R CHAPTER THIRTEEN —

Multiprocessors

IN THIS CHAPTER

13-1 Characteristics of Multiprocessors

13.2 Interconnection Structures

13-3 Interprocessor Arbitration

13-4 Interprocessor Cc ication and Synchronization
13.5 Cache Coherence

13-1 Characteristics of Multiprocessors

A multiprocessor system is an interconnection of two or more CPUs with
memory and input-output equipment. The term “processor” in multiprocessor
can mean either a central processing unit (CPU) or an input-output processor
(IOP). However, a system with a single CPU and one or more IOPs is usually
not included in the definition of a multiprocessor system unless the IOP has
computational facilities comparable toa CPU. As it is most commonly defined,
a multiprocessor system implies the existence of multiple CPUs, although
usually there will be one or more IOPs as well. As mentioned in Sec. 9-1,
multiprocessors are classified as multiple instruction stream, multiple data
stream (MIMD) systems.

There are some similarities between multiprocessor and multicomputer
systems since both support concurrent operations. However, there exists an
important distinction between a system with multiple computers and a system
with multiple processors. Computers are interconnected with each other by
means of communication lines to form a computer network. The network consists
of several autonomous computers that may or may not communicate with each
other. A multiprocessor system is controlled by one operating system that
provides interaction between processors and all the components of the system
cooperate in the solution of a problem.

489

490 CHAPTER THIRTEEN Multiprocessors

microprocessor

VLSI

Although some large-scale computers include two or more CPUs in their
overall system, it is the emergence of the microprocessor that has been the
major motivation for multiprocessor systems. The fact that microprocessors
take very little physical space and are very inexpensive brings about the
feasibility of interconnecting a large number of microprocessors into one com-
posite system. Very-large-scale integrated circuit technology has reduced the
cost of computer components to such a low level that the concept of applying
multiple processors to meet system performance requirements has become an
attractive design possibility.

Multiprocessing improves the reliability of the system so that a failure or
error in one part has a limited effect on the rest of the system. If a fault causes
one processor to fail, a second processor can be assigned to perform the
functions of the disabled processor. The system as a whole can continue to
function correctly with perhaps some loss in efficiency.

The benefit derived from a multiprocessor organization is an improved
system performance. The system derives its high performance from the fact
that computations can proceed in parallel in one of two ways.

1. Multiple independent jobs can be made to operate in parallel.
2. A single job can be partitioned into multiple parallel tasks.

An overall function can be partitioned into a number of tasks that each
processor can handle individually. System tasks may be allocated to special-
purpose processors whose design is optimized to perform certain types of
processing efficiently. An example is a computer system where one processor
performs the computations for an industrial process control while others
monitor and control the various parameters, such as temperature and flow
rate. Another example is a computer where one processor performs high-
speed floating-point mathematical computations and another takes care of
routine data-processing tasks.

Multiprocessing can improve performance by decomposing a program
into parallel executable tasks. This can be achieved in one of two ways. The user
can explicitly declare that certain tasks of the program be executed in parallel.
This must be done prior to loading the program by specifying the parallel
executable segments. Most multiprocessor manufacturers provide an operat-
ing system with programming language constructs suitable for specifying
parallel processing. The other, more efficient way is to provide a compiler with
multiprocessor software that can automatically detect parallelism in a user’s
program. The compiler checks for data dependency in the program. If a program
depends on data generated in another part, the part yielding the needed data
must be executed first. However, two parts of a program that do not use data
generated by each can run concurrently. The parallelizing compiler checks the
entire program to detect any possible data dependencies. These that have no
data dependency are then considered for concurrent scheduling on different
processors.

tightly coupled

loosely coupled

SECTION 13-2 Interconnection Structures 491

Multiprocessors are classified by the way their memory is organized. A
multiprocessor system with common shared memory is classified as a shared-
memory or tightly coupled multiprocessor. This does not preclude each processor
from having its own local memory. In fact, most commercial tightly coupled
multiprocessors provide a cache memory with each CPU. In addition, there is
a global common memory that all CPUs can access. Information can therefore
be shared among the CPUs by placing it in the common global memory.

An alternative model of microprocessor is the distributed-memory or loosely
coupled system. Each processor element in a loosely coupled system has its own
private local memory. The processors are tied together by a switching scheme
designed to route information from one processor to another through a mes-
sage-passing scheme. The processors relay program and data to other proces-
sors in packets. A packet consists of an address, the data content, and some
error detection code. The packets are addressed to a specific processor or taken
by the first available processor, depending on the communication system used.
Loosely coupled systems are most efficient when the interaction between tasks
is minimal, whereas tightly coupled systems can tolerate a higher degree of
interaction between tasks.

13-2 Interconnection Structures

The components that form a multiprocessor system are CPUs, IOPs connected
to input-output devices, and a memory unit that may be partitioned into a
number of separate modules. The interconnection between the components
can have different physical configurations, depending on the number of trans-
fer paths that are available between the processors and memory in a shared
memory system or among the processing elements in a loosely coupled sys-
tem. There are several physical forms available for establishing an interconnec-
tion network. Some of these schemes are presented in this section:

. Time-shared common bus

. Multiport memory

. Crossbar switch

. Multistage switching network
. Hypercube system

Ao W N =

Time-Shared Common Bus

A common-bus multiprocessor system consists of a number of processors
connected through a common path to a memory unit. A time-shared common
bus for five processors is shown in Fig. 13-1. Only one processor can commu-
nicate with the memory or another processor at any given time. Transfer

492 CHAPTER THIRTEEN Multiprocessors

shared memory

Memory unit

CPU 1 CPU2 CPU3 IOP | 10P2

Figure 13-1 Time-shared common bus organization.

operations are conducted by the processor that is in control of the bus at the
time. Any other processor wishing to initiate a transfer must first determine
the availability status of the bus, and only after the bus becomes available can
the processor address the destination unit to initiate the transfer. A command
is issued to inform the destination unit what operation is to be performed. The
receiving unit recognizes its address in the bus and responds to the control
signals from the sender, after which the transfer is initiated. The system may
exhibit transfer conflicts since one common bus is shared by all processors.
These conflicts must be resolved by incorporating a bus controller that estab-
lishes priorities among the requesting units.

A single common-bus system is restricted to one transfer at a time. This
means that when one processor is communicating with the memory, all other
processors are either busy with internal operations or must be idle waiting for
the bus. As a consequence, the total overall transfer rate within the system is
limited by the speed of the single path. The processors in the system can be
kept busy more often through the implementation of two or more independent
buses to permit multiple simultaneous bus transfers. However, this increases
the system cost and complexity.

A more economical implementation of a dual bus structure is depicted in
Fig. 13-2. Here we have a number of local buses each connected to its own local
memory and to one or more processors. Each local bus may be connected to
a CPU, anIOP, or any combination of processors. A system bus controller links
each local bus to a common system bus. The I/O devices connected to the local
IOP, as well as the local memory, are available to the local processor. The
memory connected to the common system bus is shared by all processors. If
an IOP is connected directly to the system bus, the /O devices attached to it
may be made available to all processors. Only one processor can communicate
with the shared memory and other common resources through the system bus
at any given time. The other processors are kept busy communicating with
their local memory and I/O devices. Part of the local memory may be designed

SECTION 132 Interconnection Structures 493

Local bus
Common System :
System bus

{ 4

System Sysiem

 bos cru 10P o s
contraller memory ol
Local bus Local bus

Figure 13-2 System bus structure for multiprocessors.

as a cache memory attached to the CPU (see Sec. 12-6). In this way, the average
access time of the local memory can be made to approach the cycle time of the
CPU to which it is attached.

Multiport Memory
A multiport memory system employs separate buses between each memory
module and each CPU. This is shown in Fig. 13-3 for four CPUs and four
memory modules (MMs). Each processor bus is connected to each memory
module. A processor bus consists of the address, data, and control lines
required to communicate with memory. The memory module is said to have
four ports and each port accommodates one of the buses. The module must
have internal control logic to determine which port will have access to memory
at any given time. Memory access conflicts are resolved by assigning fixed
priorities to each memory port. The priority for memory access associated with
each processor may be established by the physical port position that its bus
occupies in each module. Thus CPU 1 will have priority over CPU 2, CPU 2
will have priority over CPU 3, and CPU 4 will have the lowest priority.
The advantage of the multiport memory organization is the high transfer
rate that can be achieved because of the multiple paths between processors and
memory. The disadvantage is that it reqg pensive y control logic
and a large number of cables and connectors. As a consequence, this intercon-

494 CHAPTER THIRTEEN Multiprocessors

Memory modules

MM 1 MM 2 MM3 MM 4

CPU 1

CPU2

CPU 3

CPU 4

Figure 13-3 Multiport memory organization.

nection structure is usually appropriate for systems with a small number of
processors.

Crossbar Switch
The crossbar switch organization consists of a number of crosspoints that are
placed at intersections between processor buses and memory module paths.
Figure 13-4 shows a crossbar switch interconnection between four CPUs and
four memory modules. The small square in each crosspoint is a switch that
determines the path from a processor to a memory module. Each switch point
has control logic to set up the transfer path between a processor and memory.
It examines the address that is placed in the bus to determine whether its
particular module is being addressed. It also resolves multiple requests for
access to the same memory module on a predetermined priority basis.
Figure 13-5 shows the functional design of a crossbar switch connected
to one memory module. The circuit consists of multiplexers that select the data,

Memory modules

MM 1 MM 2 MM 3 MM 4
cPUI] f —]
CPU2 j I 1
CPU3 {1 4?5
M I r
CPU4 L1 L I (]
Figure 13-4 Crossbar switch.
Figure 13-5 Block diagram of crossbar switch.
e
Data, address, and
control from CPU |
Data ~——
B EE—
Address Data, address, and
Memory ™ [control from CPU 2
module Read/write Multiplexers ~—
and
arbitrati
Memory logic Data, address, and
[~ [control from CPU 3
enable —————————
fe—————
Data, address, and
control from CPU 4
—

495

496 CHAPTER THIRTEEN Multiprocessors

interchange switch

address, and control from one CPU for communication with the memc
module. Priority levels are established by the arbitration logic to select one Cl
when two or more CPUs attempt to access the same memory. The multiplex
are controlled with the binary code that is generated by a priority encoc
within the arbitration logic.

A crossbar switch organization supports simultaneous transfers from
memory modules because there is a separate path associated with each mc
ule. However, the hardware required to implement the switch can becor
quite large and complex.

Multistage Switching Network

The basic component of a multistage network is a two-input, two-outp
interchange switch. As shown in Fig. 13-6, the 2 X 2 switch has two inpu
labeled A and B, and two outputs, labeled 0 and 1. There are control sign.
(not shown) associated with the switch that establish the interconnecti
between the input and output terminals. The switch has the capability
connecting input A to either of the outputs. Terminal B of the switch behat
in a similar fashion. The switch also has the capability to arbitrate betwe
conflicting requests. If inputs A and B both request the same output termin
only one of them will be connected; the other will be blocked.

Using the 2 X 2 switch as a building block, it is possible to build
multistage network to control the communication between a number of sour«
and destinations. To see how this is done, consider the binary tree shown
Fig. 13-7. The two processors P, and P, are connected through switches to eig
memory modules marked in binary from 000 through 111. The path fron

source to a destination is determined from the binary bits of the destinati

Figure 13-6 Operation of a 2 X 2 interchange switch.

A 0 A—-\.L
B L1 B —| | 1

A connected to 0 A connected to |

A — = A — 2
B—/_l_ 8 1

B connected to 0 B connected to |

omega network

SECTION 132 Interconnection Structures 497

12 010

o1

VAN

0

\'—- 100
RESTY

19 110

Y

N

Figure 13-7 Binary tree with 2 X 2 switches.

number. The first bit of the destination number determines the switch output
in the first level. The second bit specifies the output of the switch in the second
level, and the third bit specifies the output of the switch in the third level. For
example, to connect P; to memory 101, it is necessary to form a path from P,
to output 1 in the first-level switch, output 0 in the second-level switch, and
output 1in the third-level switch. It is clear that either P; or P, can be connected
to any one of the eight memories. Certain request patterns, however, cannot
be satisfied simultarieously. For example, if P, is connected to one of the
destinations 000 through 011, P, can be connected to only one of the destina-
tions 100 through 111.

Many different topologies have been proposed for multistage switching
networks to control processor-memory communication in a tightly coupled
multiprocessor system or to control the communication between the process-
ing elements in a loosely coupled system. One such topology is the omega
switching network shown in Fig. 13-8. In this configuration, there is exactly one
path from each source to any particular destination. Some request patterns,
however, cannot be connected simultaneously. For example, any two sources
cannot be connected simultaneously to destinations 000 and 001.

498 CHAPTER THIRTEEN Multiprocessors

0 — 000
1 001
2 L o010
3 1 _on
4 23 ' L 100
5 1
6 ; 110
7 1

Figure 13-8 8 x B omega switching network.

A particular request is initiated in the switching network by the source,
which sends a 3-bit pattern representing the destination number. As the binary
pattern moves through the network, each level examines a different bit to
determine the 2 x 2 switch setting. Level 1 inspects the most significant bit,
level 2 inspects the middle bit, and level 3 inspects the least significant bit.
When the request arrives on either input of the 2 x 2 switch, it is routed to the
upper output if the specified bit is 0 or to the lower output if the bit is 1.

In a tightly coupled multiprocessor system, the source is a processor and
the destination is a memory module. The first pass through the network sets
up the path. Succeeding passes are used to transfer the address into v
and then transfer the data in either direction, depending on whether the
request is a read or a write. In a loosely coupled multiprocessor system, both
the source and destination are processing elements. After the path is estab-
lished, the source processor transfers a message to the destination processor.

Hypercube Interconnection

The hypercube or binary n{ubemdupwmmmisaboselymuphd
system composed of N = 2" processors interconnected in an n

binary cube. Each processor forms a node of the cube. Although it is customary

SECTION 13-2 Interconnection Structures 499

to refer to each node as having a processor, in effect it contains not only a CPU
but also local memory and I/O interface. Each processor has direct communi-
cation paths to n other neighbor processors. These paths correspond to the
edges of the cube. There are 2" distinct n-bit binary addresses that can be
assigned to the processors. Each processor address differs from that of each
of its n neighbors by exactly one bit position.

Figure 13-9 shows the hypercube structure forn = 1, 2, and 3. A one-cube
structure has n = 1 and 2" = 2. It contains two processors interconnected by
asingle path. A two-cube structurehasn = 2and 2" = 4. It contains four nodes
interconnected as a square. A three-cube structure has eight nodes intercon-
nected as a cube. An n-cube structure has 2" nodes with a processor residing
in each node. Each node is assigned a binary address in such a way that the
addresses of two neighbors differ in exactly one bit position. For example, the
three neighbors of the node with address 100 in a three-cube structure are 000,
110, and 101. Each of these binary numbers differs from address 100 by one
bit value.

Routing messages through an n-cube structure may take from one to n
links from a source node to a destination node. For example, in a three-cube
structure, node 000 can communicate directly with node 001. It must cross at
least two links to communicate with 011 (from 000 to 001 to 011 or from 000
to 010 to 011). It is necessary to go through at least three links to communicate
from node 000 to node 111. A routing procedure can be developed by comput-
ing the exclusive-OR of the source node address with the destination node
address. The resulting binary value will have 1 bits corresponding to the axes
on which the two nodes differ. The message is then sent along any one of the
axes. For example, in a three-cube structure, a message at 010 going to 001
produces an exclusive-OR of the two addresses equal to 011. The message can
be sent along the second axis to 000 and then through the third axis to 001.

Figure 13-9 Hypercube structures for n = 1,2,3.

ol | A1 ,—_Illl

101

One-cube Two-cube Three-cube

500 CHAPTER THIRTEEN Multiprocessors

system bus

A representative of the hypercube architecture is the Intel iPSC computer
complex. It consists of 128 (n = 7) microcomputers connected through commu-
nication channels. Each node consists of a CPU, a floating-point processor,
local memory, and serial communication interface units. The individual nodes
operate independently on data stored in local memory according to resident
programs. The data and programs to each node come through a message-pass-
ing system from other nodes or from a cube manager. Application programs
are developed and compiled on the cube manager and then downloaded to the
individual nodes. Computations are distributed through the system and exe-
cuted concurrently.

13-3 Interprocessor Arbitration

Computer systems contain a number of buses at various levels to facilitate the
transfer of information between components. The CPU contains a number of
internal buses for transferring information between processor registers and
ALU. A memory bus consists of lines for transferring data, address, and
read/write information. An /O bus is used to transfer information to and from
input and output devices. A bus that connects major components in a multi-
processor system, such as CPUs, IOPs, and memory, is called a system bus. The
physical circuits of a system bus are contained in a number of identical printed
circuit boards. Each board in the system belongs to a particular module. The
board consists of circuits connected in parallel through connectors. Each pin
of each circuit connector is connected by a wire to the corresponding pin of all
other connectors in other boards. Thus any board can be plugged into a slot
in the backplane that forms the system bus.

The processors in a shared memory multiprocessor system request access
to common memory or other common resources through the system bus. If no
other processor is currently utilizing the bus, the requesting processor may be
granted access immediately. However, the requesting processor must wait if
another processor is currently utilizing the system bus. Furthermore, other
processors may request the system bus at the same time. Arbitration must then
be performed to resolve this multiple contention for the shared resources. The
arbitration logic would be part of the system bus controller placed between the
local bus and the system bus as shown in Fig. 13-2.

System Bus

A typical system bus consists of approximately 100 signal lines. These lines are
divided into three functional groups: data, address, and control. In addition,
there are power distribution lines that supply power to the components. For
example, the IEEE standard 796 multibus system has 16 data lines, 24 address
lines, 26 control lines, and 20 power lines, for a total of 86 lines.

synchronous bus

asynchronous bus

SECTION 13-3 Interprocessor Arbitration 501

The data lines provide a path for the transfer of data between processors
and common memory. The number of data lines is usually a multiple of 8, with
16 and 32 being most common. The address lines are used to identify amemory
address or any other source or destination, such as input or output ports. The
number of address lines determines the maximum possible memory capacity
in the system. For example, an address of 24 lines can access up to 2* (16 mega)
words of memory. The data and address lines are terminated with three-state
buffers (see Fig. 4-5). The address buffers are unidirectional from processor to
memory. The data lines are bidirectional (see Fig. 12-3), allowing the transfer
of data in either direction.

Data transfers over the system bus may be synchronous orasynchronous.
In a synchronous bus, each data item is transferred during a time slice known
in advance to both source and destination units. Synchronization is achieved
by driving both units from a common clock source. An alternative procedure
is to have separate clocks of approximately the same frequency in each unit.
Synchronization signals are transmitted periodically in order to keep all clocks
in the system in step with each other. In an asynchronous bus, each data item
being transferred is accompanied by handshaking control signals (see Fig. 11-9)
to indicate when the data are transferred from the source and received by the
destination.

The control lines provide signals for controlling the information transfer
between units. Timing signals indicate the validity of data and address infor-
mation. Command signals specify operations to be performed. Typical control
lines include transfer signals such as memory read and write, acknowledge of
a transfer, interrupt requests, bus control signals such as bus request and bus
grant, and signals for arbitration procedures.

Table 13-1 lists the 86 lines that are available in the IEEE standard 796
multibus. It includes 16 data lines and 24 address lines. All signals in the
multibus are active or enabled in the low-level state. The data transfer control
signals include memory read and write as well as I/O read and write. Conse-
quently, the address lines can be used to address separate memory and VO
spaces. The memory or /O responds with a transfer acknowledge signal when
the transfer is completed. Each processor attached to the multibus has up to
eight interrupt request outputs and one interrupt acknowledge input line.
They are usually applied to a priority interrupt controller similar to the one
described in Fig. 11-21. The miscellaneous control signals provide timing and
initialization capabilities. In particular, the bus lock signal is essential for
multiprocessor applications. This processor-activated signal serves to prevent
other processors from getting hold of the bus while executing a test and set
instruction. This instruction is needed for proper processor synchronization
(see Sec. 13-4). .

The six bus arbitration signals are used for interprocessor arbitration.
These signals will be explained later after a discussion of the serial and parallel
arbitration procedures.

502

CHAPTER THIRTEEN Multiprocessors

TABLE 13-1 IEEE Standard 796 Multibus Signals

Signal name

Data and address
Data lines (16 lines) DATA(-DATA15
Address lines (24 lines) ADRS(0-ADRS23
Data transfer

Memory read MRDC
Memory write MWTC
10 read IORC
10 write IOWC
Transfer acknowledge TACK

Interrupt control
Interrupt request (8 lines) INTO-INT7

Interrupt acknowledge INTA
Miscellaneous control
Master clock CCLK
System initialization INIT
Byte high enable BHEN
Memory inhibit (2 lines) INH1-INH2
Bus lock LOCK
Bus arbitration
Bus request BREQ
Common bus request CBRQ
Bus busy BUSY
Bus clock BCLK
Bus priority in BPRN
Bus priority out BPRO

Power and ground (20 lines)

Reprinted with permission of the IEEE.

Serial Arbitration Procedure
Arbitration procedures service all processor requests on the basis of established
priorities. A hardware bus priority resolving technique can be established by
means of a serial or parallel connection of the units requesting control of
the system bus. The serial priority resolving technique is obtained from a
daisy-chain connection of bus arbitration circuits similar to the priority inter-
rupt logic presented in Sec. 11-5. The processors connected to the system bus
are assigned priority according to their position along the priority control line.
The device closest to the priority line is assigned the highest priority. When
multiple devices concurrently request the use of the bus, the device with the
highest priority is granted access to it.

Figure 13-10 shows the daisy-chain connection of four arbiters. It is
assumed that each processor has its own bus arbiter logic with priority-in and
priority-out lines. The priority out (PO) of each arbiter is connected to the

SECTION 13-3 Interprocessor Arbitration 503

Highest Lowest
priority priority

To next

Bus Bus Bus Bus arbiter

| ===t PI PO p==> PI PO == PI PO f==>{ PI PO [
arbiter 1 arbiter 2 arbiter 3 arbiter 4

Bus busy line

Figure 13-10 Serial (daisy-chain) arbitration.

priority in (PI) of the next-lower-priority arbiter. The PI of the highest-priority
unit is maintained at a logic 1 value. The highest-priority unit in the system
will always receive access to the system bus when it requests it. The PO output
for a particular arbiter is equal to 1 if its PI input is equal to 1 and the processor
associated with the arbiter logic is not requesting control of the bus. This is the
way that priority is passed to the next unit in the chain. If the processor requests
control of the bus and the corresponding arbiter finds its PI input equal to 1,
it sets its PO output to 0. Lower-priority arbiters receive a 0 in PI and generate
a 0in PO. Thus the processor whose arbiter has a PI = 1 and PO = 0 is the
one that is given control of the system bus.

A processor may be in the middle of a bus operation when a higher-
priority processor requests the bus. The lower-priority processor must com-
plete its bus operation before it relinquishes control of the bus. The bus busy
line shown in Fig. 13-10 provides a mechanism for an orderly transfer of
control. The busy line comes from open-collector circuits in each unit and
provides a wired-OR logic connection. When an arbiter receives control of the
bus (because its PI = 1 and PO = 0) it examines the busy line. If the line is
inactive, it means that no other processor is using the bus. The arbiter activates
the busy line and its processor takes control of the bus. However, if the arbiter
finds the busy line active, it means that another processor is currently using
the bus. The arbiter keeps examining the busy line while the lower-priority
processor that lost control of the bus completes its operation. When the bus
busy line returns to its inactive state, the higher-priority arbiter enables the
busy line, and its corresponding processor can then conduct the required bus
transfers.

Parallel Arbitration Logic

The parallel bus arbitration technique uses an external priority encoder and a
decoder as shown in Fig. 13-11. Each bus arbiter in the parallel scheme has
a bus request output line and a bus acknowledge input line. Each arbiter
enables the request line when its processor is requesting access to the system

504

CHAPTER THIRTEEN Multiprocessors

Bus Bus Bus Bus
arbiter 1 arbiter 2 arbiter 3 arbiter 4

Ack Req Ack Req Ack Req Ack Req

Bus busy line

4X2

Priority encoder

2X4
Decoder

Il

Figure 13-11 Parallel arbitration.

bus. The processor takes control of the bus if its acknowledge input line is
enabled. The bus busy line provides an orderly transfer of control, as in the
daisy-chaining case.

Figure 13-11 shows the request lines from four arbiters going into a4 x 2
priority encoder. The output of the encoder generates a 2-bit code which
represents the highest-priority unit among those requesting the bus. The truth
table of the priority encoder can be found in Table 11-2 (Sec. 11-5). The 2-bit
code from the encoder output drives a2 X 4 decoder which enables the proper
acknowledge line to grant bus access to the highest-priority unit.

We can now explain the function of the bus arbitration signals listed in
Table 13-1. The bus priority-in BPRN and bus priority-out BPRO are used for
a daisy-chain connection of bus arbitration circuits. The bus busy signal BUSY
is an open-collector output used to instruct all arbiters when the bus is busy
conducting a transfer. The common bus request CBRQ is also an open-collector
output that serves to instruct the arbiter if there are any other arbiters of
lower-priority requesting use of the system bus. The signals used to construct
a parallel arbitration procedure are bus request BREQ and priority-in BPRN,

time slice

polling

FIFO

rotating daisy-chain

SECTION 133 Interprocessor Arbitration 505

corresponding to the request and acknowledge signals in Fig. 13-11. The bus
clock BCLK is used to synchronize all bus transactions.

Dynamic Arbitration Algorithms

The two bus arbitration procedures just described use a static priority al-
gorithm since the priority of each device is fixed by the way it is connected
to the bus. In contrast, a dynamic priority algorithm gives the system the
capability for changing the priority of the devices while the system is in
operation. We now discuss a few arbitration procedures that use dynamic
priority algorithms.

The time slice algorithm allocates a fixed-length time slice of bus time that
is offered sequentially to each processor, in round-robin fashion. The service
given to each system component with this scheme is independent of its loca-
tion along the bus. No preference is given to any particular device since each
is allotted the same amount of time to communicate with the bus.

In a bus system that uses polling, the bus grant signal is replaced by a set
of lines called poll lines which are connected to all units. These lines are used
by the bus controller to define an address for each device connected to the bus.
The bus controller sequences through the addresses in a prescribed manner.
When a processor that requires access recognizes its address, it activates the
bus busy line and then accesses the bus. After a number of bus cycles, the
polling process continues by choosing a different processor. The polling se-
quence is normally programmable, and as a result, the selection priority can
be altered under program control.

The least recently used (LRU) algorithm gives the highest priority to the
requesting device that has not used the bus for the longest interval. The
priorities are adjusted after a number of bus cycles according to the LRU
algorithm. With this procedure, no processor is favored over any other since
the priorities are dynamically changed to give every device an opportunity to
access the bus.

In the first-come, first-serve scheme, requests are served in the order
received. To implement this algorithm, the bus controller establishes a queue
arranged according to the time that the bus requests arrive. Each processor
must wait for its turn to use the bus on a first-in, first-out (FIFO) basis.

The rotating daisy-chain procedure is a dynamic extension of the daisy-
chain algorithm. In this scheme there is no central bus controller, and the
priority line is connected from the priority-out of the last device back to the
priority-in of the first device in a closed loop. This is similar to the connections
shown in Fig. 13-10 except that the PO output of arbiter 4 is connected to the
PI input of arbiter 1. Whichever device has access to the bus serves as a bus
controller for the following arbitration. Each arbiter priority for a given bus
cycle is determined by its position along the bus priority line from the arbiter

506 CHAPTER THIRTEEN Multiprocessors

whose processor is currently controlling the bus. Once an arbiter releases the
bus, it has the lowest priority.

13-4 Interprocessor Communication
and Synchronization

The various processors in a multiprocessor system must be provided with a
facility for communicating with each other. A communication path can be
established through common input-output channels. In a shared memory
multiprocessor system, the most common procedure is to set aside a portion
of memory that is accessible to all processors. The primary use of the common
memory is to act as a message center similar to a mailbox, where each processor
can leave messages for other processors and pick up messages intended for it.

The sending processor structures a request, a message, or a procedure,
and places it in the memory mailbox. Status bits residing in common memory
are generally used to indicate the condition of the mailbox, whether it has
meaningful information, and for which processor it is intended. The receiving
processor can check the mailbox periodically to determine if there are valid
messages for it. The response time of this procedure can be time consuming
since a processor will recognize a request only when polling messages. A more
efficient procedure is for the sending processor to alert the receiving processor
directly by means of an interrupt signal. This can be accomplished through a
software-initiated interprocessor interrupt by means of an instruction in the
program of one processor which when executed produces an external interrupt
condition in a second processor. This alerts the interrupted processor of the
fact that a new message was inserted by the interrupting processor.

In addition to shared memory, a multiprocessor system may have other
shared resources. For example, a magnetic disk storage unit connected to an
IOP may be available to all CPUs. This provides a facility for sharing of system
programs stored in the disk. A communication path between two CPUs can
be established through a link between two IOPs associated with two different
CPUs. This type of link allows each CPU to treat the other as an /O device so
that messages can be transferred through the I/O path.

To prevent conflicting use of shared resources by several processors there
must be a provision for assigning resources to processors. This task is given
to the operating system. There are three organizations that have been used in
the design of operating system for multiprocessors: master-slave configura-
tion, separate operating system, and distributed operating system.

In a master-slave mode, one processor, designated the master, always
executes the operating system functions. The remaining processors, denoted
as slaves, do not perform operating system functions. If a slave processor needs

SECTION 13-4 Interprocessor Communication and Synchronization 507

an operating system service, it must request it by interrupting the master and
waiting until the current program can be interrupted.

In the separate operating system organization, each processor can exe-
cute the operating system routines it needs. This organization is more suitable
for loosely coupled systems where every processor may have its own copy of
the entire operating system.

In the distributed operating system organization, the operating system
routines are distributed among the available processors. However, each partic-
ular operating system function is assigned to only one processor at a time. This
type of organization is also referred to as a floating operating system since the
routines float from one processor to another and the execution of the routines
may be assigned to different processors at different times.

In a loosely coupled multiprocessor system the memory is distributed
among the processors and there is no shared memory for passing information.
The communication between processors is by means of message passing
through /O channels. The communication is initiated by one processor calling
a procedure that resides in the memory of the processor with which it wishes
to communicate. When the sending processor and receiving processor name
each other as a source and destination, a channel of communication is estab-
lished. A message is then sent with a header and various data objects used to
communicate between nodes. There may be a number of possible paths avail-
able to send the message between any two nodes. The operating system in each
node contains routing information indicating the alternative paths that can be
used to send a message to other nodes. The communication efficiency of the
interprocessor network depends on the communication routing protocol, pro-
cessor speed, data link speed, and the topology of the network.

Interprocessor Synchronization
The instruction set of a multiprocessor contains basic instructions that are used
to implement communication and synchronization between cooperating pro-
cesses. Communication refers to the exchange of data between different
processes. For example, parameters passed to a procedure in a different pro-
cessor constitute interprocessor communication. Synchronization refers to the
special case where the data used to communicate between processors is control
information. Synchronization is needed to enforce the correct sequence of
processes and to ensure mutually exclusive access to shared writable data.
Multiprocessor systems usually include various mechanisms to deal with
the synchronization of resources. Low-level primitives are implemented di-
rectly by the hardware. These primitives are the basic mechanisms that enforce
mutual exclusion for more complex mechanisms implemented in software. A
number of hardware mechanisms for mutual exclusion have been developed.
One of the most popular methods is through the use of a binary semaphore.

508 CHAPTER THIRTEEN Multiprocessors

critical section

hardware lock

Mutual Exclusion with a Semaphore

A properly functioning multiprocessor system must provide a mechanism that
will guarantee orderly access to shared memory and other shared resources.
This is necessary to protect data from being changed simultaneously by two
or more processors. This mechanism has been termed mutual exclusion. Mutual
exclusion must be provided in a multiprocessor system to enable one processor
to exclude or lock out access to a shared resource by other processors when
itis in a critical section. A critical section is a program sequence that, once begun,
must complete execution before another processor accesses the same shared
resource.

A binary variable called a semaphore is often used to indicate whether or
not a processor is executing a critical section. A semaphore is a software-
controlled flag thatis stored in a memory location that all processors can access.
When the semaphore is equal to 1, it means that a processor is executing a
critical program, so that the shared memory is not available to other processors.
When the semaphore is equal to 0, the shared memory is available to any
requesting processor. Processors that share the same memory segment agree
by convention not to use the memory segment unless the semaphore is equal
to 0, indicating that memory is available. They also agree to set the semaphore
to 1 when they are executing a critical section and to clear it to 0 when they
are finished.

Testing and setting the semaphore is itself a critical operation and must
be performed as a single indivisible operation. If it is not, two or more proces-
sors may test the semaphore simultaneously and then each set it, allowing
them to enter a critical section at the same time. This action would allow
simultaneous execution of critical section, which can result in erroneous initial-
ization of control parameters and a loss of essential information.

A semaphore can be initialized by means of a test and set instruction in
conjunction with a hardware lock mechanism. A hardware lock is a processor-
generated signal that serves to prevent other processors from using the system
bus as long as the signal is active. The test-and-set instruction tests and sets
asemaphore and activates the lock mechanism during the time that the instruc-
tion is being executed. This prevents other processors from changing the
semaphore between the time that the processor is testing it and the time that
it is setting it. Assume that the semaphore is a bit in the least significant
position of a memory word whose address is symbolized by SEM. Let
the mnemonic TSL designate the “test and set while locked” operation. The
instruction

TSL SEM

will be executed in two memory cycles (the first to read and the second to write)
without interference as follows:

R «<M[SEM] Test semaphore
M[SEM]«1 Set semaphore

SECTION 135 Cache Coherence 509

The semaphore is tested by transferring its value to a processor register R and
then it is set to 1. The value in R determines what to do next. If the processor
finds that R = 1, it knows that the semaphore was originally set. (The fact that
it is set again does not change the semaphore value.) That means that another
processor is executing a critical section, so the processor that checked the
semaphore does not access the shared memory. If R = 0, it means that the
common memory (or the shared resource that the semaphore represents) is
available. The semaphore is set to 1 to prevent other processors from accessing
memory. The processor can now execute the critical section. The last instruc-
tion in the program must clear location SEM to zero to release the shared
resource to other processors.

Note that the lock signal must be active during the execution of the
test-and-set instruction. It does not have to be active once the semaphore is set.
Thus the lock mechanism prevents other processors from accessing memory
while the semaphore is being set. The semaphore itself, when set, prevents
other processors from accessing shared memory while one processor is execut-
ing a critical section.

13-5 Cache Coherence

The operation of cache memory is explained in Sec. 12-6. The primary advan-
tage of cache is its ability to reduce the average access time in uniprocessors.
When the processor finds a word in cache during a read operation, the main
memory is not involved in the transfer. If the operation is to write, there are
two commonly used procedures to update memory. In the write-through policy,
both cache and main memory are updated with every write operation. In the
write-back policy, only the cache is updated and the location is marked so that
it can be copied later into main memory.

In a shared memory multiprocessor system, all the processors share a
common memory. In addition, each processor may have a local memory, part
or all of which may be a cache. The compelling reason for having separate
caches for each processoris to reduce the average access time in each processor.
The same information may reside in a number of copies in some caches and
main memory. To ensure the ability of the system to execute memory opera-
tions correctly, the multiple copies must be kept identical. This requirement
imposes a cache coherence problem. A memory scheme is coherent if the value
returned on a load instruction is always the value given by the latest store
instruction with the same address. Without a proper solution to the cache
coherence problem, caching cannot be used in bus-oriented multiprocessors
with two or more processors.

Conditions for Incoherence
Cache coherence problems exist in multiprocessors with private caches be-
cause of the need to share writable data. Read-only data can safely be replicated

510

CHAPTER THIRTEEN Multiprocessors

without cache coherence enforcement mechanisms. To illustrate the problem,
consider the three-processor configuration with private caches shown in
Fig. 13-12. Sometime during the operation an element X from main memory
is loaded into the three processors, P, P,, and P;. As a consequence, it is also
copied into the private caches of the three processors. For simplicity, we
assume that X contains the value of 52. The load on X to the three processors
results in consistent copies in the caches and main memory.

If one of the processors performs a store to X, the copies of X in the caches
become inconsistent. A load by the other processors will not return the latest
value. Depending on the memory update policy used in the cache, the main
memory may also be inconsistent with respect to the cache. This is shown in
Fig. 13-13. A store to X (of the value of 120) into the cache of processor P,
updates memory to the new value in a write-through policy. A write-through
policy maintains consistency between memory and the originating cache, but
the other two caches are inconsistent since they still hold the old value. In a
write-back policy, main memory is not updated at the time of the store. The
copies in the other two caches and main memory are inconsistent. Memory is
updated eventually when the modified data in the cache are copied back into
memory.

Another configuration that may cause consistency problems is a direct
memory access (DMA) activity in conjunction with an IOP connected to the
system bus. In the case of input, the DMA may modify locations in main
memory that also reside in cache without updating the cache. During a DMA
output, memory locations may be read before they are updated from the cache
when using a write-back policy. /O-based memory incoherence can be over-
come by making the IOP a participant in the cache coherent solution that is
adopted in the system.

Solutions to the Cache Coherence Problem

Various schemes have been proposed to solve the cache coherence problem in
shared memory multiprocessors. We discuss some of these schemes briefly
here. See references 3 and 10 for more detailed discussions.

A simple scheme is to disallow private caches for each processorand have
a shared cache memory associated with main memory. Every data access is
made to the shared cache. This method violates the principle of closeness of
CPU to cache and increases the average memory access time. In effect, this
scheme solves the problem by avoiding it.

For performance considerations it is desirable to attach a private cache to
each processor. One scheme that has been used allows only nonshared and
read-only data to be stored in caches. Such items are called cachable. Shared
writable data are noncachable. The compiler must tag data as either cachable or
noncachable, and the system hardware makes sure that only cachable data are
stored in caches. The noncachable data remain in main memory. This method

X=52 Main memory

Bus

| X=52 J I X=52 I X=52 I Caches
| Py I [Py | | Py J Processors

Figure 13-12 Cache configuration after a load on X.

Figure 13-13 Cache configuration after a store to X by processor P;.

X=120 Main memory

Bus

1

X=120 l rx=52—| I X=52 | Caches

I Py I L Py | I Py I Processors

(a) With write-through cache policy

X=52 Main memory

(b) With write-back cache policy

511

512 CHAPTER THIRTEEN Multiprocessors

snoopy cache
controller

restricts the type of data stored in caches and introduces an extra software
overhead that may degradate

Aschemeﬂmta]]owswnhbledalammstmatteastoneadnelsa
method that employs a centralized global table in its compiler. The status of
memory blocks is stored in the central global table. Each block is identified as
read-only (RO) or read and write (RW). All caches can have copies of blocks
identified as RO. Only one cache can have a copy of an RW block. Thus if the
data are updated in the cache with an RW block, the other caches are not
affected because they do not have a copy of this block.

The cache coherence problem can be solved by means of a combination
of software and hardware or by means of hardware-only schemes. The two
methods mentioned previously use software-based procedures that require the
ability to tag information in order to disable caching of shared writable data.
Hardware-only solutions are handled by the hardware automatically and have
the advantage of higher speed and program transparency. In the hardware
solution, the cache controller is specially designed to allow it to monitor all bus
requests from CPUs and IOPs. All caches attached to the bus constantly
monitor the network for possible write operations. Depending on the method
used, they must then either update or invalidate their own cache copies when
a match is detected. The bus controller that monitors this action is referred to
as a snoopy cache controller. This is basically a hardware unit designed to main-
tain a bus-watching mechanism over all the caches attached to the bus.

Various schemes have been proposed to solve the cache coherence prob-
lem by means of snoopy cache protocol. The simplest method is to adopt a
write-through policy and use the following procedure. All the snoopy con-
trollers watch the bus for memory store operations. When a word in a cache
is updated by writing into it, the corresponding location in main memory is
also updated. The local snoopy controllers in all other caches check their
memory to determine if they have a copy of the word that has been overwritten.
If a copy exists in a remote cache, that location is marked invalid. Because all
caches snoop on all bus writes, whenever a word is written, the net effect
is to update it in the original cache and main memory and remove it from
all other caches. If at some future time a processor accesses the invalid
item from its cache, the response is equivalent to a cache miss, and the updated
item is transferred from main memory. In this way, inconsistent versions are
prevented.

| PROBLEMS

131 Discuss the difference between tightly coupled multiprocessors and loosely
coupled multiprocessors from the viewpoint of hardware organization and

13-2.

13-3.

13-4.

13-5.

13-6.

13-7.

13-8.

13-9.

13-10.

13-11.

13-12.

13-13.

13-14.

Problems 513

What is the purpose of the system bus controller shown in Fig. 13-2? Explain

how the system can be designed to distinguish between refe es to local

memory and references to common shared memory.

How many switch points are there in a crossbar switch network that con-

nects p processors to m memory modules?

The 8 x 8 omega switching network of Fig. 13-8 has three stages with four

switches in each stage, for a total of 12 switches. How many stages and

switches per stage are needed in an n X n omega switching network?

Suppose that the wire breaks between the switch in the first row, second

column and the switch in the second row, third column in the omega

switching network of Fig. 13-8. What paths will be disconnected?

Construct a diagram for a4 X 4 omega switching network. Show the switch

setting required to connect input 3 to output 1.

Three types of switches are used to design a multistage interconnection

network: an interchange switch with two inputs and two outputs as in Fig.

13-6, an arbitration switch with two inputs and one output, and a distribu-

tion switch with one input and two outputs.

a. Show how the arbitration and distribution switches operate.

b. Using arbitration and interchange switches, construct an 8 X 4 network
with a unique path between any source and any destination.

c. Using distribution and interchange switches, construct a 4 x 8 network
with a unique path between any source and any destination.

Draw a diagram showing the structure of a four-dimensional hypercube

network. List all the paths available from node 7 to node 9 that use the

minimum number of intermediate nodes.

Draw a logic diagram using gates and flip-flops showing the circuit of one
bus arbiter stage in the daisy-chain arbitration scheme of Fig. 13-10.

The bus controlled by the parallel arbitration logic shown in Fig. 13-11 is
initially idle. Devices 2 and 3 then request the bus at the same time. Specify
the input and output binary values in the encoder and decoder and deter-
mine which bus arbiter is acknowledged.

Show how the arbitration logic of Fig. 13-10 can be modified to provide a
rotating daisy-chain arbitration procedure. Explain how the priority is deter-
mined once the bus line is disabled.

Consider a bus topology in which two processors communicate through a
buffer in shared memory. When one processor wishes to communicate with
the other processor it puts the information in the memory buffer and sets
a flag. Periodically, the other processor checks the flags to determine if it has
information to receive. What can be done to ensure proper synchronization
and to minimize the time between sending and receiving the information?

Describe the following terminology associated with multiprocessors.
(a) mutual exclusion; (b) critical section; (c) hardware lock; (d).semaphore;
(e) test-and-set instruction.

What is cache coherence, and why is it important in shared-memory multi-
processor systems? How can the problem be resolved with a snoopy cache
controller?

514 CHAPTER THIRTEEN

Multiprocessors

1.

2,

3.

Dasgupta, S., Computer Architecture: A Modern Synthesis, Vol. 2. New York: John
Wiley, 1989.

DeCegama, A. L., Parallel Processing Architecture and VLSI Hardware. Englewood
Cliffs, NJ: Prentice Hall, 1989.
Dubois, M., C. Scheurich, and F. A. Briggs, “Synchronization, Coh e, and
Event Ordering in Multip * IEEE Computer, Vol. 21, No. 2 (February 1988),
PP 9-21.

. Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJj: Prentice
Hall, 1991.

. Gorsline, G. W., Computer Organization: Hardware/Software, 2nd ed. Englewood
Cliffs, NJ: Prentice Hall, 1986.

. Hays,]. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill,
1988,

. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New York:
McGraw-Hill, 1984.
Kain, R., Computer Architect oftware and Hardware, Vol. 2. Engl d Cliffs, NJ:
Prentice Hall, 1989.

. Langholz, G.,]. Francioni, and A. Kandel, Elements of Computer Organization.
Englewood Cliffs, NJ: Prentice Hall, 1989.

. Stenstrom, P., A Survey of Cache Coh Sch for Multip " IEEE
Computer, Vol. 23, No. 6 (June 1990), pp. 12-24.

. Stone, H. 5., High-Performance Computer Architecture. 2nd ed. Reading, MA:
Addison-Wesley, 1990.

. Tabak, D., Multip Engl d Cliffs, NJ: Prentice Hall, 1990.

