points {z,,}. Then by the previous result z € K. O

Example. Let $) be a Hilbert space and {¢;} some infinite ONS. Then we
already know ¢; — 0. Moreover, the convex combination ¢; = ]l > Pk —

—1/2

0 since ;| = j o

Finally, we note two more important results. For the first note that
since X™ is the dual of X* it has a corresponding weak- topology and
by Banach—Alaoglu theorem Bi*(0) is weak-* compact and hence weak-x
closed.

Theorem 5.13 (Goldstine). The image of the closed unit ball B1(0) under
the canonical embedding J into the closed unit ball B*(0) is weak-+ dense.

Proof. Let j € B}*(0) be given. Since sets of the form j+r_; [¢|~1([0,¢))
provide a neighborhood base (where we can assume the ¢, € X* to be
linearly independent without loss of generality) it suffices to find some = €
B1.:(0) with £(z) = j(f) for 1 < k < n since then (1 + &)~ 1J(x) will
be in the above neighborhood. Without the requirement ||z| < 1 + ¢ this
follows from surjectivity of the map F' : X — C", x — ({1(x),...,l(2)).
Moreover, given one such z the same is true for every element from = + Y,
where Y = (), Ker(¢y). So if (z 4+ Y) N B14.(0) were empty, we would have
dist(z,Y) > 1 + ¢ and by Corollary 4.17 we could find some normalized
¢ € X* which vanishes on Y and satisfies £(z) > 1+¢. But by Problem 4.27
we have ¢ € span({y,...,¢,) implying

L+e<f(x) =500 <jlllel <1
a contradiction. O
Example. Consider X = ¢o(N), X* ~ ((N), and X** ~ ¢>*(N) with J
corresponding to the inclusion c¢o(N) < ¢°°(N). Then we can consider the

linear functionals ¢;(x) = x; which are total in X* and a sequence in X**
will be weak-* convergent if and only if it is bounded and converges when
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composed with any of the ¢; (in other words, when the sequence converges
componentwise — cf. Problem 4.33). So for example, cutting off a sequence
in By*(0) after n terms (setting the remaining terms equal to 0) we get a
sequence from Bj(0) — B7*(0) which is weak-* convergent (but of course
not norm convergent). o

Theorem 5.14. A Banach space X is reflexive if and only if the closed unit
ball B1(0) is weakly compact.

Proof. If X is reflexive that this result follows from the Banach—Alaoglu
theorem since in this case J(B1(0)) = B}*(0) and the weak-* topology agrees
with the weak topology on X™**.

Conversely, suppose B1(0) is weakly compact. Since the weak topology
on J(X) is the relative topology of the weak-* topology on X** we conclude
that J(B1(0)) is compact (and thus closed) in the weak-* topology on X**.
But now Glodstine’s theorem implies J(B1(0)) = B}*(0) and hence X is
reflexive. ([

Problem 5.9. Show that a weakly sequentially compact set is bounded.

Problem 5.10. Show that the annihilator M+ of a set M C X is weak-*
————weakx

closed. Moreover show that (N, )+ = span(N)

span(N) if X is reflexive. (Hint: The first part and hence one inclusion

of the second part are straightforward. For the other inclusion use Corol-
lary 4.19.)

. In particular (N )* =

Problem 5.11. Suppose K C X is conver and x is a boundary point of
K. Then there is a supporting hyperplane at . That is, there is some
¢ € X* such that £(x) = 0 and K is contained in the closed half-plane

{yRe(f(y — x)) < 0}.
5.4. Beyond Banach spaces: Locally convex spaces

We have already seen that it is often important to weaken the notion of
convergence (i.e., to weaken the underlying topology) to get a larger class of
converging sequences. It turns out that all cases considered so far fit within
a general framework which we want to discuss in this section. We start with
an alternate definition of a locally convex vector space which we already
briefly encountered in Corollary 5.4 (equivalence of both definitions will be
established below).

A vector space X together with a topology is called a locally convex
vector space if there exists a family of seminorms {¢q } e Which generates
the topology in the sense that the topology is the weakest topology for which
the family of functions {¢n (. — ) }aca zcx is continuous. Hence the topology
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is generated by sets of the form z + ¢, (1), where I C [0, 00) is open (in the
relative topology). Moreover, sets of the form

n
o+ (e (0.5)) (5.13)

j=1
are a neighborhood base at z and hence it is straightforward to check that a
locally convex vector space is a topological vector space, that is, both vector
addition and scalar multiplication are continuous. For example ifz=x4+y
then the preimage of the open neighborhood z + (j_; ¢4, 1([0,¢,)) contains
the open neighborhood (z +(\j_; ¢4, 1([0,€;/2)),y + ﬂ]:1 Ao, 1([0,¢;/2))) by
virtue of the triangle inequality. Srrnrlarly, if z = yx then the preimage of
the open neighborhood z—i—ﬂ?:l q;l ([O aj)) contains the open neighborhood

Moreover, note that a sequence x,, will converge to x in this topology if
and only if g, (z, — ) — 0 for all a.

Example. Of course every Banach space equipped with the norm topology
is a locally convex vector space if we choose the single seminorm ¢(z) =
]| o

Example. A Banach space X equipped with the weak topology is a lo-
cally convex vector space. In this case we have used the continuous lin-
ear functionals ¢ € X™* to generate the topology. However, note that the
corresponding seminorms qy(x) := |[¢(z)| generate the same topology since
z+ g, ([0,)) = £7}(B.(x)) in this case. The same is true for X* equipped
with the weak or the weak-* topology. o

Example. The bounded linear operators £ (X,Y") together with the semi-
norms ¢;(A) := ||Az| for all € X (strong convergence) or the seminorms
Q2 (A) == [{(Ax)| for all z € X, ¢ € Y* (weak convergence) are locally
convex vector spaces. o

Example. The continuous functions C(I) together with the pointwise
topology generated by the seminorms ¢, (f) := |f(z)| for all x € [ is a
locally convex vector space. o

In all these examples we have one additional property which is often
required as part of the definition: The seminorms are called separated if
for every x € X there is a seminorm with g,(xz) # 0. In this case the
corresponding locally convex space is Hausdorff, since for x # y the neigh-
borhoods U(z) = x + ¢;*([0,¢)) and U(y) = y + ¢, ([0,¢)) will be disjoint
for € = $ga(x — y) > 0 (the converse is also true; Problem 5.18).

It turns out crucial to understand when a seminorm is continuous.
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Lemma 5.15. Let X be a locally convex vector space with corresponding
family of seminorms {qa}aca. Then a seminorm q is continuous if and
only if there are seminorms qqa; and constants c¢; >0, 1 < j <n, such that

a(@) < X1 ¢jda, (@),

Proof. If ¢ is continuous, then ¢~!(B;(0)) contains an open neighborhood
of 0 of the form (;_, qgjl([O,sj)) and choosing ¢; = maxi<j<n 5]-_1 we ob-
tain that >, ¢jga,(#) < 1 implies g(x) < 1 and the claim follows from
Problem 5.13. Conversely note that if ¢(x) = r then ¢ !'(B.(r)) con-
tains the set U(z) = = + (j_; qa_jl([(),ej)) provided » ", cje; < e since

la(y) —a(z)] < qly —2) < 3771 ¢jda,(z —y) < e fory € U(z). O

Example. The weak topology on an infinite dimensional space cannot be
generated by a norm. Indeed, let ¢ be a continuous seminorm and g, = [{q|
as in the lemma. Then (7_, Ker({,;) has codimension at most n and hence
contains some z # 0 implying that ¢(x) < Z?zl CjGa;(z) = 0. Thus ¢ is no
norm. Similarly, the other examples cannot be generated by a norm except
in finite dimensional cases. o

Moreover, note that the topology is translation invariant in the sense
that U(z) is a neighborhood of z if and only if U(x) —z = {y —z|y € U(x)}
is a neighborhood of 0. Hence we can restrict our attention to neighborhoods
of 0 (this is of course true for any topological vector space). Hence if X and
Y are topological vector spaces, then a linear map A : X — Y will be
continuous if and only if it is continuous at 0. Moreover, if Y is a locally
convex space with respect to some seminorms pg, then A will be continuous
if and only if pg o A is continuous for every § (Lemma B.11). Finally, since
pg o A is a seminorm, the previous lemma implies:

Corollary 5.16. Let (X, {qn}) and (Y,{pg}) be locally convex vector spaces.
Then a linear map A : X — Y is continuous if and only if for every 5
there are some seminorms qa; and constants ¢c;j > 0, 1 < j < n, such that

pp(Az) < 3771 ¢jda, ().

It will shorten notation when sums of the type Z?:l €jQa; (), which
appeared in the last two results, can be replaced by a single expression cqy.
This can be done if the family of seminorms {¢,}ac4 is directed, that is,
for given a,3 € A there is a v € A such that ¢.(z) + ¢g(r) < Cqy(2)
for some C' > 0. Moreover, if F(A) is the set of all finite subsets of A,
then {Gr = ) _,cr da}rer(a) is a directed family which generates the same
topology (since every ¢p is continuous with respect to the original family we
do not get any new open sets).
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While the family of seminorms is in most cases more convenient to work
with, it is important to observe that different families can give rise to the
same topology and it is only the topology which matters for us. In fact, it
is possible to characterize locally convex vector spaces as topological vector
spaces which have a neighborhood basis at 0 of absolutely convex sets. Here a
set U is called absolutely convex, if for |a|+|3| < 1 we have aU+pU C U.
Since the sets g, ([0, ¢)) are absolutely convex we always have such a basis
in our case. To see the converse note that such a neighborhood U of 0 is
also absorbing (Problem 5.12) und hence the corresponding Minkowski func-
tional (5.1) is a seminorm (Problem 5.17). By construction, these seminorms
generate the topology since if Uy = (}_, q;jl([(),sj)) C U we have for the
corresponding Minkowski functionals py(z) < py,(z) < e} > i1 Gay (2),
where € = mine;. With a little more work (Problem 5.16), one can even
show that it suffices to assume to have a neighborhood basis at 0 of convex
open sets.

Given a topological vector space X we can define its dual space X* as
the set of all continuous linear functionals. However, while it can happen in
general that the dual space is empty, X* will always be nontrivial for a locally
convex space since the Hahn—Banach theorem can be used to construct
linear functionals (using a continuous seminorm for ¢ in Theorem 4.14) and
also the geometric Hahn-Banach theorem (Theorem 5.3) holds (see also its
corollaries). In this respect note that for every continuous linear functional
¢ in a topological vector space |[¢|71([0,¢)) is an absolutely convex open
neighborhoods of 0 and hence existence of such sets is necessary for the
existence of nontrivial continuous functionals. As a natural topology on
X* we could use the weak-* topology defined to be the weakest topology
generated by the family of all point evaluations ¢, (¢) = |[¢(x)| for all x € X.
Since different linear functionals must differ at least at one point the weak-
x topology is Hausdorff. Given a continuous linear operator A : X — Y
between locally convex spaces we can define its adjoint A’ : Y* — X* as
before,

(A'y") (@) = " (Ax). (5.14)

A brief calculation

62(A'y") = [(A'y")(2)] = " (Az)| = qaa(y") (5.15)

verifies that A’ is continuous in the weak-* topology by virtue of Corol-
lary 5.16.

The remaining theorems we have established for Banach spaces were
consequences of the Baire theorem (which requires a complete metric space)
and this leads us to the question when a locally convex space is a metric
space. From our above analysis we see that a locally convex vector space
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will be first countable if and only if countably many seminorms suffice to
determine the topology. In this case X turns out to be metrizable.

Theorem 5.17. A locally convexr Hausdorff space is metrizable if and only
if it is first countable. In this case there is a countable family of separated
seminorms {qn fnen generating the topology and a metric is given by
1 gu(z—y)

d(x,y) := max —

S UL 5.16
neN 2" 1+ gy (z — y) (5.16)

Proof. If X is first countable there is a countable neighborhood base at
0 and hence also a countable neighborhood base of absolutely convex sets.
The Minkowski functionals corresponding to the latter base are seminorms
of the required type.

Now in this case it is straightforward to check that (5.16) defines a metric
(see also Problem B.3). Moreover, the balls B/"(x) = (,.0-ns, 1¥lan(y —
r) < 5=i—} are clearly open and convex (note that the intersection is
finite). Conversely, for every set of the form (5.13) we can choose ¢ =

min{2"% =L-|1 < j < n} such that B.(x) will be contained in this set.
J
Hence both topologies are equivalent (cf. Lemma B.2). ]

In general, a locally convex vector space X which has a separated count-
able family of seminorms is called a Fréchet space if it is complete with
respect to the metric (5.16). Note that the metric (5.16) is translation
invariant

Example. The continuous functions C'(R) together with local uniform con-
vergence are a Fréchet space. A countable family of seminorms is for example

Ifll; = sup [f(x),  jeN (5.18)
|z|<j

Then f, — f if and only if ||fz — f||; — 0 for all j € N and it follows that
C(R) is complete. o

Example. The space C*°(R™) together with the seminorms
£k =D sup [daf(x)l,  jEN, k€N, (5.19)
la|<k || <4
is a Fréchet space.

Note that 9, : C*(R™) — C°°(R™) is continuous. Indeed by Corol-
lary 5.16 it suffices to observe that ||0a f||;x < ||f

Jk+al- ¢
Example. The Schwartz space

SR™) ={f € CZR™)|sup [27(05])(2)] < 00, Vo, B NG} (5.20)
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together with the seminorms

Gas(f) = 20 /) (@)llces a0 € Ng". (5.21)

To see completeness note that a Cauchy sequence f, is in particular a
Cauchy sequence in C*°(R™). Hence there is a limit f € C*°(R™) such
that all derivatives converge uniformly. Moreover, since Cauchy sequences
are bounded [|2%(03fn)(2)|lc0 < Cq,p we obtain ||2*(9af)(x)||cc < Cq,p and
thus f € S(R™).

Again 0, : S(R™) — S(R™) is continuous since ¢o 3(0 f) < ga,g+~(f)-

The dual space S*(R™) is known as the space of tempered distribu-
tions. o

Example. The space of all entire functions f(z) (i.e. functions which are
holomorphic on all of C) together with the seminorms || f||; = supy.|<; [f(2)],
J € N, is a Fréchet space. Completeness follows from the Weierstra3 con-
vergence theorem which states that a limit of holomorphic functions which
is uniform on every compact subset is again holomorphic. o

Example. In all of the previous examples the topology cannot be generated
by a norm. For example, if ¢ is a norm for C'(R), then Lemma 5.15 that there
is some index j such that ¢(f) < C|/f|l;. Now choose a nonzero function
which vanishes on [—7, j] to get a contradiction. o

There is another useful criterion when the topology can be described by a
single norm. To this end we call a set B C X bounded if sup,¢p ¢o(z) < 00
for every a. By Corollary 5.16 this will then be true for any continuous
seminorm on X.

Theorem 5.18 (Kolmogorov). A locally convezr vector space can be gen-
erated from a single seminorm if and only if it contains a bounded open
set.

Proof. In a Banach space every open ball is bounded and hence only the
converse direction is nontrivial. So let U be a bounded open set. By shifting
and decreasing U if necessary we can assume U to be an absolutely convex
open neighborhood of 0 and consider the associated Minkowski functional
q = pu. Then since U = {z|q(z) < 1} and sup,c;r ¢a(x) = Co < 00 we infer
do(x) < Chq(z) (Problem 5.13) and thus the single seminorm ¢ generates
the topology. ([

Finally, we mention that, since the Baire category theorem holds for ar-
bitrary complete metric spaces, the open mapping theorem (Theorem 4.5),
the inverse mapping theorem (Theorem 4.6) and the closed graph (Theo-
rem 4.7) hold for Fréchet spaces without modifications. In fact, they are
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formulated such that it suffices to replace Banach by Fréchet in these theo-
rems as well as their proofs (concerning the proof of Theorem 4.5 take into
account Problems 5.12 and 5.19).

Problem 5.12. In a topological vector space every neighborhood U of 0 is
absorbing.

Problem 5.13. Let p, q be two seminorms. Then p(x) < Cq(x) if and only
if (x) < 1 implies p(z) < C.

Problem 5.14. Let X be a vector space. We call a set U balanced if
aU C U for every |a| < 1. Show that a set is balanced and convez if and
only if it is absolutely convex.

Problem 5.15. The intersection of arbitrary absolutely convez/balanced
sets is again absolutely convex/balanced conver. Hence we can define the
absolutely convex/balanced hull of a set U as the smallest absolutely con-
vex/balanced set containing U, that is, the intersection of all absolutely con-
vex/balanced sets containing U. Show that the absolutely convex hull is given

by

ahull(U) := {>_Nzjln €N, z; € U, Y || <1}
j=1 J=1
and the balanced hull by

bhull(U) := {az|z € U, |af < 1}.
Show that ahull(U) = hull(bhull(U)).

Problem 5.16. In a topological vector space every convex open neighborhood
U of zero contains an absolutely convex open neighborhood of zero. (Hint: By
continuity of the scalar multiplication U contains a set of the form BE(0)-V,
where V' is an open neighborhood of zero.)

Problem 5.17. Let X be a vector space. Show that the Minkowski func-
tional of a balanced, convex, absorbing set is a seminorm.

Problem 5.18. If a locally convex space is Hausdorff then any correspond-
ing family of seminorms is separated.

Problem 5.19. Suppose X is a complete vector space with a translation
invariant metric d. Show that 372, d(0,z;) < oo implies that

oo n
r: = lim €T

> @i = lim >

Jj=1 Jj=1

exists and
oo

d(0, Z $j) < Z d(0, xj)
j=1

Jj=1
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in this case (compare also Problem 1.4).

Problem 5.20. Instead of (5.16) one frequently uses

1 L 1 Qn($_y)
0= 2 o T e

Show that this metric generates the same topology.

Consider the Fréchet space C(R) with gn(f) = sup[_,, n) [f|. Show that
the metric balls with respect to d are not convex.

Problem 5.21. Suppose X is a metric vector space. Then balls are convex
if and only if the metric is quasiconvex:

d(Az + (1= Ay, z) < max{d(z,2),d(y,2)},  Ae(0,1).
(See also Problem 4.36.)

Problem 5.22. Consider (’(N) for p € (0,1) — compare Problem 1.14.
Show that ||.||, is not convex. Show that every convex open set is unbounded.
Conclude that it is not a locally convex vector space. (Hint: Consider Br(0).
Then for r < R all vectors which have one entry equal to r and all other
entries zero are in this ball. By taking convex combinations all vectors which
have n entries equal to r/n are in the convex hull. The quasinorm of such
a vector is n*/P=1r.)

Problem 5.23. Show that C2°(R™) is dense in S(R™).

Problem 5.24. Let X be a topological vector space and M o closed subspace.
Show that the quotient space X/M is again a topological vector space and
that m : X — X/M is linear, continuous, and open. Show that points in
X/M are closed.

5.5. Uniformly convex spaces

In a Banach space X, the unit ball is convex by the triangle inequality.
Moreover, X is called strictly convex if the unit ball is a strictly convex
set, that is, if for any two points on the unit sphere their average is inside
the unit ball. See Problem 1.12 for some equivalent definitions. This is
illustrated in Figure 1 which shows that in R? this is only true for 1 < p < oco.

Example. By Problem 1.12 it follows that ¢P(N) is strictly convex for
1 < p < oo but not for p =1, co. o

A more qualitative notion is to require that if two unit vectors x, y satisfy
|[z—y| > e for some € > 0, then there is some § > 0 such that ||ZF|| < 1—4.
In this case one calls X uniformly convex and

3(e) =it {1~ 22| Jall = Iyl = 1, oyl >}, 0<e<2 (5:22)
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is called the modulus of convexity. Of course every uniformly convex space is
strictly convex. In finite dimensions the converse is also true (Problem 5.27).

Note that ¢ is nondecreasing and
_ €
=5 = e - 254 2 1 - 5

shows 0 < 0(¢) < §. Moreover, 6(2) = 1 implies X strictly convex. In fact
in this case 1 =§(2) < 1—||Z3¥|| < 1for 2 < ||z —y|| < 2. Thatis, z = —y
whenever [z —yl| = 2 = [z + [ly[|

Example. Every Hilbert space is uniformly convex with modulus of con-
vexity () =1—4/1 — % (Problem 5.25). o

Example. Consider C[0,1] with the norm

1 -1
@] := [lz[loc + [[#[|2 = max [2(t)] + </ !w(t)lzdt) :
tel0,1] 0

Note that by [|z||2 < ||z||ec this norm is equivalent to the usual one: ||z||oc <
|z]] < 2||z]lcc. While with the usual norm ||.||» this space is not strictly
convex, it is with the new one. To see this we use (i) from Problem 1.12.
Then if ||z +y|| = [|=[| + [[y|| we must have both [z + ylloo = [|#[lcc + [l
and ||z + yll2 = ||z]|2 + ||ly|l2- Hence strict convexity of ||.||2 implies strict
convexity of [|.].

Note however, that [.|| is not uniformly convex. In fact, since by the
Milman—Pettis theorem below, every uniformly convex space is reflexive,
there cannot be an equivalent norm on C[0, 1] which is uniformly convex
(cf. the example on page 117). o

Example. It can be shown that ¢(N) is uniformly convex for 1 < p < oo
(see Theorem 10.11). o

Equivalently, uniform convexity implies that if the average of two unit
vectors is close to the boundary, then they must be close to e