
Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

9 | P a g e

Lecture 2: Structures

We’ve seen variables of simple data types, such as float, char, and int. Variables of

such types represent one item of information: a height, an amount, a count, and so

on. But just as groceries are organized into bags, employees into departments, and

words into sentences, it’s often convenient to organize simple variables into more

complex entities. The C++ construction called the structure is one way to do this.

The first part of this chapter is devoted to structures. In the second part we’ll look

at a related topic: enumerations.

Structures

A structure is a collection of simple variables. The variables in a structure can be

of different types: Some can be int, some can be float, and so on. (This is unlike

the array, which we’ll meet later, in which all the variables must be the same type.)

The data items in a structure are called the members of the structure.

In books on C programming, structures are often considered an advanced feature.

However, for C++ programmers, structures are one of the two important building

blocks in the understanding of objects and classes. In fact, the syntax of a structure

is almost identical to that of a class. A structure (as typically used) is a collection

of data, while a class is a collection of both data and functions. So by learning

about structures we’ll be paving the way for an understanding of classes and

objects. Structures in C++ (and C) serve a similar purpose to records in some other

languages such as Pascal.

A Simple Structure

Let’s start off with a structure that contains three variables: two integers and a

floating-point number. This structure represents an item in a widget company’s

parts inventory. The structure is a kind of blueprint specifying what information is

necessary for a single part. The company makes several kinds of widgets, so the

widget model number is the first member of the structure. The number of the part

itself is the next member, and the final member is the part’s cost.

The program PARTS defines the structure part, defines a structure variable of that

type called part1, assigns values to its members, and then displays these values.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

10 | P a g e

The program’s output looks like this:

Model 6244, part 373, costs $217.55

The PARTS program has three main aspects: defining the structure, defining a

structure variable, and accessing the members of the structure. Let’s look at each of

these.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

11 | P a g e

Defining the Structure

The structure definition tells how the structure is organized: It specifies what

members the structure will have. Here it is:

Syntax of the Structure Definition

The keyword struct introduces the structure definition. Next comes the structure

name or tag, which is part. The declarations of the structure members—

modelnumber, partnumber, and cost—are enclosed in braces. A semicolon follows

the closing brace, terminating the entire structure.

Note that this use of the semicolon for structures is unlike the usage for a block of

code. As we’ve seen, blocks of code, which are used in loops, decisions, and

functions, are also delimited by braces. However, they don’t use a semicolon

following the final brace. Figure 1 shows the syntax of the structure declaration.

FIGURE 1

Syntax of the structure definition.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

12 | P a g e

Use of the Structure Definition

The structure definition serves only as a blueprint for the creation of variables of

type part. It does not itself create any structure variables; that is, it does not set

aside any space in memory or even name any variables. This is unlike the

definition of a simple variable, which does set aside memory.

 A structure definition is merely a specification for how structure variables

will look when they are defined. This is shown in Figure 2.

As we see an object has the same relationship to its class that a variable of a

structure type has to the structure definition.

Defining a Structure Variable

The first statement in main()

part part1;

defines a variable, called part1, of type structure part. This definition reserves

space in memory for part1. How much space? Enough to hold all the members of

part1—namely modelnumber, partnumber, and cost. In this case there will be 4

bytes for each of the two ints (assuming a 32-bit system), and 4 bytes for the float.

Figure 3 shows how part1 looks in memory.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

13 | P a g e

FIGURE 2

Structures and structure variables.

In some ways we can think of the part structure as the specification for a new data

type. This will become more clear as we go along, but notice that the format for

defining a structure variable is the same as that for defining a basic built-in data

type such as int:

part part1;
int var1;

Note: (In C you need to include the keyword struct in structure definitions, as in

struct part part1;. In C++ the keyword is not necessary.)

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

14 | P a g e

FIGURE 3

Structure members in memory.

Accessing Structure Members

Once a structure variable has been defined, its members can be accessed using

something called the dot operator. Here’s how the first member is given a value:
part1.modelnumber = 6244;

The structure member is written in three parts: the name of the structure variable

(part1); the dot operator, which consists of a period (.); and the member name

(modelnumber). This means “the modelnumber member of part1.” The real name of

the dot operator is member access operator.

Remember that the first component of an expression involving the dot operator is

the name of the specific structure variable (part1 in this case), not the name of the

structure definition (part). The variable name must be used to distinguish one

variable from another, such as part1, part2, and so on, as shown in Figure 4.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

15 | P a g e

FIGURE 4

The dot operator.

Structure members are treated just like other variables. In the statement

part1.modelnumber =6244;, the member is given the value 6244 using a normal

assignment operator. The program also shows members used in cout statements

such as
cout << “\nModel “ << part1.modelnumber;

These statements output the values of the structure members.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

16 | P a g e

Other Structure Features

Structures are surprisingly versatile. Let’s look at some additional features of

structure syntax and usage.

Initializing Structure Members

The next example shows how structure members can be initialized when the

structure variable is defined. It also demonstrates that you can have more than one

variable of a given structure type.

Here’s the listing for PARTINIT:

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

17 | P a g e

This program defines two variables of type part: part1 and part2. It initializes part1,

prints out the values of its members, assigns part1 to part2, and prints out its

members.

Here’s the output:
Model 6244, part 373, costs $217.55
Model 6244, part 373, costs $217.55

Not surprisingly, the same output is repeated since one variable is made equal to

the other.

The part1 structure variable’s members are initialized when the variable is

defined:
part part1 = { 6244, 373, 217.55 };

The values to be assigned to the structure members are surrounded by braces and

separated by commas. The first value in the list is assigned to the first member, the

second to the second member, and so on.

Structure Variables in Assignment Statements

As can be seen in PARTINIT, one structure variable can be assigned to another:
part2 = part1;

The value of each member of part1 is assigned to the corresponding member of

part2. Since a large structure can have dozens of members, such an assignment

statement can require the computer to do a considerable amount of work.

Note that one structure variable can be assigned to another only when they are of

the same structure type. If you try to assign a variable of one structure type to a

variable of another type, the compiler will complain.

A Measurement Example

Let’s see how a structure can be used to group a different kind of information. If

you’ve ever looked at an architectural drawing, you know that (at least in the

United States) distances are measured in feet and inches. (As you probably know,

there are 12 inches in a foot.) The length of a living room, for example, might be

given as 15’–8”, meaning 15 feet plus 8 inches.

The hyphen isn’t a negative sign; it merely separates the feet from the inches. This

is part of the English system of measurement. Figure 5 shows typical length

measurements in the English system.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

18 | P a g e

Suppose you want to create a drawing or architectural program that uses the

English system. It will be convenient to store distances as two numbers,

representing feet and inches. The next example, ENGLSTRC, gives an idea of how

this could be done using a structure. This program will show how two

measurements of type Distance can be added together.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

19 | P a g e

FIGURE 5

Measurements in the English system.

Here the structure Distance has two members: feet and inches. The inches variable

may have a fractional part, so we’ll use type float for it. Feet are always integers,

so we’ll use type int for them.

We define two such distances, d1 and d3, without initializing them, while we

initialize another, d2, to 11'–6.25''. The program asks the user to enter a distance in

feet and inches, and assigns this distance to d1. (The inches value should be

smaller than 12.0.) It then adds the distance d1 to d2, obtaining the total distance

d3. Finally the program displays the two initial distances and the newly calculated

total distance. Here’s some output:
Enter feet: 10
Enter inches: 6.75
10’-6.75” + 11’-6.25” = 22’-1”

Notice that we can’t add the two distances with a program statement like

d3 = d1 + d2; // can’t do this in ENGLSTRC

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

20 | P a g e

Why not? Because there is no routine built into C++ that knows how to add

variables of type Distance. The + operator works with built-in types like float, but

not with types we define ourselves, like Distance. (However, one of the benefits of

using classes, as we’ll see in lecture, “Operator Overloading,” is the ability to add

and perform other operations on user defined data types.)

Structures Within Structures

You can nest structures within other structures. Here’s a variation on the

ENGLSTRC program that shows how this looks. In this program we want to create

a data structure that stores the dimensions of a typical room: its length and width.

Since we’re working with English distances, we’ll use two variables of type

Distance as the length and width variables.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

21 | P a g e

This program defines a single variable—dining—of type Room, in the line
Room dining; // variable dining of type Room

It then assigns values to the various members of this structure.

Accessing Nested Structure Members

Because one structure is nested inside another, we must apply the dot operator

twice to access the structure members.
dining.length.feet = 13;

In this statement, dining is the name of the structure variable, as before; length is

the name of a member in the outer structure (Room); and feet is the name of a

member of the inner structure (Distance). The statement means “take the feet

member of the length member of the variable dining and assign it the value 13.”

Figure 6 shows how this works.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

22 | P a g e

FIGURE 6

Dot operator and nested structures.

Once values have been assigned to members of dining, the program calculates the

floor area of the room, as shown in Figure 7.

To find the area, the program converts the length and width from variables of type

Distance to variables of type float, l, and w, representing distances in feet. The

values of l and w are found by adding the feet member of Distance to the inches

member divided by 12. The feet member is converted to type float automatically

before the addition is performed, and the result is type float. The l and w variables

are then multiplied together to obtain the area.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

23 | P a g e

FIGURE 7

Area in feet and inches.

User-Defined Type Conversions

Note that the program converts two distances of type Distance to two distances of

type float: the variables l and w. In effect it also converts the room’s area, which is

stored as a structure of type Room (which is defined as two structures of type

Distance), to a single floating-point number representing the area in square feet.

Here’s the output:

Dining room area is 135.416672 square feet

Converting a value of one type to a value of another is an important aspect of

programs that employ user-defined data types.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

24 | P a g e

Initializing Nested Structures

How do you initialize a structure variable that itself contains structures? The

following statement initializes the variable dining to the same values it is given in

the ENGLAREA program:

Room dining = { {13, 6.5}, {10, 0.0} };

Each structure of type Distance, which is embedded in Room, is initialized

separately.

Remember that this involves surrounding the values with braces and separating

them with commas. The first Distance is initialized to
{13, 6.5}

and the second to
{10, 0.0}

These two Distance values are then used to initialize the Room variable; again,

they are surrounded with braces and separated by commas.

Depth of Nesting

In theory, structures can be nested to any depth. In a program that designs

apartment buildings, you might find yourself with statements like this one:

apartment1.laundry_room.washing_machine.width.feet

Structures and Classes

We must confess to having misled you slightly on the capabilities of structures. It’s

true that structures are usually used to hold data only, and classes are used to hold

both data and functions.

However, in C++, structures can in fact hold both data and functions. (In C they

can hold only data.) The syntactical distinction between structures and classes in

C++ is minimal, so they can in theory be used almost interchangeably. But most

C++ programmers use structures as we have in this chapter, exclusively for data.

Classes are usually used to hold both data and functions, as we’ll see in lecture,

“Objects and Classes.”

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

25 | P a g e

Enumerations

As we’ve seen, structures can be looked at as a way to provide user-defined data

types. A different approach to defining your own data type is the enumeration.

This feature of C++ is less crucial than structures. You can write perfectly good

object-oriented programs in C++ without knowing anything about enumerations.

However, they are very much in the spirit of C++, in that, by allowing you to

define your own data types, they can simplify and clarify your programming.

Days of the Week

Enumerated types work when you know in advance a finite (usually short) list of

values that a data type can take on. Here’s an example program, DAYENUM, that

uses an enumeration for the days of the week:

An enum declaration defines the set of all names that will be permissible values of

the type.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

26 | P a g e

These permissible values are called enumerators. The enum type days_of_week

has seven enumerators: Sun, Mon, Tue, and so on, up to Sat. Figure 8 shows the

syntax of an enum declaration.

FIGURE 8

Syntax of enum specifier.

An enumeration is a list of all possible values. This is unlike the specification of an

int, for example, which is given in terms of a range of values. In an enum you must

give a specific name to every possible value. Figure 9 shows the difference

between an int and an enum.

Once you’ve declared the enum type days_of_week as shown, you can define

variables of this type. DAYENUM has two such variables, day1 and day2, defined

in the statement

days_of_week day1, day2;

(In C you must use the keyword enum before the type name, as in enum

days_of_week day1, day2;

 In C++ this isn’t necessary.)

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

27 | P a g e

FIGURE 9

Usage of ints and enums.

Variables of an enumerated type, like day1 and day2, can be given any of the

values listed in the enum declaration. In the example we give them the values Mon

and Thu. You can’t use values that weren’t listed in the declaration. Such

statements as
day1 = halloween;

are illegal.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

28 | P a g e

You can use the standard arithmetic operators on enum types. In the program we

subtract two values. You can also use the comparison operators, as we show.

Here’s the program’s output:

Days between = 3
day1 comes before day2

The use of arithmetic and relational operators doesn’t make much sense with some

enum types. For example, if you have the declaration

enum pets { cat, dog, hamster, canary, ocelot };

then it may not be clear what expressions like dog + canary or (cat < hamster)

mean. Enumerations are treated internally as integers. This explains why you can

perform arithmetic and relational operations on them. Ordinarily the first name in

the list is given the value 0, the next name is given the value 1, and so on. In the

DAYENUM example, the values Sun through Sat are stored as the integer values

0–6.

Arithmetic operations on enum types take place on the integer values. However,

although the compiler knows that your enum variables are really integers, you must

be careful of trying to take advantage of this fact. If you say
day1 = 5;

the compiler will issue a warning (although it will compile). It’s better to forget—

whenever possible—that enums are really integers.

One Thing or Another

Our next example counts the words in a phrase typed in by the user. Unlike the

earlier CHCOUNT example, however, it doesn’t simply count spaces to determine

the number of words. Instead it counts the places where a string of nonspace

characters changes to a space, as shown in Figure 10.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

29 | P a g e

FIGURE 10

Operation of the WDCOUNT program.

This way you don’t get a false count if you type multiple spaces between words. (It

still doesn’t handle tabs and other whitespace characters.) Here’s the listing for

WDCOUNT: This example shows an enumeration with only two enumerators.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

30 | P a g e

The program cycles in a do loop, reading characters from the keyboard. It passes

over (nonspace) characters until it finds a space. At this point it counts a word.

Then it passes over spaces until it finds a character, and again counts characters

until it finds a space. Doing this requires the program to remember whether it’s in

the middle of a word, or in the middle of a string of spaces. It remembers this with

the enum variable isWord. This variable is defined to be of type itsaWord. This

type is specified in the statement
enum itsaWord { NO, YES };

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

31 | P a g e

Variables of type itsaWord have only two possible values: NO and YES. Notice

that the list starts with NO, so this value will be given the value 0—the value that

indicates false. (We could also use a variable of type bool for this purpose.)

The isWord variable is set to NO when the program starts. When the program

encounters the first nonspace character, it sets isWord to YES to indicate that it’s in

the middle of a word. It keeps this value until the next space is found, at which

point it’s set back to NO. Behind the scenes, NO has the value 0 and YES has the

value 1, but we avoid making use of this fact. We could have used if(isWord)

instead of if(isWord == YES), and if(!isWord) instead of if(isWord == NO), but

this is not good style.

Note also that we need an extra set of braces around the second if statement in the

program, so that the else will match the first if. Another approach to a yes/no

situation such as that in WDCOUNT is to use a variable of type bool. This may be

a little more straightforward, depending on the situation.

Other Examples

Here are some other examples of enumerated data declarations, to give you a

feeling for possible uses of this feature:

We’ll see other examples in future programs.

