
Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

1 | P a g e

Lecture 1: why need OOP

This lecture teaches you how to program in C++, a computer language that

supports objectoriented programming (OOP). Why do we need OOP? What does it

do that traditional languages such as C, Pascal, and BASIC don’t? What are the

principles behind OOP? Two key concepts in OOP are objects and classes. What

do these terms mean? What is the relationship between C++ and the older C

language?

Why Do We Need Object-Oriented Programming?

Object-oriented programming was developed because limitations were discovered

in earlier approaches to programming. To appreciate what OOP does, we need to

understand what these limitations are and how they arose from traditional

programming languages.

Procedural Languages

C, Pascal, FORTRAN, and similar languages are procedural languages. That is,

each statement in the language tells the computer to do something: Get some input,

add these numbers, divide by six, display that output. A program in a procedural

language is a list of instructions.

For very small programs, no other organizing principle (often called a paradigm) is

needed. The programmer creates the list of instructions, and the computer carries

them out.

The idea of breaking a program into functions can be further extended by grouping

a number of functions together into a larger entity called a module (which is often a

file), but the principle is similar: a grouping of components that execute lists of

instructions.

Dividing a program into functions and modules is one of the cornerstones of

structured programming.

Problems with Structured Programming

As programs grow ever larger and more complex, even the structured

programming approach begins to show signs of strain. You may have heard about,

or been involved in, horror stories of program development. The project is too

complex, the schedule slips, more programmers are added, complexity increases,

costs skyrocket, the schedule slips further, and disaster ensues.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

2 | P a g e

Analyzing the reasons for these failures reveals that there are weaknesses in the

procedural paradigm itself. No matter how well the structured programming

approach is implemented, large programs become excessively complex.

What are the reasons for these problems with procedural languages? There are two

related problems. First, functions have unrestricted access to global data. Second,

unrelated functions and data, the basis of the procedural paradigm, provide a poor

model of the real world.

1.Unrestricted Access

There are two kinds of data. Local data is hidden inside a function, and is used

exclusively by the function. However, when two or more functions must access the

same data—and this is true of the most important data in a program—then the data

must be made global. Global data can be accessed by any function in the program.

The arrangement of local and global variables in a procedural program is shown in

Figure 1.

FIGURE 1Global and local variables

In a large program, there are many functions and many global data items. The

problem with the procedural paradigm is that this leads to an even larger number of

potential connections between functions and data, as shown in Figure 2.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

3 | P a g e

FIGURE 2 The procedural paradigm

2.unrelated functions and data

The second—and more important—problem with the procedural paradigm is that

its arrangement of separate data and functions does a poor job of modeling things

in the real world. In the physical world we deal with objects such as people and

cars. Such objects aren’t like data and they aren’t like functions. Complex real-

world objects have both attributes and behavior.

Attributes in the real world are equivalent to data in a program: they have a certain

specific values, such as blue (for eye color) or four (for the number of doors).

Behavior is like a function: you call a function to do something and it does it.

So neither data nor functions, by themselves, model real-world objects effectively.

The Object-Oriented Approach

The fundamental idea behind object-oriented languages is to combine into a single

unit both data and the functions that operate on that data. Such a unit is called an

object.

An object’s functions, called member functions in C++, typically provide the only

way to access its data. The data is hidden, so it is safe from accidental alteration.

Data and its functions are said to be encapsulated into a single entity. Data

encapsulation and data hiding are key terms in the description of object-oriented

languages.

A C++ program typically consists of a number of objects, which communicate with

each other

This large number of

connections causes

problems in several ways.

First, it makes a program’s

structure difficult to

conceptualize. Second, it

makes the program

difficult to modify.

A change made in a global

data item may necessitate

rewriting all the functions

that access that item.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

4 | P a g e

by calling one another’s member functions. The organization of a C++ program is

shown in Figure 3.

FIGURE 3 The object-oriented paradigm

Characteristics of Object-Oriented Languages

Let’s briefly examine a few of the major elements of object-oriented languages in

general, and C++ in particular.

Objects

When you approach a programming problem in an object-oriented language, you

no longer ask how the problem will be divided into functions, but how it will be

divided into objects. Thinking in terms of objects, rather than functions, has a

surprisingly helpful effect on how easily programs can be designed. This results

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

5 | P a g e

from the close match between objects in the programming sense and objects in the

real world.

The match between programming objects and real-world objects is the happy result

of combining data and functions: The resulting objects offer a revolution in

program design. No such close match between programming constructs and the

items being modeled exists in a procedural language.

What kinds of things become objects in object-oriented programs? here are some

typical categories to start you thinking:

• Physical objects

Automobiles in a traffic-flow simulation

Electrical components in a circuit-design program

Aircraft in an air traffic control system

• Elements of the computer-user environment

Windows, Menus, or Graphics objects (lines, rectangles, circles)

• Data-storage constructs

Customized arrays, Stacks, Linked lists, or Binary trees

• Human entities

Employees, Students, Customers, or Sales people

• Collections of data

An inventory, A personnel file, or A dictionary

• User-defined data types

Time, Angles, or Complex numbers

• Components in computer games

Cars in an auto race

Positions in a board game (chess, checkers)

Animals in an ecological simulation

Opponents and friends in adventure games

Classes

In OOP we say that objects are members of classes. What does this mean? Almost

all computer languages have built-in data types. For instance, a data type int,

meaning integer, is predefined in C++. You can declare as many variables of type

int as you need in your program:

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

6 | P a g e

int day;
int count;
int divisor;
int answer;

In a similar way, you can define many objects of the same class, as shown in

Figure 1.5. A class serves as a plan, or blueprint

FIGURE 5 A class and its objects

Inheritance

The idea of classes leads to the idea of inheritance. In our daily lives, we use the

concept of classes divided into subclasses. The principle in this sort of division is

that each subclass shares common characteristics with the class from which it’s

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

7 | P a g e

derived. In addition to the characteristics shared with other members of the class,

each subclass also has its own particular characteristics. This idea is shown in

Figure 6.

In a similar way, an OOP class can become a parent of several subclasses. In C++

the original class is called the base class; other classes can be defined that share its

characteristics, but add their own as well. These are called derived classes.

FIGURE 6 Inheritance.

Reusability

Once a class has been written, created, and debugged, it can be distributed to other

programmers for use in their own programs. This is called reusability. It is similar

to the way a library of functions in a procedural language can be incorporated into

different programs.

Object Oriented Programming (OOP)- Assist. Prof. Dr. Rana Saad Mohammed
Computer Science Department- Education College- 2nd stage – Morning study

Mustansiriyah
University

8 | P a g e

However, in OOP, the concept of inheritance provides an important extension to

the idea of reusability. A programmer can take an existing class and, without

modifying it, add additional features and capabilities to it. This is done by deriving

a new class from the existing one. The new class will inherit the capabilities of the

old one, but is free to add new features of its own.

Creating New Data Types

One of the benefits of objects is that they give the programmer a convenient way to

construct new data types. Suppose you work with two-dimensional positions (such

as x and y coordinates) in your program. You would like to express operations on

these positional values with normal arithmetic operations, such as

position1 = position2 + origin

where the variables position1, position2, and origin each represent a pair of

independent numerical quantities. By creating a class that incorporates these two

values, and declaring position1, position2, and origin to be objects of this class,

we can, in effect, create a new data type.

Polymorphism and Overloading

Note that the = (equal) and + (plus) operators, used in the position arithmetic

shown above, don’t act the same way they do in operations on built-in types such

as int.

Using operators or functions in different ways, depending on what they are

operating on, is called polymorphism (one thing with several distinct forms). When

an existing operator, such as + or =, is given the capability to operate on a new data

type, it is said to be overloaded. Overloading is a kind of polymorphism; it is also

an important feature of OOP.

