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2.9 Expectation Values          

If a system is in state 𝜑 which is not an eigen state of a such operator 𝐴̂, then it 

is not possible to say with certainty what measured value will be found for A. 

Therefore, one has to use the average value 〈𝐴〉 = 𝐴̅ which called in Q.M. 

expectation value of A. however, it is defined mathematically as; 

                                                 …………(2-17) 

For a normalized wave function 𝜑;  

 

The probability that a measurement leads to the eigen value for such a case is defined 

as follows; 

     𝑝𝑛 =
|∫𝜓𝑛

∗𝜙𝑑𝜏|2

|∫𝜙∗𝜙𝑑𝜏|
         ………… (2-18) 

For a normalized wave function 𝜑; 

 
          𝑝𝑛 = |∫𝜓𝑛

∗𝜙𝑑𝜏|2 

 

Remark: The integration in the last mathematical formula is called overlap integral 

which is a number, that has a value in the range 0 (lowest value) and 1 (maximum 

value). For the lowest value, the two functions are exactly different while for the 

maximum value the functions are exactly similar.  

 

We have learned that for each operator 𝐴̂ there are a set of eigen values an 

(a1,a2,a3,…) with corresponding eigen wave functions 𝜓𝑛 ( , , .....). The not 

eigen function 𝜙  can be expanded in terms 𝜓𝑛as follows; 

     

  ………(2-19) 
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Equation (2-19) called the completeness or linear superposition principle. Since the 

total probability is unity we can prove the following important relation , 

as follows; 

 

              

 

 

  

 

                                                                     …………(2-20) 

Each term in the last equation (|𝑐𝑛|
2) represent the probability that the system being 

in state n. Therefore, the physical meaning of this equation is that the total 

probability (1) is equal to the partial probabilities (|𝑐1|
2 + |𝑐2|

2 + |𝑐3|
2 +⋯) for the 

system to be in all of the different states.   

On the other hand, each term may have regarded to the probability that a 

measurement for an observable A leads to the eigen value an, and can be proved as 

follows; 

𝑝𝑛 = |∫𝜓𝑛
∗𝜙𝑑𝜏|2  

 

 

                             

                                                                   …………(2-21) 

Actually, we can prove that the probable results on measure the observable A for 

a system describe by the non-eigen function 𝜑, is given by; as 

follows;   
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                                                   …………(2-22) 

This means that the expectation value of  is the sum of each eigen value  times 

the corresponding partial probability   of the system to be in that state .  

 

2.11 Variance 

The variance defined as the deviation in the measurement result from its expectation 

value.  It is defining by the root-mean-square deviation as follows; 

                                          ……………    (2-23a)  

The last definition can be formulating to another for as follows;  

  

  

  

  

  

                                   ……………    (2-23b)  
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H.W: Show that, when a system is describe by an eigen function 𝜓𝑛, the probability 

that a measurement for observable A yields the value an is (1). Find the expectation 

value of A in this case. Calculate the variance in A.  

 

2.12 Equation of motion and constant of motion 

When a wave function  is an eigen function for the operator  with eigen 

value a. Then all measurements process for the observable A leads to the eigen value 

a. i.e. . In this case the observable  is called constant of motion (or 

conserved), which means that A is time independent quantity. i.e. . Let 

us try to prove this fact.  

 

                         ………….. (a) 

                                                          …………. (b) 

Substitute of equation (b) in equation (a) yields; 

 

According to the definition of Hermitian operator we obtain; 

 

 

In Q.M we define that; 

                                                                             
     

                                                                          …………….. (2-24) 
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Equation (25) is called the equation of motion, which imply that an observable A is 

a constant of motion (conserved) when its operator being commute with the 

Hamiltonian operator. 

 

Example: Show that, the linear momentum  of a free particle is a constant of 

motion. 

Solution: 

   

For a free particle  , thus; 

 

 

             

               

 

 

   

Since,   thus,     

 

Example: Prove the Ehrenfest theorems that given by; a)    and b) 

. 

Proof (a): 
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                                        ………………. (a) 

The T.D.S.E. given by; , So, divided by   yields; 

                                   …………….... (b) 

The complex conjugate of (a) leads to; 

                             ……………… (c) 

Substitute of equations (b and c) in (a) yields;    

           …. .…..…….. (d) 

Using Greens Theorem;   

  

The boundary condition imposed on   make the surface integral equal to zero. 

Where, the probability of finding the particle outside the volume is equal to zero i.e. 

the wave function   is equal to zero on the surface. 

    

Therefore, equation (d) becomes; 

          ……………… (e) 

Since;   

                                            ……………. (f) 

Substitute of equation (f) in (e) we get; 
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Proof (b): 

 

 

                      ……………. (a) 

Regarding the T.D.S.E.: , and dividing by: yield;   

                                                          ………….... (b) 

The complex conjugate leads to;  

                                                   …….……….. (c) 

The substitution of (b) and (c) in (a) leads to; 

  

 

 

Apply Greens theorem on the second term we get; 
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However, the integration of the first term is;  
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