—_— CHAPTER TWELVE f————

Memory Organization

IN THIS CHAPTER

12-1 Memory Hierarchy
122 Main Memory

12-3 Auxiliary Memory
1244 Associative Memory

12.5 Cache Memory
126 Virtual Memory
lL? A, ¥ A :l .

12-1 Memory Hierarchy

The memory unit is an essential component in any digital computer since it is
needed for storing programs and data. A very small computer with a limited
application may be able to fulfill its intended task without the need of addi-
tional storage capacity. Most general-purpose computers would run more
efficiently if they were equipped with additional storage beyond the capacity
of the main memory. There is just not enough space in one memory unit to
accommodate all the programs used in a typical computer. Moreover, most
computer users accumulate and continue to acc large its of
data-processing software. Not all accumulated information is needed by the
processor at the same time. Therefore, it is more economical to use low-cost
storage devices to serve as a backup for storing the information that is not
currently used by the CPU. The memory unit that communicates directly with
the CPU is called the main memory. Devices that provide backup storage are
ca!bdau.nharymmry The most common auxiliary memory devices used in
comp systems are tic disks and tapes. They are used for storing
system programs,]argedam files, and other backup information. Only pro-
grams and data currently needed by the processor reside in main memory. All

445

446 CHAPTER TWELVE Memory Organization

cache memory

other information is stored in auxiliary yand t ferred to main mem-
ory when needed.

The total memory capacity of a computer can be visualized as being a
hierarchy of components. The memory hierarchy system consists of all storage
devices employed in a computer system from the slow but high-capacity
auxiliary memory to a relatively faster main memory, to an even smaller and
faster cache memory accessible to the high-speed processing logic. Figure 12-1
illustrates the components in a typical memory hierarchy. At the bottom of the
hierarchy are the relatively slow magnetic tapes used to store removable files.
Next are the magnetic disks used as backup storage. The main memory occu-
pies a central position by being able to communicate directly with the CPU and
with auxiliary memory devices through an 'O processor. When programs not
residing in main memory are needed by the CPU, they are brought in from
auxiliary memory. Programs not currently needed in main memory are trans-
ferred into auxiliary memory to provide space for currently used programs and
data.

A special very-high-speed memory called a cache is sometimes used to
increase the speed of processing by making current programs and data avail-
able to the CPU at a rapid rate. The cache memory is employed in computer
systems to compensate for the speed differential between main memory access
time and processor logic. CPU logic is usually faster than main memory access
time, with the result that processing speed is limited primarily by the speed
of main memory. A technique used to comp for the mismatch in oper-
ating speeds is to employ an extremely fast, small cache between the CPU and
main memory whose access time is close to processor logic clock cycle time.
The cache is used for storing segments of programs currently being executed
in the CPU and temporary data frequently needed in the present calculations.

Figure 12-1 Memory hierarchy in a computer system.

Auxiliary memory
Magnetic
npes
110 proccssor Main

multiprogramming

SECTION 121 Memory Hierarchy 447

By making programs and data available at a rapid rate, it is possible to increase
the performance rate of the computer.

While the /O processor manages data transfers between auxiliary mem-
ory and main memory, the cache organization is concerned with the transfer
of information between main memory and CPU. Thus each is involved with
a different level in the memory hierarchy system. The reason for having two
or three levels of memory hierarchy is economics. As the storage capacity of
the memory increases, the cost per bit for storing binary information decreases
and the access time of the memory becomes longer. The auxiliary memory has
a large storage capacity, is relatively inexpensive, but has low access speed
compared to main memory. The cache memory is very small, relatively expen-
sive, and has very high access speed. Thus as the memory access speed
increases, so does its relative cost. The overall goal of using a memory hierarchy
is to obtain the highest-possible average access speed while minimizing the
total cost of the entire memory system.

Auxiliary and cache memories are used for different purposes. The cache
holds those parts of the program and data that are most heavily used, while
the auxiliary memory holds those parts that are not presently used by the CPU.
Moreover, the CPU has direct access to both cache and main memory but not
to auxiliary memory. The transfer from auxiliary to main memory is usually
done by means of direct memory access of large blocks of data. The typical
access time ratio between cache and main memory is about 1 to 7. For example,
a typical cache memory may have an access time of 100 ns, while main memory
access time may be 700 ns. Auxiliary memory average access time is usually
1000 times that of main memory. Block size in auxiliary memory typically
ranges from 256 to 2048 words, while cache block size is typically from 1 to 16
words.

Many operating systems are designed to enable the CPU to process a
number of independent programs concurrently. This concept, called multipro-
gramming, refers to the existence of two or more programs in different parts
of the memory hierarchy at the same time. In this way it is possible to keep
all parts of the computer busy by working with several programs in sequence.
For example, suppose that a program is being executed in the CPU and an /O
transfer is required. The CPU initiates the /O processor to start executing the
transfer. This leaves the CPU free to execute another program. In a multipro-
gramming system, when one program is waiting for input or output transfer,
there is another program ready to utilize the CPU.

With multiprogramming the need arises for running partial programs, for
varying the amount of main memory in use by a given program, and for
moving programs around the memory hierarchy. Computer programs are
sometimes too long to be accommodated in the total space available in main
memory. Moreover, a computer system uses many programs and all the
programs cannot reside in main memory at all times. A program with its data
normally resides in auxiliary memory. When the program or a segment of the

448 CHAPTER TWELVE Memory Organization

random-access
memory (RAM)

read-only memory
(ROM)

bootstrap loader

computer startup

program is to be executed, it is transferred to main memory to be executed by
the CPU. Thus one may think of auxiliary memory as containing the totality
of information stored in a computer system. It is the task of the operating
system to maintain in main memory a portion of this information that is
currently active. The part of the computer system that supervises the flow of
information between auxiliary memory and main memory is called the memory
management system. The hardware for a memory management system is pre-
sented in Sec. 12-7.

12-2 Main Memory

The main memory is the central storage unit in a computer system. It is a
relatively large and fast memory used to store programs and data during the
computer operation. The principal technology used for the main memory is
based on semiconductor integrated circuits. Integrated circuit RAM chips are
available in two possible operating modes, static and dynamic. The static RAM
consists essentially of internal flip-flops that store the binary information. The
stored information remains valid as long as power is applied to the unit. The
dynamic RAM stores the binary information in the form of electric charges that
are applied to capacitors. The capacitors are provided inside the chip by MOS
transistors. The stored charge on the capacitors tend to discharge with time and
the capacitors must be periodically recharged by refreshing the dynamic mem-
ory. Refreshing is done by cycling through the words every few milliseconds
to restore the decaying charge. The dynamic RAM offers reduced power
consumption and larger storage capacity in a single memory chip. The static
RAM is easier to use and has shorter read and write cycles.

Most of the main memory in a general-purpose computer is made up of
RAM integrated circuit chips, but a portion of the memory may be constructed
with ROM chips. Originally, RAM was used to refer to a random-access
memory, but now it is used to designate a read/write memory to distinguish
it from aread-only memory, although ROM is also random access. RAM is used
for storing the bulk of the programs and data that are subject to change. ROM
is used for storing programs that are permanently resident in the computer and
for tables of constants that do not change in value once the production of the
computer is completed.

Among other things, the ROM portion of main memory is needed for
storing an initial program called a bootstrap loader. The bootstrap loader is a
program whose function is to start the computer software operating when
power is turned on. Since RAM is volatile, its contents are destroyed when
power is turned off. The contents of ROM remain unchanged after power is
turned off and on again. The startup of a computer consists of turning the
power on and starting the execution of an initial program. Thus when power
is turned on, the hardware of the computer sets the program counter to the

bidirectional bus

SECTION 122 Main Memory 449

first address of the bootstrap loader. The bootstrap program loads a portion
of the operating system from disk to main memory and control is then trans-
ferred to the operating system, which prepares the computer for general use.

RAM and ROM chips are available in a variety of sizes. If the memory
needed for the computer is larger than the capacity of one chip, it is necessary
to combine a number of chips to form the required memory size. To demon-
strate the chip interconnection, we will show an example of a 1024 X 8 memory
constructed with 128 X 8 RAM chips and 512 X 8 ROM chips.

RAM and ROM Chips
A RAM chip is better suited for communication with the CPU if it has one or
more control inputs that select the chip only when needed. Another common
feature is a bidirectional data bus that allows the transfer of data either from
memory to CPU during a read operation, or from CPU to memory during a
write operation. A bidirectional bus can be constructed with three-state
buffers. A three-state buffer output can be placed in one of three possible
states: a signal equivalent to logic 1, a signal equivalent to logic 0, or a high-
impedance state. The logic 1 and 0 are normal digital signals. The high-
impedance state behaves like an open circuit, which means that the output
does not carry a signal and has no logic significance.

The block diagram of a RAM chip is shown in Fig. 12-2. The capacity of
the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit

Figure 12-2 Typical RAM chip.

Chip select | em—={ CS|
Chip select 2 =mmmm{ CS2
128X 8 .
Read === RD RAM [tm—p— 8-bit data bus
Write === WR
7-bit address =——— AD7
(a) Block diagram
CSI CS2 RD WR |Memory function State of data bus
0 0 x x Inhibit High-impedance
0 1 X X Inhibit High-impedance
1 0 0 O Inhibit High-impedance
1 0 0 1 Write Input data to RAM
I 0 I x Read Output data from RAM
| I x X Inhibit High-impedance

(b) Function table

450

CHAPTER TWELVE Memory Organization

address and an 8-bit bidirectional data bus. The read and write inputs speci-
the memory operation and the two chips select (CS) control inputs are fc:
enabling the chip only when it is selected by the microprocessor. The availab: -
ity of more than one control input to select the chip facilitates the decoding c:
the address lines when multiple chips are used in the microcomputer. The reac
and write inputs are sometimes combined into one line labeled R/W. When the
chip is selected, the two binary states in this line specify the two operations
of read or write.

The function table listed in Fig. 12-2(b) specifies the operation of the RAM
chip. The unit is in operation only when CS1 = 1and CS2 = 0. The bar on top
of the second select variable indicates that this input is enabled when it is equa.
to 0. If the chip select inputs are not enabled, or if they are enabled but the read
or write inputs are not enabled, the memory is inhibited and its data bus is in
a high-impedance state. When CS1 = 1 and CS2 = 0, the memory can be
placed in a write or read mode. When the WR input is enabled, the memory
stores a byte from the data bus into a location specified by the address input
lines. When the RD input is enabled, the content of the selected byte is placed
into the data bus. The RD and WR signals control the memory operation as well
as the bus buffers associated with the bidirectional data bus.

A ROM chip is organized externally in a similar manner. However, since
a ROM can only read, the data bus can only be in an output mode. The block
diagram of a ROM chip is shown in Fig. 12-3. For the same-size chip, it is
possible to have more bits of ROM than of RAM, because the internal binary
cells in ROM occupy less space than in RAM. For this reason, the diagram
specifies a 512-byte ROM, while the RAM has only 128 bytes.

The nine address lines in the ROM chip specify any one of the 512 bytes
stored in it. The two chip select inputs must be CS1 = 1 and C52 = 0 for the

‘unit to operate. Otherwise, the data bus is in a high-impedance state. There

is no need for a read or write control because the unit can only read. Thus when
the chip is enabled by the two select inputs, the byte selected by the address
lines appears on the data bus.

Memory Address Map

The designer of a computer system must calculate the amount of memory
required for the particular application and assign it to either RAM or ROM. The
interconnection between memory and processor is then established from
knowledge of the size of memory needed and the type of RAM and ROM chips
available. The addressing of memory can be established by means of a table
that specifies the memory address assigned to each chip. The table, called a
memory address map, is a pictorial representation of assigned address space for
each chip in the system.

To demonstrate with a particular example, assume that a computer sys-
tem needs 512 bytes of RAM and 512 bytes of ROM. The RAM and ROM chips

SECTION 122 Main Memory 451

Chip seleCt | emmmd CS]
Chip select 2 s\ cs2
512X8 pemmeep— 8-bit data bus

ROM
9-bit address e AD9

Figure 12-3 Typical ROM chip.

to be used are specified in Figs. 12-2 and 12-3. The memory address map for
this configuration is shown in Table 12-1. The component column specifies
whether a RAM or a ROM chip is used. The hexadecimal address column
assigns a range of hexadecimal equivalent addresses for each chip. The address
bus lines are listed in the third column. Although there are 16 lines in the
address bus, the table shows only 10 lines because the other 6 are not used in
this example and are assumed to be zero. The small x's under the address bus
lines designate those lines that must be connected to the address inputs in each
chip. The RAM chips have 128 bytes and need seven address lines. The ROM
chip has 512 bytes and needs 9 address lines. The x’s are always assigned to
the low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9
for the ROM. It is now necessary to distinguish between four RAM chips by
assigning to each a different address. For this particular example we choose bus
lines 8 and 9 to represent four distinct binary combinations. Note that any other
pair of unused bus lines can be chosen for this purpose. The table clearly shows
that the nine low-order bus lines constitute a memory space for RAM equal to
2° = 512 bytes. The distinction between a RAM and ROM address is done with
another bus line. Here we choose line 10 for this purpose. When line 10 is 0,
the CPU selects a RAM, and when this line is equal to 1, it selects the ROM.

The equivalent hexadecimal address for each chip is obtained from the
information under the address bus assignment. The address bus lines are

TABLE 12-1 Memory Address Map for Microprocomputer

Address bus
Hexadecimal
Component address 10 9 8 765 4 3 21
RAM 1 0000-007F [} 0 x x x X X X X
RAM 2 0080-00FF 0 0 1 x x X X X x X
RAM 3 0100-017F 01 0 x x x X X X X
RAM 4 0180-01FF 01 1 x x x X X X X
ROM 0200-03FF 1 x X X X X X X X X

452

CHAPTER TWELVE Memory Organization

subdivided into groups of four bits each so that each group can be represented
with a hexadecimal digit. The first hexadecimal digit represents lines 13 to 16
and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines
11 and 12 are always 0. The range of hexadecimal addresses for each compo-
nent is determined from the x’s associated with it. These x’s represent a binary
number that can range from an all-0’s to an all-1’s value.

Memory Connection to CPU

RAM and ROM chips are connected to a CPU through the data and address
buses. The low-order lines in the address bus select the byte within the chips
and other lines in the address bus select a particular chip through its chip select
inputs. The connection of memory chips to the CPU is shown in Fig. 12-4. This
configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of
ROM. It implements the memory map of Table 12-1. Each RAM receives the
seven low-order bits of the address bus to select one of 128 possible bytes. The
particular RAM chip selected is determined from lines 8 and 9 in the address
bus. This is done through a 2 X 4 decoder whose outputs go to the CS1 inputs
in each RAM chip. Thus, when address lines 8 and 9 are equal to 00, the first
RAM chip is selected. When 01, the second RAM chip is selected, and so on.
The RD and WR outputs from the microprocessor are applied to the inputs of
each RAM chip.

The selection between RAM and ROM is achieved through bus line 10.
The RAMs are selected when the bit in this line is 0, and the ROM when the
bit is 1. The other chip select input in the ROM is connected to the RD control
line for the ROM chip to be enabled only during a read operation. Address bus
lines 1to 9 are applied to the input address of ROM without going through the
decoder. This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM. The
data bus of the ROM has only an output capability, whereas the data bus
connected to the RAMs can transfer information in both directions.

The example just shown gives an indication of the interconnection com-
plexity that can exist between memory chips and the CPU. The more chips that
are connected, the more external decoders are required for selection among the
chips. The designer must establish a memory map that assigns addresses to
the various chips from which the required connections are determined.

12-3 Auxiliary Memory

The most common auxiliary memory devices used in computer systems are
magnetic disks and tapes. Other components used, but not as frequently, are
magnetic drums, magnetic bubble memory, and optical disks. To understand
fully the physical mechanism of auxiliary memory devices one must have a
knowledge of magnetics, electronics, and electromechanical systems. Al-

CPU

Address bus
1611 10 9 8 7-1 RD WR Data bus
Decoder
3210
L csi
CS2
128x8
RD gaM| D
=1 WR
AD7
cst
Cs2
RD 128 x g Data
= WR
AD7
cst
CS2
RD 128 x g Data
> WR
AD7
cst
CS2
RD 128 x 2 Data
L= WR
AD7
> cst
CS2
1-7 128 x 8 Data
ROM

o |00

Figure 12-4 Memory connection to the CPU.

453

454

CHAPTER TWELVE Memory Organization

though the physical properties of these storage devices can be quite complex,
their logical properties can be characterized and compared by a few parame-
ters. The important characteristics of any device are its access mode, access
time, transfer rate, capacity, and cost.

The average time required to reach a storage location in memory and
obtain its contents is called the access time. In electromechanical devices with
moving parts such as disks and tapes, the access time consists of a seek time
required to position the read-write head to a location and a transfer time
required to transfer data to or from the device. Because the seek time is usually
much longer than the transfer time, auxiliary storage is organized in records
or blocks. A record is a specified number of characters or words. Reading or
writing is always done on entire records. The transfer rate is the number of
characters or words that the device can transfer per second, after it has been
positioned at the beginning of the record.

Magnetic drums and disks are quite similar in operation. Both consist of
high-speed rotating surfaces coated with a magnetic recording medium. The
rotating surface of the drumis a cylinder and that of the disk, a round flat plate.
The recording surface rotates at uniform speed and is not started or stopped
during access operations. Bits are recorded as magnetic spots on the surface
as it passes a stationary mechanism called a write head. Stored bits are detected
by a change in magnetic field produced by a recorded spot on the surface as
it passes through a read head. The amount of surface available for recording in
a disk is greater than in a drum of equal physical size. Therefore, more
information can be stored on a disk than on a drum of comparable size. For
this reason, disks have replaced drums in more recent computers.

Magnetic Disks

A magnetic disk is a circular plate constructed of metal or plastic coated with
magnetized material. Often both sides of the disk are used and several disks
may be stacked on one spindle with read/write heads available on each surface.
All disks rotate together at high speed and are not stopped or started for access
purposes. Bits are stored in the magnetized surface in spots along concentric
circles called tracks. The tracks are commonly divided into sections called
sectors. In most systems, the minimum quantity of information which can be
transferred is a sector. The subdivision of one disk surface into tracks and
sectors is shown in Fig. 12-5.

Some units use a single read/write head for each disk surface. In this type
of unit, the track address bits are used by a mechanical assembly to move the
head into the specified track position before reading or writing. In other disk
systems, separate read/write heads are provided for each track in each surface.
The address bits can then select a particular track electronically through a
decoder circuit. This type of unit is more expensive and is found only in very
large computer systems.

Permanent timing tracks are used in disks to synchronize the bits and

SECTION 12.3 Auxiliary Memory 455

Tracks

<\Seclg,\>/

Read/write
head

Figure 12-5 Magnetic disk.

recognize the sectors. A disk system is addressed by address bits that specify
the disk number, the disk surface, the sector number and the track within the
sector. After the read/write heads are positioned in the specified track, the
system has to wait until the rotating disk reaches the specified sector under the
read/write head. Information transfer is very fast once the beginning of a sector
has been reached. Disks may have multiple heads and simultaneous transfer
of bits from several tracks at the same time.

A track in a given sector near the circumference is longer than a track near
the center of the disk. If bits are recorded with equal density, some tracks will
contain more recorded bits than others. To make all the records in a sector of
equal length, some disks use a variable recording density with higher density
on tracks near the center than on tracks near the circumference. This equalizes
the number of bits on all tracks of a given sector.

Disks that are permanently attached to the unit assembly and cannot be
removed by the occasional user are called hard disks. A disk drive with remov-
able disks is called a floppy disk. The disks used with a floppy disk drive are
small removable disks made of plastic coated with magnetic recording material.
There are two sizes commonly used, with diameters of 5.25 and 3.5 inches. The
3.5-inch disks are smaller and can store more data than can the 5.25-inch disks.
Floppy disks are extensively used in personal computers as a medium for
distributing software to computer users.

Magnetic Tape

A magnetic tape transport consists of the electrical, mechanical, and electronic
components to provide the parts and control mechanism for a magnetic-tape
unit. The tape itself is a strip of plastic coated with a magnetic recording

456 CHAPTER TWELVE Memory Organization

content addressable
memory

medium. Bits are recorded as magnetic spots on the tape along several tracks.
Usually, seven or nine bits are recorded simultaneously to form a character
together with a parity bit. Read/write heads are mounted one in each track so
that data can be recorded and read as a sequence of characters.

Magnetic tape units can be stopped, started to move forward or in re-
verse, or can be rewound. However, they cannot be started or stopped fast
enough between individual characters. For this reason, information is recorded
in blocks referred to as records. Gaps of unrecorded tape are inserted between
records where the tape can be stopped. The tape starts moving while in a gap
and attains its constant speed by the time it reaches the next record. Each
record on tape has an identification bit pattern at the beginning and end. By
reading the bit pattern at the beginning, the tape control identifies the record
number. By reading the bit pattern at the end of the record, the control
recognizes the beginning of a gap. A tape unit is addressed by specifying the
record number and the number of characters in the record. Records may be of
fixed or variable length.

12-4 Associative Memory

Many data-processing applications require the search of items in a table stored
in memory. An assembler program searches the symbol address table in order
to extract the symbol’s binary equivalent. An account number may be searched
in a file to determine the holder's name and account status. The established
way to search a table is to store all items where they can be addressed in
sequence. The search procedure is a strategy for choosing a sequence of
addresses, reading the content of memory at each address, and comparing the
information read with the item being searched until a match occurs. The
number of accesses to memory depends on the location of the item and the
efficiency of the search algorithm. Many search algorithms have been devel-
oped to minimize the number of accesses while searching for an item in a
random or sequential access memory.

The time required to find an item stored in memory can be reduced
considerably if stored data can be identified for access by the content of the data
itself rather than by an address. A memory unit accessed by content is called
an associative memory or content addressable memory (CAM). This type of memory
is accessed simultaneously and in parallel on the basis of data content rather
than by specific address or location. When a word is written in an associative
memory, no address is given. The memory is capable of finding an empty
unused location to store the word. When a word is to be read from an associa-
tive memory, the content of the word, or part of the word, is specified. The
memory locates all words which match the specified content and marks them
for reading.

Because of its organization, the associative memory is uniquely suited to
do parallel searches by data association. Moreover, searches can be done on

SECTION 12-4 Associative Memory 457

an entire word or on a specific field within a word. An associative memory is
more expensive than a random access memory because each cell must have
storage capability as well as logic circuits for matching its content with an
external argument. For this reason, associative memories are used in applica-
tions where the search time is very critical and must be very short.

Hardware Organization

The block diagram of an associative memory is shown in Fig. 12-6. It consists
of a memory array and logic for m words with n bits per word. The argument
register A and key register K each have n bits, one for each bit of a word. The
match register M has m bits, one for each memory word. Each word in memory
is compared in parallel with the content of the argument register. The words
that match the bits of the argument register set a corresponding bit in the match
register. After the matching process, those bits in the match register that have
been set indicate the fact that their corresponding words have been matched.
Reading is accomplished by a sequential access to memory for those words
whose corresponding bits in the match register have been set.

The key register provides a mask for choosing a particular field or key in
the argument word. The entire argument is compared with each memory word
if the key register contains all 1’s. Otherwise, only those bits in the argument
that have 1’s in their corresponding position of the key register are compared.
Thus the key provides a mask or identifying piece of information which

Figure 12-6 Block diagram of associative memory.

I Argument register (4)—|

I Key register (K) |

Match
register
Input —s-{
Associative memory
array and logic
Read —s m words
Write am—p-{ n bits per word

|

Output

458

CHAPTER TWELVE Memory Organization

specifies how the reference to memory is made. To illustrate with a numericai
example, suppose that the argument register A and the key register K have the
bit configuration shown below. Only the three leftmost bits of A are compared
with memory words because K has 1’s in these positions.

A 101 111100

K 111 000000

Word 1 100 111100 no match
Word 2 101 000001 match

Word 2 matches the unmasked argument field because the three leftmost bits
of the argument and the word are equal.

The relation between the memory array and external registers in an
associative memory is shown in Fig. 12-7. The cells in the array are marked by
the letter C with two subcripts. The first subscript gives the word number and
the second specifies the bit position in the word. Thus cell C; is the cell for bit
jin word i. A bit 4; in the argument register is compared with all the bits in
column j of the array provided that K; = 1. This is done for all columns
j=1,2,...,n. If a match occurs between all the unmasked bits of the argu-
ment and the bits in word i, the corresponding bit M; in the match register is
set to 1. If one or more unmasked bits of the argument and the word do not
match, M,; is cleared to 0.

Figure 12-7 Associative memory of m word, n cells per word.

[;g

9 BH-B

Word 1 .
Word i C,
Word m @

Bitn

SECTION 124 Associative Memory 459

The internal organization of a typical cell C; is shown in Fig. 12-8. It
consists of a flip-flop storage element F; and the circuits for reading, writing,
and matching the cell. The input bit is transferred into the storage cell during
a write operation. The bit stored is read out during a read operation. The match
logic compares the content of the storage cell with the corresponding un-
masked bit of the argument and provides an output for the decision logic that
sets the bit in M;.

Match Logic

The match logic for each word can be derived from the comparison algorithm
for two binary numbers. First, we neglect the key bits and compare the argu-
ment in A with the bits stored in the cells of the words. Word i is equal to the
argument in A if A; = Fjforj = 1,2,...,n. Two bits are equal if they are both
1 or both 0. The equality of two bits can be expressed logically by the Boolean
function

% = AjF; + A/ F;
where x; = 1 if the pair of bits in position j are equal; otherwise, x; = 0.
For a word i to be equal to the argument in A we must have all x; variables
equal to 1. This is the condition for setting the corresponding match bit M; to
1. The Boolean function for this condition is

M, =xx%3 X,

and constitutes the AND operation of all pairs of matched bits in a word.

Figure 12-8 One cell of associative memory.

A K;
Input o
Write
Matph > To M,
Read logic

Output

460 CHAPTER TWELVE Memory Organization

We now include the key bit K; in the comparison logic. The requirement
is that if K; = 0, the corresponding bits of A;and F; need no comparison. Only
when K; = 1 must they be compared. This requirement is achieved by ORing
each term with K;, thus:

-+ K = X lle =1
5+ K [1 if K =0
When K; = 1, we have K/ =0 and x; + 0 = x;. When K; = 0, then K/ = 1 and
x;+1=1 A term (x; + K/) will be in the 1 state if its pair of bits is not
compared. This is necessary because each term is ANDed with all other terms
so that an output of 1 will have no effect. The comparison of the bits has an
effect only when K; = 1.

The match logic for word i in an associative memory can now be expressed
by the following Boolean function:

M; = (x1 + Ki)(x2 + K)(xs + K3) - - - (xa + K;)

Each term in the expression will be equal to 1 if its corresponding K; = 0. If
K; = 1, the term will be either 0 or 1 depending on the value of x;. A match will
occur and M; will be equal to 1 if all terms are equal to 1.

If we substitute the original definition of x;, the Boolean function above
can be expressed as follows:

M = [1(4F + A/Fj + K)
ji=1

where I1is a product symbol designating the AND operation of all n terms. We
need m such functions, one for each word i = 1,2,3,...,m.

The circuit for matching one word is shown in Fig. 12-9. Each cell requires
two AND gates and one OR gate. The inverters for A; and K; are needed once
for each column and are used for all bits in the column. The output of all OR
gates in the cells of the same word go to the input of a common AND gate to
generate the match signal for M;. M; will be logic 1 if a match occurs and 0 if
no match occurs. Note that if the key register contains all 0's, output M; will
be a 1 irrespective of the value of A or the word. This occurrence must be
avoided during normal operation.

Read Operation

If more than one word in memory matches the unmasked argument field, all
the matched words will have 1’s in the corresponding bit position of the match
register. It is then necessary to scan the bits of the match register one at a time.
The matched words are read in sequence by applying aread signal to each word
line whose corresponding M; bit is a 1.

SECTION 124 Associative Memory 461

K, A, K 4, K, A,

2
[m F [my ml-|-—][F 7]

Y Y Y

a D—M‘

Figure 12-9 Match logic for one word of associative memory.

In most applications, the associative memory stores a table with no two
identical items under a given key. In this case, only one word may match the
unmasked argument field. By connecting output M; directly to the read line in
the same word position (instead of the M register), the content of the matched
word will be presented automatically at the output lines and no special read
command signal is needed. Furthermore, if we exclude words having a zero
content, an all-zero output will indicate that no match occurred and that the
searched item is not available in memory.

Write Operation

An associative memory must have a write capability for storing the information
to be searched. Writing in an associative memory can take different forms,
depending on the application. If the entire memory is loaded with new infor-
mation at once prior to a search operation then the writing can be done by
addressing each location in sequence. This will make the device'a random-
access memory for writing and a content addressable memory for reading. The
advantage here is that the address for input can be decoded as in a random-
access memory. Thus instead of having m address lines, one for each word in
memory, the number of address lines can be reduced by the decoder tod lines,
where m = 2. ’

462 CHAPTER TWELVE Memory Organization

locality of reference

If unwanted words have to be deleted and new words inserted one at a
time, there is a need for a special register to distinguish between active and
inactive words. This register, sometimes called a tag register, would have as
many bits as there are words in the memory. For every active word stored in
memory, the corresponding bit in the tag register is set to 1. A word is deleted
from memory by clearing its tag bit to 0. Words are stored in memory by
scanning the tag register until the first 0 bit is encountered. This gives the first
available inactive word and a position for writing a new word. After the new
word is stored in memory it is made active by setting its tag bit to 1. An
unwanted word when deleted from memory can be cleared to all (’s if this
value is used to specify an empty location. Moreover, the words that have a
tag bit of 0 must be masked (together with the K; bits) with the argument word
so that only active words are compared.

12-5 Cache Memory

Analysis of a large number of typical programs has shown that the references
to memory at any given interval of time tend to be confined within a few
localized areas in memory. This phenomenon is known as the property of
locality of reference. The reason for this property may be understood considering
that a typical computer program flows in a straight-line fashion with program
loops and subroutine calls encountered frequently. When a program loop is
executed, the CPU repeatedly refers to the set of instructions in memory that
constitute the loop. Every time a given subroutine is called, its set of instruc-
tions are fetched from memory. Thus loops and subroutines tend to localize
the references to memory for fetching instructions. To a lesser degree, memory
references to data also tend to be localized. Table-lookup procedures repeat-
edly refer to that portion in memory where the table is stored. Iterative proce-
dures refer to common memory locations and array of numbers are confined
within a local portion of memory. The result of all these observations is the
locality of reference property, which states that over a short interval of time,
the addresses generated by a typical program refer to a few localized areas of
memory repeatedly, while the remainder of memory is accessed relatively
infrequently.

If the active portions of the program and data are placed in a fast small
memory, the average memory access time can be reduced, thus reducing the
total execution time of the program. Such a fast small memory is referred to
as a cache memory. Itis placed between the CPU and main memory as illustrated
in Fig. 12-1. The cache memory access time is less than the access time of main
memory by a factor of 5 to 10. The cache is the fastest component in the memory
hierarchy and approaches the speed of CPU components.

The fundamental idea of cache organization is that by keeping the most
frequently accessed instructions and data in the fast cache memory, the aver-

hit ratio

mapping

SECTION 12.5 Cache Memory 463

age memory access time will approach the access time of the cache. Although
the cache is only a small fraction of the size of main memory, a large fraction
of memory requests will be found in the fast cache memory because of the
locality of reference property of programs.

The basic operation of the cache is as follows. When the CPU needs to
access memory, the cache is examined. If the word is found in the cache, it is
read from the fast memory. If the word addressed by the CPU is not found in
the cache, the main memory is accessed to read the word. A block of words
containing the one just accessed is then transferred from main memory to
cache memory. The block size may vary from one word (the one just accessed)
to about 16 words adjacent to the one just accessed. In this manner, some data
are transferred to cache so that future references to memory find the required
words in the fast cache memory.

The performance of cache memory is frequently measured in terms of a
quantity called hit ratio. When the CPU refers to memory and finds the word
in cache, it is said to produce a hit. If the word is not found in cache, it is in
main memory and it counts as a miss. The ratio of the number of hits divided
by the total CPU references to memory (hits plus misses) is the hit ratio. The
hit ratio is best measured experimentally by running representative programs
in the computer and measuring the number of hits and misses during a given
interval of time. Hit ratios of 0.9 and higher have been reported. This high ratio
verifies the validity of the locality of reference property.

The average memory access time of a computer system can be improved
considerably by use of a cache. If the hit ratio is high enough so that most of
the time the CPU accesses the cache instead of main memory, the average
access time is closer to the access time of the fast cache memory. For example,
a computer with cache access time of 100 ns, a main memory access time of
1000 ns, and a hit ratio of 0.9 produces an average access time of 200 ns. This
is a considerable improvement over a similar computer without a cache mem-
ory, whose access time is 1000 ns.

The basic characteristic of cache memory is its fast access time. Therefore,
very little or no time must be wasted when searching for words in the cache.
The transformation of data from main memory to cache memory is referred to
as a mapping process. Three types of mapping procedures are of practical
interest when considering the organization of cache memory:

1. Associative mapping
2. Direct mapping
3. Set-associative mapping

To help in the discussion of these three mapping procedures we will use a
specific example of a memory organization as shown in Fig. 12-10. The main
memory can store 32K words of 12 bits each. The cache is capable of storing
512 of these words at any given time. For every word stored in cache, there is

464

CHAPTER TWELVE Memory Organization

Main memory

32K X 12 CPU

Cache memory
512x12 -

Figure 12-10 Example of cache memory.

a duplicate copy in main memory. The CPU communicates with both memo-
ries. It first sends a 15-bit address to cache. If there is a hit, the CPU accepts
the 12-bit data from cache. If there is a miss, the CPU reads the word from main
memory and the word is then transferred to cache.

Associative Mapping

The fastest and most flexible cache organization uses an associative memory.
This organization is illustrated in Fig. 12-11. The associative memory stores
both the address and content (data) of the memory word. This permits any
location in cache to store any word from main memory. The diagram shows
three words presently stored in the cache. The address value of 15 bits is shown
as a five-digit octal number and its corresponding 12-bit word is shown as a
four-digit octal number. A CPU address of 15 bits is placed in the argument
register and the associative memory is searched for a matching address. If the

Figure 12-11 Associative mapping cache (all numbers in octal).

CPU address (15 bits)

Argument register

~—— Address Data
01000 3450
027717 6710

22345 1234

tag field

SECTION 12.5 Cache Memory 465

address is found, the corresponding 12-bit data is read and sent to the CPU.
If no match occurs, the main memory is accessed for the word. The ad-
dress-data pair is then transferred to the associative cache memory. If the cache
is full, an address—data pair must be displaced to make room for a pair that is
needed and not presently in the cache. The decision as to what pair is replaced
is determined from the replacement algorithm that the designer chooses for the
cache. A simple procedure is to replace cells of the cache in round-robin order
whenever a new word is requested from main memory. This constitutes a
first-in first-out (FIFO) replacement policy.

Direct Mapping

Associative memories are expensive compared to random-access memories
because of the added logic associated with each cell. The possibility of using
a random-access memory for the cache is investigated in Fig. 12-12. The CPU
address of 15 bits is divided into two fields. The nine least significant bits
constitute the index field and the remaining six bits form the tag field. The figure
shows that main memory needs an address that includes both the tag and the
index bits. The number of bits in the index field is equal to the number of
address bits required to access the cache memory.

In the general case, there are 2 words in cache memory and 2" words in
main memory. The n-bit memory address is divided into two fields: k bits for
the index field and n — k bits for the tag field. The direct mapping cache
organization uses the n-bit address to access the main memory and the k-bit
index to access the cache. The internal organization of the words in the cache
memory is as shown in Fig. 12-13(b). Each word in cache consists of the data
word and its associated tag. When a new word is first brought into the cache,
the tag bits are stored alongside the data bits. When the CPU generates a
memory request, the index field is used for the address to access the cache. The

Figure 12-12 Addressing relationships between main and cache memories.

6 bits 9 bits

| l

0o 00 32K X 12 000 s12x 12
) Octal Cache memory
Octal Maln memory address Address = 9 bits
address = i
re Address = 15 bits 77 Data =12 bits.
Data = 12 bits
77 117

466

CHAPTER TWELVE Memory Organization

Memory Index

address Memory data address Tag Data
00000 1220 000 00 1220
00777 2340
01000 3450
01777 4560 7717 02 6710
02000 5670

(b) Cache memory

02777 6710

(a) Main memory

Figure 12-13 Direct mapping cache organization.

tag field of the CPU address is compared with the tag in the word read from
the cache. If the two tags match, there is a hit and the desired data word is in
cache. If there is no match, there is a miss and the required word is read from
main memory. It is then stored in the cache together with the new tag,
replacing the previous value. The disadvantage of direct mapping is that the
hit ratio can drop considerably if two or more words whose addresses have the
same index but different tags are accessed repeatedly. However, this possibility
is minimized by the fact that such words are relatively far apart in the address
range (multiples of 512 locations in this example.)

To see how the direct-mapping organization operates, consider the nu-
merical example shown in Fig. 12-13. The word at address zero is presently
stored in the cache (index = 000, tag = 00, data = 1220). Suppose that the CPU
now wants to access the word at address 02000. The index address is 000, so
it is used to access the cache. The two tags are then compared. The cache tag
is 00 but the address tag is 02, which does not produce a match. Therefore, the
main memory is accessed and the data word 5670 is transferred to the CPU.
The cache word at index address 000 is then replaced with a tag of 02 and data
of 5670.

The direct-mapping example just described uses a block size of one word.
The same organization but using a block size of 8 words is shown in Fig. 12-14.

SECTION 12.5 Cache Memory 467

Index Tag Data 6 6 3
000 ot 3450 | Tag IBIock Wordl
Block 0
007 0! 6578 D S—
Index
010
Block |
o017
1
770 | 02
Block 63
777 02 6710

Figure 12-14 Direct mapping cache with block size of 8 words.

Theindex field is now divided into two parts: the block field and the word field.
In a 512-word cache there are 64 blocks of 8 words each, since 64 X 8 = 512.
The block number is specified with a 6-bit field and the word within the block
is specified with a 3-bit field. The tag field stored within the cache is common
to all eight words of the same block. Every time a miss occurs, an entire block
of eight words must be transferred from main memory to cache memory.
Although this takes extra time, the hit ratio will most likely improve with a
larger block size because of the sequential nature of computer programs.

Set-Associative Mapping

It was mentioned previously that the disadvantage of direct mapping is that
two words with the same index in their address but with different tag values
cannot reside in cache memory at the same time. A third type of cache organ-
ization, called set-associative mapping, is an improvement over the direct-
mapping organization in that each word of cache can store two or more words
of memory under the same index address. Each data word is stored together
with its tag and the number of tag-data items in one word of cache is said to
form a set. An example of a set-associative cache organization for a set size of
two is shown in Fig. 12-15. Each index address refers to two data words and
their associated tags. Each tag requires six bits and each data word has 12 bits,
so the word length is 2(6 + 12) = 36 bits. An index address of nine bits can
accommodate 512 words. Thus the size of cache memory is 512 X 36. It can
accommodate 1024 words of main memory since each word of cache contains
two data words. In general, a set-associative cache of set size k will accommo-
date k words of main memory in each word of cache.

468 CHAPTER TWELVE Memory Organization

replacement
algorithms

Index Tag Data Tag Data
000| Ot 3450 02 5670
777| 02 6710 00 2340

Figure 12-15 Two-way set-associative mapping cache.

The octal numbers listed in Fig. 12-15 are with reference to the main
memory contents illustrated in Fig. 12-13(a). The words stored at addresses
01000 and 02000 of main memory are stored in cache memory at index address
000. Similarly, the words at addresses 02777 and 00777 are stored in cache at
index address 777. When the CPU generates a memory request, the index value
of the address is used to access the cache. The tag field of the CPU address is
then compared with both tags in the cache to determine if a match occurs. The
comparison logic is done by an associative search of the tags in the set similar
to an associative memory search: thus the name “’set-associative.” The hit ratio
will improve as the set size increases because more words with the same index
but different tags can reside in cache. However, an increase in the set size
increases the number of bits in words of cache and requires more complex
comparison logic.

When a miss occurs in a set-associative cache and the set is full, it is
necessary to replace one of the tag-data items with a new value. The most
common replacement algorithms used are: random replacement, first-in, first-
out (FIFO), and least recently used (LRU). With the random replacement policy
the control chooses one tag-data item for replacement at random. The FIFO
procedure selects for replacement the item that has been in the set the longest.
The LRU algorithm selects for replacement the item that has been least recently
used by the CPU. Both FIFO and LRU can be implemented by adding a few
extra bits in each word of cache.

Writing into Cache

An important aspect of cache organization is concerned with memory write
requests. When the CPU finds a word in cache during a read operation, the
main memory is not involved in the transfer. However, if the operation is a
write, there are two ways that the system can proceed.

write-through

write-back

valid bit

SECTION 12.6 Virtual Memory 469

The simplest and most commonly used procedure is to update main
memory with every memory write operation, with cache memory being up-
dated in parallel if it contains the word at the specified address. This is called
the write-through method. This method has the advantage that main memory
always contains the same data as the cache. This characteristic is important in
systems with direct memory access transfers. It ensures that the data residing
in main memory are valid at all times so that an /O device communicating
through DMA would receive the most recent updated data.

The second procedure is called the write-back method. In this method only
the cache location is updated during a write operation. The location is then
marked by a flag so that later when the word is removed from the cache it is
copied into main memory. The reason for the write-back method is that during
the time a word resides in the cache, it may be updated several times; however,
as long as the word remains in the cache, it does not matter whether the copy
in main memory is out of date, since requests from the word are filled from
the cache. Itis only when the word is displaced from the cache that an accurate
copy need be rewritten into main memory. Analytical results indicate that the
number of memory writes in a typical program ranges between 10 and 30
percent of the total references to memory.

Cache Initialization
One more aspect of cache organization that must be taken into consideration
is the problem of initialization. The cache is initialized when power is applied
to the computer or when the main memory is loaded with a complete set of
programs from auxiliary memory. After initialization the cache is considered
to be empty, but in effect it contains some nonvalid data. It is customary to
include with each word in cache a walid bit to indicate whether or not the word
contains valid data.

The cache is initialized by clearing all the valid bits to 0. The valid bit of
a particular cache word is set to 1 the first time this word is loaded from main
memory and stays set unless the cache has to be initialized again. The intro-
duction of the valid bit means that a word in cache is not replaced by another
word unless the valid bit is set to 1 and a mismatch of tags occurs. If the valid
bit happens to be 0, the new word automatically replaces the invalid data. Thus
the initialization condition has the effect of forcing misses from the cache until
it fills with valid data.

12-6 Virtual Memory

In a memory hierarchy system, programs and data are first stored in auxiliary
memory. Portions of a program or data are brought into main memory as they
are needed by the CPU. Virtual memory is a concept used in some large
computer systems that permit the user to construct programs as though alarge

470 CHAPTER TWELVE Memory Organization

address space
memory space

memory space were available, equal to the totality of auxiliary memory. Each
address that is referenced by the CPU goes through an address mapping from
the so-called virtual address to a physical address in main memory. Virtual
memory is used to give programmers the illusion that they have a very large
memory at their disposal, even though the computer actually has a relatively
small main memory. A virtual memory system provides a mechanism for
translating program-generated addresses into correct main memory locations.
This is done dynamically, while programs are being executed in the CPU. The
translation or mapping is handled automatically by the hardware by means of
a mapping table.

Address Space and Memory Space
An address used by a programmer will be called a virtual address, and the set
of such addresses the address space. An address in main memory is called a
location or physical address. The set of such locations is called the memory space.
Thus the address space is the set of addresses generated by programs as they
reference instructions and data; the memory space consists of the actual main
memory locations directly addressable for processing. In most computers the
address and memory spaces are identical. The address space is allowed to be
larger than the memory space in computers with virtual memory.

As an illustration, consider a computer with a main-memory capacity of

32K words (K = 1024). Fifteen bits are needed to specify a physical address in

memory since 32K = 2", Suppose that the computer has available auxiliary
memory for storing 22 = 1024K words. Thus auxiliary memory has a capacity
for storing information equivalent to the capacity of 32 main memories. Denot-
ing the address space by N and the memory space by M, we then have for this
example N = 1024K and M = 32K.

In a multiprogram computer system, programs and data are transferred
to and from auxiliary memory and main memory based on demands imposed
by the CPU. Suppose that program 1 is currently being executed in the CPU.
Program 1 and a portion of its associated data are moved from auxiliary
memory into main memory as shown in Fig. 12-16. Portions of programs and
data need not be in contiguous locations in memory since information is being
moved in and out, and empty spaces may be available in scattered locations
in memory.

In a virtual memory system, programmers are told that they have the total
address space at their disposal. Moreover, the address field of the instruction
code has a sufficient number of bits to specify all virtual addresses. In our
example, the address field of an instruction code will consist of 20 bits but
physical memory addresses must be specified with only 15 bits. Thus CPU will
reference instructions and data with a 20-bit address, but the information at
this address must be taken from physical memory because access to auxiliary
storage for individual words will be prohibitively long. (Remember that for

SECTION 12.6 Virtual Memory 471

Auxiliary memory

Main memory
Program | \ Program 1
Data 1, |
Data 1,2
Data I, |
Program 2
Data 2, |
Memory space
M=32k=2!5
Address space
N =1024K =220

Figure 12-16 Relation between address and memory space in a virtual
memory system.

efficient transfers, auxiliary storage moves an entire record to the main mem-
ory.) A table is then needed, as shown in Fig. 12-17, to map a virtual address
of 20 bits to a physical address of 15 bits. The mapping is a dynamic operation,
which means that every address is translated immediately as a word is refer-
enced by CPU.

The mapping table may be stored in a separate memory as shown in
Fig. 12-17 or in main memory. In the first case, an additional memory unit is
required as well as one extra memory access time. In the second case, the table

Figure 12-17 Memory table for mapping a virtual address.

Virtual address

¥

Virtual Main memory

address Memory address Main
register register memory
(20 bits) table (15 bits)

Main memory
Memory table buffer register
buffer register

472 CHAPTER TWELVE Memory Organization

pages and blocks

page frame

takes space from main memory and two accesses to memory are required with
the program running at half speed. A third alternative is to use an associative
memory as explained below.

Address Mapping Using Pages

The table implementation of the address mapping is simplified if the informa-
tion in the address space and the memory space are each divided into groups
of fixed size. The physical memory is broken down into groups of equal size
called blocks, which may range from 64 to 4096 words each. The term page refers
to groups of address space of the same size. For example, if a page or block
consists of 1K words, then, using the previous example, address space is
divided into 1024 pages and main memory is divided into 32 blocks. Although
both a page and a block are split into groups of 1K words, a page refers to the
organization of address space, while a block refers to the organization of
memory space. The programs are also considered to be split into pages.
Portions of programs are moved from auxiliary memory to main memory in
records equal to the size of a page. The term “page frame” is sometimes used
to denote a block.

Consider a computer with an address space of 8K and a memory space
of 4K. If we split each into groups of 1K words we obtain eight pages and four
blocks as shown in Fig. 12-18. At any given time, up to four pages of address
space may reside in main memory in any one of the four blocks.

The mapping from address space to memory space is facilitated if each
virtual address is considered to be represented by two numbers: a page number
address and a line within the page. In a computer with 2’ words per page, p
bits are used to specify a line address and the remaining high-order bits of the
virtual address specify the page number. In the example of Fig. 12-18, a virtual
address has 13 bits. Since each page consists of 2'° = 1024 words, the high-
order three bits of a virtual address will specify one of the eight pages and the
low-order 10 bits give the line address within the page. Note that the line
address in address space and memory space is the same; the only mapping
required is from a page number to a block number.

The organization of the memory mapping table in a paged system is
shown in Fig. 12-19. The memory-page table consists of eight words, one for
each page. The address in the page table denotes the page number and the
content of the word gives the block number where that page is stored in main
memory. The table shows that pages 1, 2, 5, and 6 are now available in main
memory in blocks 3, 0, 1, and 2, respectively. A presence bit in each location
indicates whether the page has been transferred from auxiliary memory into
main memory. A 0 in the presence bit indicates that this page is not available
in main memory. The CPU references a word in memory with a virtual address
of 13 bits. The three high-order bits of the virtual address specify a page
number and also an address for the memory-page table. The content of the

Page 0

Page |

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Address space
N=8K=2"

SECTION 12-6 Virtual Memory

Block 0

Block |

Block 2

Block 3

Memory space
M=4K=2"2

Figure 12-18 Address space and memory space split into groups of 1K words.

473

word in the memory page table at the page number address is read out into
the memory table buffer register. If the presence bit is a 1, the block number
thus read is transferred to the two high-order bits of the main memory address
register. The line number from the virtual address is transferred into the 10
low-order bits of the memory address register. A read signal to main memory

Table
address
000

001
010
011
100
101
110
111

Figure 12-19 Memory table in a paged system.

Page no.

Line number

[t o1Jor o101 001 1] Virtual address

Memory page table

Presence

¥ vit

0 Main memory
11 1 Block 0
00 1 1 Block 1

0 [[o1 T o101010011 |——|—’ Block 2

0 Main memory Block 3
o1 1 address register
10 1

0

474

CHAPTER TWELVE Memory Organization

transfers the content of the word to the main memory buffer register ready to
be used by the CPU. If the presence bit in the word read from the page table
is 0, it signifies that the content of the word referenced by the virtual address
does not reside in main memory. A call to the operating system is then
generated to fetch the required page from auxiliary memory and place it into
main memory before resuming computation.

Associative Memory Page Table
A random-access memory page table is inefficient with respect to storage
utilization. In the example of Fig. 12-19 we observe that eight words of memory
are needed, one for each page, but at least four words will always be marked
empty because main memory cannot accommodate more than four blocks. In
general, a system with n pages and m blocks would require a memory-page
table of n locations of which up to m blocks will be marked with block numbers
and all others will be empty. As a second numerical example, consider an
address space of 1024K words and memory space of 32K words. If each page
or block contains 1K words, the number of pages is 1024 and the number of
blocks 32. The capacity of the memory-page table must be 1024 words and only
32 locations may have a presence bit equal to 1. At any given time, at least 992
locations will be empty and not in use.

A more efficient way to organize the page table would be to construct it
with a number of words equal to the number of blocks in main memory. In this

‘way the size of the memory is reduced and each location is fully utilized. This

method can be implemented by means of an associative memory with each
word in memory containing a page number together with its corresponding

Figure 12-20 An associative memory page table.

Virtual address
A\

r -
Page no.

Ll 01 I Line number IArgumenl register

001 11
o1o0f|o00
101 0!
110 10

Associative memory

Page no. Block no.

page fault

SECTION 126 Virtual Memory 475

block number. The page field in each word is compared with the page number
in the virtual address. If a match occurs, the word is read from memory and
its corresponding block number is extracted.

Consider again the case of eight pages and four blocks as in the example
of Fig. 12-19. We replace the random access memory-page table with an
associative memory of four words as shown in Fig. 12-20. Each entry in the
associative memory array consists of two fields. The first three bits specify a
field for storing the page number. The last two bits constitute a field for storing
the block number. The virtual address is placed in the argument register. The
page number bits in the argument register are compared with all page numbers
in the page field of the associative memory. If the page number is found, the
5-bit word is read out from memory. The corresponding block number, being
in the same word, is transferred to the main memory address register. If no
match occurs, a call to the operating system is generated to bring the required
page from auxiliary memory.

Page Replacement

A virtual memory system is a combination of hardware and software tech-
niques. The memory management software system handles all the software
operations for the efficient utilization of memory space. It must decide (1)
which page in main memory ought to be removed to make room for a new
Ppage, (2) when a new page is to be transferred from auxiliary memory to main
memory, and (3) where the page is to be placed in main memory. The hardware
mapping mechanism and the memory management software together consti-
tute the architecture of a virtual memory.

When a program starts execution, one or more pages are transferred into
main memory and the page table is set to indicate their position. The program
is executed from main memory until it attempts to reference a page that is still
in auxiliary memory. This condition is called page fault. When page fault occurs,
the execution of the present program is suspended until the required page is
brought into main memory. Since loading a page from auxiliary memory to
main memory is basically an I/O operation, the operating system assigns this
task to the I/O processor. In the meantime, control is transferred to the next
program in memory that is waiting to be processed in the CPU. Later, when
the memory block has been assigned and the transfer completed, the original
program can resume its operation.

When a page fault occurs in a virtual memory system, it signifies that the
page referenced by the CPU is not in main memory. A new page is then
transferred from auxiliary memory to main memory. If main memory is full,
it would be necessary to remove a page from a memory block to make room
for the new page. The policy for choosing pages to remove is determined from
the replacement algorithm that is used. The goal of a replacement policy is to
try to remove the page least likely to be referenced in the immediate future.

Two of the most common replacement algorithms used are the first-in,

476

FIFO

CHAPTER TWELVE Memory Organization

first-out (FIFO) and the least recently used (LRU). The FIFO algorithm selects for
replacement the page that has been in memory the longest time. Each time a
page is loaded into memory, its identification number is pushed into a FIFO
stack. FIFO will be full whenever memory has no more empty blocks. When
anew page must be loaded, the page least recently brought in is removed. The
page to be removed is easily determined because its identification number is
at the top of the FIFO stack. The FIFO replacement policy has the advantage
of being easy to implement. It has the disadvantage that under certain circum-
stances pages are removed and loaded from memory too frequently.

The LRU policy is more difficult to implement but has been more attrac-
tive on the assumption that the least recently used page is a better candidate
for removal than the least recently loaded page as in FIFO. The LRU algorithm
can be implemented by associating a counter with every page that is in main
memory. When a page is referenced, its associated counter is set to zero. At
fixed intervals of time, the counters associated with all pages presently in
memory are incremented by 1. The least recently used page is the page with
the highest count. The counters are often called aging registers, as their count
indicates their age, that is, how long ago their associated pages have been
referenced.

12-7 Memory Management Hardware

In a multiprogramming environment where many programs reside in memory
it becomes necessary to move programs and data around the memory, to vary
the amount of memory in use by a given program, and to prevent a program
from changing other programs. The demands on computer memory brought
about by multiprogramming have created the need for a memory management
system. A memory management system is a collection of hardware and soft-
ware procedures for managing the various programs residing in memory. The
memory management software is part of an overall operating system available
in many computers. Here we are concerned with the hardware unit associated
with the memory management system.
The basic components of a memory management unit are:

1. A facility for dynamic storage relocation that maps logical memory
references into physical memory addresses

2. A provision for sharing common programs stored in memory by differ-
ent users

3. Protection of information against unauthorized access between users
and preventing users from changing operating system functions

The dynamic storage relocation hardware is a mapping process similar to
the paging system described in Sec. 12-6. The fixed page size used in the virtual

segment

logical address

SECTION 12-7 Memory Management Hardware 477

memory system causes certain difficulties with respect to program size and the
logical structure of programs. It is more convenient to divide programs and
data into logical parts called segments. A segment is a set of logically related
instructions or data elements associated with a given name. Segments may be
generated by the programmer or by the operating system. Examples of seg-
ments are a subroutine, an array of data, a table of symbols, or a user’s
program.

The sharing of common programs is an integral part of a multiprogram-
ming system. For example, several users wishing to compile their Fortran
programs should be able to share a single copy of the compiler rather than each
user having a separate copy in memory. Other system programs residing in
memory are also shared by all users in a multiprogramming system without
having to produce multiple copies.

The third issue in multiprogramming is protecting one program from
unwanted interaction with another. An example of unwanted interaction is
one user’s unauthorized copying of another user’s program. Another aspect
of protection is concerned with preventing the occasional user from performing
operating system functions and thereby interrupting the orderly sequence of
operations in a computer installation. The secrecy of certain programs must be
kept from unauthorized personnel to prevent abuses in the confidential activ-
ities of an organization.

The address generated by a segmented program is called a logical address.
This is similar to a virtual address except that logical address space is associated
with variable-length segments rather than fixed-length pages. The logical
address may be larger than the physical memory address as in virtual memory,
but it may also be equal, and sometimes even smaller than the length of the
physical memory address. In addition to relocation information, each segment
has protection information associated with it. Shared programs are placed in
a unique segment in each user’s logical address space so that a single physical
copy can be shared. The function of the memory management unit is to map
logical addresses into physical addresses similar to the virtual memory map-
ping concept.

Segmented-Page Mapping

It was already mentioned that the property of logical space is that it uses
variable-length segments. The length of each segment is allowed to grow and
contract according to the needs of the program being executed. One way of
specifying the length of a segment is by associating with it a number of
equal-size pages. To see how this is done, consider the logical address shown
in Fig. 12-21. The logical address is partitioned into three fields. The segment
field specifies a segment number. The page field specifies the page within the
segment and the word field gives the specific word within the page. A page
field of k bits can specify up to 2* pages. A segment number may be associated

478 CHAPTER TWELVE Memory Organization

Logical address
Segment } Page [Word |
Segment lable Page table
ove——
*
Hiock | Word
Physical address

{a) Logical to physical address mapping

Segment Page Block

(b) Associative memory translation look-aside buffer (TLB)

Figure 12-21 Mapping in d-page memory £ unit.

with just one page or with as many as 2* pages. Thus the length of a segment
would vary according to the number of pages that are assigned to it.

The mapping of the logical address into a physical address is done by
means of two tables, as shown in Fig. 12-21(a). The segment number of the
logical address specifies the address for the segment table. The entry in the

SECTION 12-7 Memory Management Hardware 479

segment table is a pointer address for a page table base. The page table base
is added to the page number given in the logical address. The sum produces
a pointer address to an entry in the page table. The value found in the page
table provides the block number in physical memory. The concatenation of the
block field with the word field produces the final physical mapped address.

The two mapping tables may be stored in two separate small memories
or in main memory. In either case, a memory reference from the CPU will
require three accesses to memory: one from the segment table, one from the
page table, and the third from main memory. This would slow the system
significantly when compared to a conventional system that requires only one
reference to memory. To avoid this speed penalty, a fast associative memory
is used to hold the most recently referenced table entries. (This type of memory
is sometimes called a translation lookaside buffer, abbreviated TLB.) The first time
a given block is referenced, its value together with the corresponding segment
and page numbers are entered into the associative memory as shown in
Fig. 12-21(b). Thus the mapping process is first attempted by associative search
with the given segment and page numbers. If it succeeds, the mapping delay
is only that of the associative memory. If no match occurs, the slower table
mapping of Fig. 12-21(a) is used and the result transformed into the associative
memory for future reference.

Numerical Example

A numerical example may clarify the operation of the memory management
unit. Consider the 20-bit logical address specified in Fig. 12-22(a). The 4-bit
segment number specifies one of 16 possible segments. The 8-bit page number
can specify up to 256 pages, and the 8-bit word field implies a page size of 256
words. This configuration allows each segment to have any number of pages
up to 256. The smallest possible segment will have one page or 256 words. The
largest possible segment will have 256 pages, for a total of 256 X 256 = 64K
words.

The physical memory shown in Fig. 12-22(b) consists of 2% words of 32
bits each. The 20-bit address is divided into two fields: a 12-bit block number
and an 8-bit word number. Thus, physical memory is divided into 4096 blocks
of 256 words each. A page in a logical address has a corresponding block in
physical memory. Note that both the logical and physical address have 20 bits.
In the absence of a memory management unit, the 20-bit address from the CPU
can be used to access physical memory directly.

Consider a program loaded into memory that requires five pages. The
operating system may assign to this program segment 6 and pages 0 through
4, as shown in Fig. 12-23(a). The total logical address range for the program is
from hexadecimal 60000 to 604FF. When the program is loaded into physical
memory, it is distributed among five blocks in physical memory where the
operating system finds empty spaces. The correspondence between each
memory block and logical page number is then entered in a table as shown in

480 CHAPTER TWELVE Memory Organization

4 8 8
Segment | Page Word
(a) Logical address format: 16 segments of 256 pages each,
each page has 256 words
12 8
Block Word

220 x 32
Physical memory

(b) Physical address format: 4096 blocks of 256 words each,
each word has 32 bits

Figure 12-22 An example of logical and physical addresses.

Fig. 12-23(b). The information from this table is entered in the segment and
page tables as shown in Fig. 12-24(a).

Now consider the specific logical address given in Fig. 12-24. The 20-bit
address is listed as a five-digit hexadecimal number. It refers to word number
7E of page 2 in segment 6. The base of segment 6 in the page table is at address
35. Segment 6 has associated with it five pages, as shown in the page table at
addresses 35 through 39. Page 2 of segment 6 is at address 35 + 2 = 37. The
physical memory block is found in the page table to be 019. Word 7E in block
19 gives the 20-bit physical address 0197E. Note that page 0 of segment 6 maps
into block 12 and page 1 maps into block 0. The associative memory in Fig.

Figure 12-23 Example of logical and physical memory address assignment.

Hexadecimal
address Page number

60000 Page 0 Segment Page Block
60100 Page 1 6 00 012
60200 Page 2 g g; g?g
60300 Page 3 6 03 053
60400 P~ 6 04| ast
604FF aee

(a) Logical address assignment

(b) Segment-page versus
" memory block assignment

Segment table

35

A3

Figure 12-24 Logical to physical memory

SECTION 12-7 Memory Management Hardware 481

Logical address (in haxadecimal)

[s

02

1 =

35
36
37
38
39

A3

(a) Segment and page table mapping

Page table

012

019

053

A61

012

000FF

01200

012FF

01900
0197E
019FF

Segment Page Block
6 02 019
6 04 A6l

in hexadecimal).

(b) Associative memory (TLB)

ple (all

Physical memory

Block 0

Block 12

32-bit word

bers are

482

CHAPTER TWELVE Memory Organization

12-24(b) shows that pages 2 and 4 of segment 6 have been referenced previously
and therefore their corresponding block numbers are stored in the associative
memory.

From this example it should be evident that the memory management
system can assign any number of pages to each segment. Each logical page can
be mapped into any block in physical memory. Pages can move to different
blocks in memory depending on memory space requirements. The only updat-
ing required is the change of the block number in the page table. Segments can
grow or shrink independently without affecting each other. Different seg-
ments can use the same block of memory if it is required to share a program
by many users. For example, block number 12 in physical memory can be
assigned a second logical address FO000 through FOOFF. This specifies segment
number 15 and page 0, which maps to block 12 as shown in Fig. 12-24(a).

Memory Protection

Memory protection can be assigned to the physical address or the logical
address. The protection of memory through the physical address can be done
by assigning to each block in memory a number of protection bits that indicate
the type of access allowed to its corresponding block. Every time a page is
moved from one block to another it would be necessary to update the block
protection bits. A much better place to apply protection is in the logical address
space rather than the physical address space. This can be done by including
protection information within the segment table or segment register of the
memory management hardware.

The content of each entry in the segment table or a segment register is
called a descriptor. A typical descriptor would contain, in addition to a base
address field, one or two additional fields for protection purposes. A typical
format for a segment descriptor is shown in Fig. 12-25. The base address field
gives the base of the page table address in a segmented-page organization or
the block base address in a segment register organization. This is the address
used in mapping from a logical to the physical address. The length field gives
the segment size by specifying the maximum number of pages assigned to the
segment. The length field is compared against the page number in the logical
address. A size violation occurs if the page number falls outside the segment
length boundary. Thus a given program and its data cannot access memory not
assigned to it by the operating system.

The protection field in a segment descriptor specifies the access rights
available to the particular segment. In a segmented-page organization, each

Figure 12-25 Format of a typical segment descriptor.

Base address I Lengtﬂ Protection—l

Problems 483

entry in the page table may have its own protection field to describe the access
rights of each page. The protection information is set into the descriptor by the
master control program of the operating system. Some of the access rights of
interest that are used for protecting the programs residing in memory are:

1. Full read and write privileges
2. Read only (write protection)

3. Execute only (program protection)
4. System only (operating system protection)

Full read and write privileges are given to a program when it is executing
its own instructions. Write protection is useful for sharing system programs
such as utility programs and other library routines. These system programs are
stored in an area of memory where they can be shared by many users. They
can be read by all programs, but no writing is allowed. This protects them from
being changed by other programs.

The execute-only condition protects programs from being copied. It re-
stricts the segment to be referenced only during the instruction fetch phase but
not during the execute phase. Thus it allows the users to execute the segment
program instructions but prevents them from reading the instructions as data
for the purpose of copying their content.

Portions of the operating system will reside in memory at any given time.
These system programs must be protected by making them inaccessible to
unauthorized users. The operating system protection condition is placed in the
descriptors of all operating system programs to prevent the occasional user

from accessing operating

-t o
’| PROBLEMS |— =
12-1. a. How many 128 x 8 RAM chips are needed to provide a Y capacity
of 2048 bytes?

b. How many lines of the address bus must be used to access 2048 bytes of
memory? How many of these lines will be common to all chips?
¢. How many lines must be decoded for chip select? Specify the size of the
decoders.
12-2. A computer uses RAM chips of 1024 x 1 capacity.
a. How many chips are needed, and how should their address lines be
connected to provide a memory capacity of 1024 bytes?
b. How many chips are needed to provide a memory capacity of 16K bytes?
Explain in words how the chips are to be connected to the address bus.
12-3. A ROM chip of 1024 % Bbits has four select inputs and operates from a 5-volt

484

CHAPTER TWELVE Memory Organization

12-5.

12-6.

12-7.

12-8.

12-9.

12-10.

12-11.

12-12.

power supply. How many pins are needed for the IC package? Draw a block
diagram and label all input and output terminals in the ROM.

Extend the memory system of Fig. 12-4 to 4096 bytes of RAM and 4096 bytes
of ROM. List the memory-address map and indicate what size decoders are
needed.

A computer employs RAM chips of 256 X 8 and ROM chips of 1024 X 8. The
computer system needs 2K bytes of RAM, 4K bytes of ROM, and four
interface units, each with four registers. A memory-mapped /O configura-
tion is used. The two highest-order bits of the address bus are assigned 00
for RAM, 01 for ROM, and 10 for interface registers.

a. How many RAM and ROM chips are needed?

b. Draw a memory-address map for the system.

c. Give the address range in hexadecimal for RAM, ROM, and interface.
An 8-bit computer has a 16-bit address bus. The first 15 lines of the address
are used to select a bank of 32K bytes of memory. The high-order bit of the
address is used to select a register which receives the contents of the data
bus. Explain how this configuration can be used to extend the memory
capacity of the system to eight banks of 32K bytes each, for a total of 256K
bytes of memory.

A magnetic disk system has the following parameters:

T, = average time to position the magnetic head over a track
R = rotation speed of disk in revolutions per second
N: = number of bits per track

N, = number of bits per sector

Calculate the average time T, that it will take to read one sector.

What is the transfer rate of an eight-track magnetic tape whose speed is 120
inches per second and whose density is 1600 bits per inch?

Obtain the complement function for the match logic of one word in an

associative memory. In other words, show that M/ is the sum of exclusive-

OR functions. Draw the logic diagram for M/ and terminate it with an

inverter to obtain M;.

Obtain the Boolean function for the match logic of one word in an associative

memory taking into consideration a tag bit that indicates whether the word

is active or inactive.

What additional logic is required to give a no-match result for a word in an

associative memory when all key bits are zeros?

a. Draw the logic diagram of all the cells of one word in an associative
memory. Include the read and write logic of Fig. 12-8 and the match logic
of Fig. 12-9.

b. Draw the logic diagram of all cells along one vertical column (column j)
in an associative memory. Include a common output line for all bits in
the same column.

486 CHAPTER TWELVE Memory Organization

c. If a page consists of 2K words, how many pages and blocks are there in
the system?
12-20. A virtual memory has a page size of 1K words. There are eight pages
and four blocks. The associative memory page table contains the following
entries:

Block

L =] g

(=R

Make a list of all virtual addresses (in decimal) that will cause a page fault
if used by the CPU.

12-21. Avirtual memory system has an address space of 8K words, a memory space
ofinmdn.mdp-gzmdhﬁkamuflenis(mﬁngl&)ﬂe
following page occur during a given time interval. (Only
pn@echnnguml.uud [fﬂwmpageism‘emdw it is not listed
twice.)

4 20126140102357

Detemhethefmupupthllmuﬁdeﬂtinmlhmmylfunuhpm
hange if the repl algorithm used is (a) FIFO; (b) LRU.

12-22. Determine the two logical addresses from Fig. 12-24(a) that will access
physical memory at hexadecimal address 012AF.

12-23. The logical add space in a comp ists of 128 seg
Mug:mtnnhmupw&pagunﬂkwdaineuh Physical memory
consists of 4K blocks of 4K words in each. Formulate the logical and physical
address formats.

12-24. Give the binary number of the logical address formulated in Prob. 12-23 for
segment 36 and word number 2000 in page 15.

—= REFERENCES |

1. Baer, J. L., G Si Archi . Py MD: Comp Science Press,

e 7 y
2. D , 5., Comyp Architecture: A Modern Synthesis, Vol. 1. New York: John
Wiley 1939

3. Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice
Hall, 1991.

10.

11.

References 487

. Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.

New York: McGraw-Hill, 1990.

. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New

York: McGraw-Hill, 1984.

. Kain, R., Computer Architecture: Software and Hardware, Vol. 1. Englewood Cliffs, NJ:

Prentice Hall, 1989.

. Langholz, G., J. Francioni, and A. Kandel, Elements of Computer Organization.

Englewood Cliffs, NJ: Prentice Hall, 1989.

. Murray, W. D., Computer and Digital System Architecture. Englewood Cliffs, NJ:

Prentice Hall, 1990.

. Patterson, D. A., and]. L. Hennessy, Computer Architecture: A Quantitative Approach.

San Mateo, CA: Morgan Kaufmann Publishers, 1990.

Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice
Hall, 1990.

Stone, H. S. (ed.), Introduction to Computer Architecture, 2nd ed. Chicago: Science
Research Associates, 1980.

