10-1 Introduction

10-2 Addition and Subtraction

103 Multiplication Algorithms

10-4 Division Algorithms

10-5 Floating-Point Arithmetic Operations

10-7 Decimal Arithmetic Operations

10-1 Introduction

Arithmetic instructions in digital computers manipulate data to produce re-
sults necessary for the solution of computational problems. These instructions
perform arithmetic calculations and are responsible for the bulk of activity
involved in processing data in a computer. The four basic arithmetic

are addition, subtraction, multiplication, and division. From these basic
operations, it is possible to formulate other arithmetic functions and solve
scientific problems by means of numerical analysis methods.

An arithmetic processor is the part of a processor unit that executes
arithmetic operations. The data type assumed to reside in processor registers
during the execution of an arithmetic instruction is specified in the definition
of the instruction. An arithmetic instruction may specify binary or decimal
dnta,nndinudnmaeﬂudat&mybemﬂud—pomlwﬁuwm
Fixed-point numbers may represent imegerswfncﬂms.Neyﬂnmmbui
Wbem"@"d"m&‘h‘ or signed The arith-
metic processor is quﬁnplei.(onlyabimryﬁud—pdntﬂhuﬂmh
included. It would be more complicated if it includes all four arithmetic oper-

333

334 CHAPTER TEN Computer Arithmetic

algorithm

ations for binary and decimal data in fixed-point and floating-point represen-
tation.

At an early age we are taught how to perform the basic arithmetic
operations in signed-magnitude representation. This knowledge is valuable
when the operations are to be implemented by hardware. However, the de-
signer must be thoroughly familiar with the sequence of steps to be followed
in order to carry out the operation and achieve a correct result. The solution
to any problem that is stated by a finite number of well-defined procedural
steps is called an algorithm. An algorithm was stated in Sec. 3-3 for the addition
of two fixed-point binary numbers when negative numbers are in signed-2’s
complement representation. This is a simple algorithm since all it needs for its
implementation is a parallel binary adder. When negative numbers are in
signed-magnitude representation, the algorithm is slightly more complicated
and its implementation requires circuits to add and subtract, and to compare
the signs and the magnitudes of the numbers. Usually, an algorithm will
contain a number of procedural steps which are dependent on results of
previous steps. A convenient method for presenting algorithms is a flowchart.
The computational steps are specified in the flowchart inside rectangular
boxes. The decision steps are indicated inside diamond-shaped boxes from
which two or more alternate paths emerge.

In this chapter we develop the various arithmetic algorithms and show
the procedure for implementing them with digital hardware. We consider
addition, subtraction, multiplication, and division for the following types of
data:

1. Fixed-point binary data in signed-magnitude representation

2. Fixed-point binary data in signed-2's complement representation
3. Floating-point binary data

4. Binary-coded decimal (BCD) data

10-2 Addition and Subtraction

As stated in Sec. 3-3, there are three ways of representing negative fixed-point
binary numbers: signed-magnitude, signed-1's complement, or signed-2's
complement. Most computers use the signed-2’s complement representation
when performing arithmetic operations with integers. For floating-point oper-
ations, most computers use the signed-magnitude representation for the man-
tissa. In this section we develop the addition and subtraction algorithms for
data represented in signed-magnitude and again for data represented in
signed-2’s complement.

It is important to realize that the adopted representation for negative
numbers refers to the representation of numbers in the registers before and

magnitude

addition
(subtraction)
algorithm

SECTION 102 Addition and Subtraction 335

after the execution of the arithmetic operation. It does not mean that comple-
ment arithmetic may not be used in an intermediate step. For example, it is
convenient to employ complement arithmetic when performing a subtraction
operation with numbers in signed-magnitude representation. As long as the
initial minuend and subtrahend, as well as the final difference, are in signed-
magnitude form the fact that complements have been used in an intermediate
step does not alter the fact that the representation is in signed-magnitude.

Addition and Subtraction with Signed-Magnitude Data

The representation of numbers in signed-magnitude is familiar because it is
used in everyday arithmetic calculations. The procedure for adding or subtract-
ing two signed binary numbers with paper and pencil is simple and straight-
forward. A review of this procedure will be helpful for deriving the hardware
algorithm.

We designate the magnitude of the two numbers by A and B. When the
signed numbers are added or subtracted, we find that there are eight different
conditions to consider, depending on the sign of the numbers and the opera-
tion performed. These conditions are listed in the first column of Table 10-1.
The other columns in the table show the actual operation to be performed with
the magnitude of the numbers. The last column is needed to prevent a negative
zero. In other words, when two equal numbers are subtracted, the result
should be +0 not —0.

The algorithms for addition and subtraction are derived from the table
and can be stated as follows (the words inside parentheses should be used for
the subtraction algorithm):

Addition (subtraction) algorithm: when the signs of A and B are identical
(different), add the two magnitudes and attach the sign of A to the result. When
the signs of A and B are different (identical), compare the magnitudes and

TABLE 10-1 Addition and Subtraction of Signed-Magnitude Numbers

Subtract Magnitudes
Add
Operation Magnitudes When A >B WhenA<B WhenA =B

(+A) + (+B) +(A + B)

(+A) + (-B) +(A - B) -(B - A) +(A - B)
(-A) + (+B) -(A-B) +(B - A) +(A - B)
(-A)+(-B) -(A+B)

(+A) - (+B) +(A - B) -(B - A) +(A - B)

(+A)-(-B) +(A+B)
(-A) - (+B) -(A+B)
(-4) - (-B) -(A-B) +(B - A) +(A - B)

336

CHAPTER TEN Computer Arithmetic

subtract the smaller number from the larger. Choose the sign of the result to
be the same as A if A > B or the complement of the sign of A if A < B. If the
two magnitudes are equal, subtract B from A and make the sign of the result
positive.

The two algorithms are similar except for the sign comparison. The
procedure to be followed for identical signs in the addition algorithm is the
same as for different signs in the subtraction algorithm, and vice versa.

Hardware Implementation

To implement the two arithmetic operations with hardware, it is first necessary
that the two numbers be stored in registers. Let A and B be two registers that
hold the magnitudes of the numbers, and A, and B, be two flip-flops that hold
the corresponding signs. The result of the operation may be transferred to a
third register: however, a saving is achieved if the result is transferred into A
and A,. Thus A and A together form an accumulator register.

Consider now the hardware implementation of the algorithms above.
First, a parallel-adder is needed to perform the microoperation A + B. Second,
a comparator circuit is needed to establish if A > B, A = B, or A < B. Third,
two parallel-subtractor circuits are needed to perform the microoperations
A — Band B — A. The sign relationship can be determined from an exclusive-
OR gate with A, and B; as inputs.

This procedure requires a magnitude comparator, an adder, and two
subtractors. However, a different procedure can be found that requires less
equipment. First, we know that subtraction can be accomplished by means of
complement and add. Second, the result of a comparison can be determined
from the end carry after the subtraction. Careful investigation of the alterna-
tives reveals that the use of 2's complement for subtraction and comparison is
an efficient procedure that requires only an adder and a complementer.

Figure 10-1 shows a block diagram of the hardware for implementing the
addition and subtraction operations. It consists of registers A and B and sign
flip-flops A, and B;. Subtraction is done by adding A to the 2's complement of
B. The output carry is transferred to flip-flop E, where it can be checked to
determine the relative magnitudes of the two numbers. The add-overflow
flip-flop AVF holds the overflow bit when A and B are added. The A register
provides other microoperations that may be needed when we specify the
sequence of steps in the algorithm.

The addition of A plus B is done through the parallel adder. The S (sum)
output of the adder is applied to the input of the A register. The complementer
provides an output of B or the complement of B depending on the state of the
mode control M. The complementer consists of exclusive-OR gates and the
parallel adder consists of full-adder circuits as shown in Fig. 47 in Chap. 4.
The M signal is also applied to the input carry of the adder. When M = 0, the
output of B is transferred to the adder, the input carry is 0, and the output of

complement and
increment

SECTION 102 Addition and Subtraction 337

& ESEeEE

2]
E

M (Mode control)

| Avegisier J=— Lost sum

Figure 10-1 Hardware for signed-magnitude addition and subtraction.

the adder is equal to the sum A + B. When M = 1, the 1's complement of B
is applied to the adder, the input carry is 1, and output S = A + B + 1. This
is equal to A plus the 2's complement of B, which is equivalent to the subtrac-
tion A ~ B.

Hardware Algorithm
The flowchart for the hardware algorithm is presented in Fig. 10-2. The two
signs A, and B, are compared by an exclusive-OR gate. If the output of the gate
is 0, the signs are identical; if it is 1, the signs are different. For an add operation,
identical signs dictate that the magnitudes be added. For a subtract operation,
different signs dictate that the magnitudes be added. The magnitudes are
added with a microoperation EA «+A + B, where EA is a register that com-
bines E and A. The carry in E after the addition constitutes an overflow if it is
equal to 1. The value of E is transferred into the add-overflow flip-flop AVF.
The two magnitudes are subtracted if the signs are different for an add
operation or identical for a subtract operation. The magnitudes are subtracted
by adding A to the 2's complement of B. No overflow can occur if the numbers
are subtracted so AVF is cleared to 0. A 1 in E indicates that A = B and the
number in A is the correct result. If this number is zero, the sign A, must be
made positive to avoid a negative zero. A 0in E indicates that A < B. For this
case it is necessary to take the 2's complement of the value in A. This operation
can be done with one micmnpernlimdd—x + 1. However, we assume that
the A register has circuits for microoperations complement and increment, so the
2's complement is obtained from these two microoperations. In other paths of
the flowchart, the sign of the result is the same as the sign of A, so no change
in A, is required. However, when A < B, the sign of the result is the comple-
ment of the original sign of A. It is then necessary to complement A, to obtain

338 CHAPTER TEN Computer Arithmetic

Subtract operation Add operation

Minuend in 4
Subtrahend in B

Augend in 4

Addend in B

=1 =0
A® B,
I A #B, A, =B,

EA«<A+B

e]

END
(result isin 4 and A4;)

Figure 10-2 Flowchart for add and subtract operations.

the correct sign. The final result is found in register A and its sign in A,. The
value in AVF provides an overflow indication. The final value of E is immaterial.

Addition and Subtraction with Signed-2’s

Complement Data

The signed-2's complement representation of numbers together with arith-
metic algorithms for addition and subtraction are introduced in Sec. 3-3. They
are summarized here for easy reference. The leftmost bit of a binary number
represents the sign bit: 0 for positive and 1 for negative. If the sign bitis 1, the
entire number is represented in 2’s complement form. Thus +33 is represented

SECTION 10-2 Addition and Subtraction 339

as 00100001 and —33 as 11011111. Note that 11011111 is the 2's complement of
00100001, and vice versa.

The addition of two numbers in signed-2’s complement form consists of
adding the numbers with the sign bits treated the same as the other bits of the
number. A carry-out of the sign-bit position is discarded. The subtraction
consists of first taking the 2’s complement of the subtrahend and then adding
it to the minuend.

When two numbers of n digits each are added and the sum occupiesn + 1
digits, we say that an overflow occurred. The effect of an overflow on the sum
of two signed-2's complement numbers is discussed in Sec. 3-3. An overflow
can be detected by inspecting the last two carries out of the addition. When
the two carries are applied to an exclusive-OR gate, the overflow is detected
when the output of the gate is equal to 1.

The register configuration for the hardware implementation is shown in
Fig. 10-3. This is the same configuration as in Fig. 10-1 except that the sign bits
are not separated from the rest of the registers. We name the A register AC
(accumulator) and the B register BR. The leftmost bit in AC and BR represent
the sign bits of the numbers. The two sign bits are added or subtracted together
with the other bits in the complementer and parallel adder. The overflow
flip-flop V is set to 1 if there is an overflow. The output carry in this case is
discarded.

The algorithm for adding and subtracting two binary numbers in signed-
2’s complement representation is shown in the flowchart of Fig. 10-4. The sum
is obtained by adding the contents of AC and BR (including their sign bits). The
overflow bit V is set to 1 if the exclusive-OR of the last two carries is 1, and it
is cleared to 0 otherwise. The subtraction operation is accomplished by adding
the content of AC to the 2’s complement of BR. Taking the 2’s complement of
BR has the effect of changing a positive number to negative, and vice versa.
An overflow must be checked during this operation because the two numbers
added could have the same sign. The programmer must realize that if an
overflow occurs, there will be an erroneous result in the AC register.

Figure 10-3 Hardware for signed-2’s complement addition and subtraction.

| BR register j

Complementer and
parallel adder

Overflow

l AC register]

340

CHAPTER TEN Computer Arithmetic

Subtract Add
Minuend in AC Augend in AC
Subtrahend in BR Addend in BR
ACAC+BR+1 AC+AC + BR
Veoverflow Ve—overflow

END (END)

Figure 10-4 Algorithm for adding and subtracting numbers in signed-2's
complement representation.

Comparing this algorithm with its signed-magnitude counterpart, we
note that it is much simpler to add and subtract numbers if negative numbers
are maintained in signed-2’s complement representation. For this reason most
computers adopt this representation over the more familiar signed-magnitude.

10-3 Multiplication Algorithms

Multiplication of two fixed-point binary numbers in signed-magnitude repre-
sentation is done with paper and pencil by a process of successive shift and
add operations. This process is best illustrated with a numerical example.

23 10111 Multiplicand
19 x 10011 Multiplier

10111

10111

00000 +

00000

10111
437 110110101 Product

The process consists of looking at successive bits of the multiplier, least signif-
icant bit first. If the multiplier bit is a 1, the multiplicand is copied down;
otherwise, zeros are copied down. The numbers copied down in successive
lines are shifted one position to the left from the previous number. Finally, the
numbers are added and their sum forms the product.

SECTION 10-3 Multiplication Algorithms 341

The sign of the product is determined from the signs of the multiplicand
and multiplier. If they are alike, the sign of the product is positive. If they are
unlike, the sign of the product is negative.

Hardware Implementation for Signed-Magnitude Data

When multiplication is implemented in a digital computer, it is convenient to
change the process slightly. First, instead of providing registers to store and
add simultaneously as many binary numbers as there are bits in the multiplier,
it is convenient to provide an adder for the summation of only two binary
numbers and successively accumulate the partial products in a register. Sec-
ond, instead of shifting the multiplicand to the left, the partial product is
shifted to the right, which results in leaving the partial product and the
multiplicand in the required relative positions. Third, when the corresponding
bit of the multiplier is 0, there is no need to add all zeros to the partial product
since it will not alter its value.

The hardware for multiplication consists of the equipment shown in Fig.
10-1 plus two more registers. These registers together with registers A and B
are shown in Fig. 10-5. The multiplier is stored in the Q register and its sign
in Q. The sequence counter SC is initially set to a number equal to the number
of bits in the multiplier. The counter is decremented by 1 after forming each
partial product. When the content of the counter reaches zero, the product is
formed and the process stops.

Initially, the multiplicand is in register B and the multiplier in Q. The sum
of A and B forms a partial product which is transferred to the EA register. Both
partial product and multiplier are shifted to the right. This shift will be denoted
by the statement shr EAQ to designate the right shift depicted in Fig. 10-5. The

Figure 10-5 Hardware for multiply operation.

I B register | | Sequence counter (SC)

Complementer and
parallel adder

(rightmost bit)

T
0 A register |—>i Q register |

342

CHAPTER TEN Computer Arithmetic

least significant bit of A is shifted into the most significant position of Q, the
bit from E is shifted into the most significant position of A, and 0 s shifted into
E. After the shift, one bit of the partial product is shifted into Q, pushing the
multiplier bits one position to the right. In this manner, the rightmost flip-flop
in register Q, designated by Q,, will hold the bit of the multiplier, which must
be inspected next.

Hardware Algorithm
Figure 10-6 is a flowchart of the hardware multiply algorithm. Initially, the

multiplicand is in B and the multiplier in Q. Their corresponding signs are in
B, and Q,, respectively. The signs are compared, and both A and Q are set to
Figure 10-6 Flowchart for multiply operation.

Multiply operation

Multiplicand in B

Multiplier in Q

A, QDB
0 < 0:®B;
A«0,E«0
SCen-1

EA+~A+B

shr EAQ
SC+SC-1

#0 =
sc 2

END
(product is in AQ)

SECTION 10-3 Multiplication Algorithms 343

correspond to the sign of the product since a double-length product will be
stored in registers A and Q. Registers A and E are cleared and the sequence
counter SC is set to a number equal to the number of bits of the multiplier. We
are assuming here that operands are transferred to registers from a memory
unit that has words of n bits. Since an operand must be stored with its sign,
one bit of the word will be occupied by the sign and the magnitude will consist
of n — 1 bits.

After the initialization, the low-order bit of the multiplier in Q, is tested.
If it is a 1, the multiplicand in B is added to the present partial product in A.
If it is a 0, nothing is done. Register EAQ is then shifted once to the right to
form the new partial product. The sequence counter is decremented by 1 and
its new value checked. If it is not equal to zero, the process is repeated and a
new partial product is formed. The process stops when SC = 0. Note that the
partial product formed in A is shifted into Q one bit at a time and eventually
replaces the multiplier. The final product is available in both A and Q, with A
holding the most significant bits and Q holding the least significant bits.

The previous numerical example is repeated in Table 10-2 to clarify the
hardware multiplication process. The procedure follows the steps outlined in
the flowchart.

Booth Multiplication Algorithm

Booth algorithm gives a procedure for multiplying binary integers in signed-2’s
complement representation. It operates on the fact that strings of 0s in the
multiplier require no addition but just shifting, and a string of 1’s in the
multiplier from bit weight 2* to weight 2™ can be treated as 2**! — 2™. For
example, the binary number 001110 (+14) has a string of 1’s from 2° to 2!

TABLE 10-2 Numerical Example for Binary Multiplier

Multiplicand B = 10111 E A Q SC
Multiplier in Q 0 00000 10011 101
Q. =1;add B 10111
First partial product 0 10111
Shift right EAQ 0 01011 11001 100

Q,=1;add B 10111

Second partial product 00010

Shift right EAQ 10001 01100 011
Q. = 0; shift right EAQ 01000 10110 010
Q,. = 0; shift right EAQ 00100 01011 001
Q. =1;add B 10111

Fifth partial product 11011

Shift right EAQ 01101 10101 000
Final product in AQ = 0110110101

oo -

o o

344 cHaPTER TEN Computer Arithmetic

(k = 3,m = 1). The number can be represented as 2t*! — 2™ = 2 — 2! = 16—
2 = 14. Therefore, the multiplication M X 14, where M is the multiplicand and
14 the multiplier, can be done as M x 2* — M X 2. Thus the product can be
obtained by shifting the binary multiplicand M four times to the left and
subtracting M shifted left once.

As in all multiplication schemes, Booth algorithm requires examination
of the multiplier bits and shifting of the partial product. Prior to the shifting,
the multiplicand may be added to the partial product, subtracted from the
partial product, or left unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product upon encounter-
ing the first least significant 1 in a string of 1’s in the multiplier.

2. The multiplicand is added to the partial product upon encountering the
first 0 (provided that there was a previous 1) in a string of (s in the
multiplier.

3. The partial product does not change when the multiplier bit is identical
to the previous multiplier bit.

The algorithm works for positive or negative multipliers in 2’s comple-
ment representation. This is because a negative multiplier ends with a string
of 1’s and the last operation will be a subtraction of the appropriate weight.
For example, a multiplier equal to —14 is represented in 2's complement as
110010 and is treated as —2¢ + 22 — 2' = —-14.

The hardware implementation of Booth algorithm requires the register
configuration shown in Fig. 10-7. This is similar to Fig. 10-5 except that the sign
bits are not separated from the rest of the registers. To show this difference,
we rename registers A, B, and Q, as AC, BR, and QR, respectively. Q, desig-
nates the least significant bit of the multiplier in register QR. An extra flip-flop
Qn+1 is appended to QR to facilitate a double bit inspection of the multiplier.
The flowchart for Booth algorithm is shown in Fig. 10-8. AC and the appended

Figure 10-7 Hardware for Booth algorithm.

L BR register —l L Sequence counter (SC)

Complementer and
parallel adder

O Qnnr

AC register '—DL OR register

SECTION 10-3 Multiplication Algorithms 345

Multiply

Multiplicand in BR
Multiplier in QR

AC+ 0
Onsy <0
SC« n

I AC+AC+BR+1

ashr (AC & QR)
SC«SC—-1

#*0

Ne

Figure 10-8 Booth algorithm for multiplication of signed-2's complement

numbers.

346

CHAPTER TEN Computer Arithmetic

bit Q,., are initially cleared to 0 and the sequence counter SC is set to a number
n equal to the number of bits in the multiplier. The two bits of the multiplier
in Q, and Q,.; are inspected. If the two bits are equal to 10, it means that the
first 1 in a string of 1's has been encountered. This requires a subtraction of
the multiplicand from the partial product in AC. If the two bits are equal to 01,
it means that the first 0 in a string of 0’s has been encountered. This requires
the addition of the multiplicand to the partial product in AC. When the two
bits are equal, the partial product does not change. An overflow cannot occur
because the addition and subtraction of the multiplicand follow each other. As
a consequence, the two numbers that are added always have opposite signs,
a condition that excludes an overflow. The next step is to shift right the partial
product and the multiplier (including bit Qn+,). This is an arithmetic shift right
(ashr) operation which shifts AC and QR to the right and leaves the sign bit
in AC unchanged (see Sec. 4-6). The sequence counter is decremented and the
computational loop is repeated n times.

A numerical example of Booth algorithm is shown in Table 10-3 forn = 5.
It shows the step-by-step multiplication of (—9) X (—13) = +117. Note that the
multiplier in QR is negative and that the multiplicand in BR is also negative.
The 10-bit product appears in AC and QR and is positive. The final value of Q,.,
is the original sign bit of the multiplier and should not be taken as part of the
product.

Array Multiplier

Checking the bits of the multiplier one at a time and forming partial products
is a sequential operation that requires a sequence of add and shift microoper-
ations. The multiplication of two binary numbers can be done with one micro-
operation by means of a combinational circuit that forms the product bits all

TABLE 10-3 Example of Multiplication with Booth Algorithm

BR = 10111

Q.Q.e1 BR +1=01001 AC QR Qun N

Initial 00000 10011 0 101
10 Subtract BR 01001
01001

ashr 00100 11001 1 100

11 ashr 00010 01100 1 011
01 Add BR 10111
11001

ashr 11100 10110 0 010

00 ashr 11110 01011 0 001
10 Subtract BR 01001
00111

ashr 00011 10101 1 000

SECTION 10-3 Multiplication Algorithms 347

at once. This is a fast way of multiplying two numbers since all it takes is the
time for the signals to propagate through the gates that form the multiplication
array. However, an array multiplier requires a large number of gates, and for
this reason it was not economical until the development of integrated circuits.

To see how an array multiplier can be implemented with a combinational
circuit, consider the multiplication of two 2-bit numbers as shown in Fig. 10-9.
The multiplicand bits are b, and by, the multiplier bits are 4, and 4,, and the
product is ¢3¢, ¢; ¢o. The first partial product is formed by multiplying a, by b, bo.
The multiplication of two bits such as 4, and b, produces a 1 if both bits are 1;
otherwise, it produces a 0. This is identical to an AND operation and can be
implemented with an AND gate. As shown in the diagram, the first partial
product is formed by means of two AND gates. The second partial product is
formed by multiplying a, by b, by and is shifted one position to the left. The two
partial products are added with two half-adder (HA) circuits. Usually, there are
more bits in the partial products and it will be necessary to use full-adders to
produce the sum. Note that the least significant bit of the product does not have
to go through an adder since it is formed by the output of the first AND gate.

A combinational circuit binary multiplier with more bits can be con-
structed in a similar fashion. A bit of the multiplier is ANDed with each bit of
the multiplicand in as many levels as there are bits in the multiplier. The binary
output in each level of AND gates is added in parallel with the partial product
of the previous level to form a new partial product. The last level produces the
product. For j multiplier bits and k multiplicand bits we need j X k AND gates
and (j — 1) k-bit adders to produce a product of j + k bits.

Asasecond example, consider a multiplier circuit that multiplies a binary
number of four bits with a number of three bits. Let the multiplicand be

Figure 10-9 2-bit by 2-bit array multiplier.

ay '
by by
by by
a ao
agb, agbg
a by abg a n by
1
] €2 €1 €o
HA HA
c s c S

o
<
o
N
o2

Co

348 cHapTER TEN Computer Arithmeric

ay

BCCAN

4-bit adder

Augend

Sum and output carry

Augend

4-hit adder

Sum and output carmy

RN

g s] €3] L] ‘o

Figure 10-10 4-bit by 3-bit array multiplier.

represented by by b, by by and the multiplier by a;a, a,. Since k = 4and j = 3, we
need 12 AND gates and two 4-bit adders to produce a product of seven bits.
The logic diagram of the multiplier is shown in Fig. 10-10.

10-4 Division Algorithms
Division of two fixed-point binary numbers in signed-magnitude representa-

tion is done with paper and pencil by a process of successive compare, shift,
and subtract operations. Binary division is simpler than decimal division be-

partial remainder

SECTION 10-4 Division Algorithms 349

cause the quotient digits are either 0 or 1 and there is no need to estimate how
many times the dividend or partial remainder fits into the divisor. The division
process is illustrated by a numerical example in Fig. 10-11. The divisor B
consists of five bits and the dividend A, of ten bits. The five most significant
bits of the dividend are compared with the divisor. Since the 5-bit number is
smaller than B, we try again by taking the six most significant bits of A and
compare this number with B. The 6-bit number is greater than B, so we place
a 1 for the quotient bit in the sixth position above the dividend. The divisor is
then shifted once to the right and subtracted from the dividend. The difference
is called a partial remainder because the division could have stopped here to
obtain a quotient of 1 and a remainder equal to the partial remainder. The
process is continued by comparing a partial remainder with the divisor. If the
partial remainder is greater than or equal to the divisor, the quotient bit is equal
to 1. The divisor is then shifted right and subtracted from the partial remainder.
If the partial remainder is smaller than the divisor, the quotient bit is 0 and no
subtraction is needed. The divisor is shifted once to the right in any case. Note
that the result gives both a quotient and a remainder.

Hardware Implementation for Signed-Magnitude Data

When the division is implemented in a digital computer, it is convenient to
change the process slightly. Instead of shifting the divisor to the right, the
dividend, or partial remainder, is shifted to the left, thus leaving the two
numbers in the required relative position. Subtraction may be achieved by
adding A to the 2's complement of B. The information about the relative
magnitudes is then available from the end-carry.

The hardware for implementing the division operation is identical to that
required for multiplication and consists of the components shown in Fig. 10-5.
Register EAQ is now shifted to the left with 0 inserted into Q, and the previous
value of E lost. The numerical example is repeated in Fig. 10-12 to clarify the

Figure 10-11 Example of binary division.

Divisor: 11010 Quotient = Q

B =10001)OI]IOOOOOO Dividend = 4
01110 5 bits of A < B, quotient has 5 bits
011100 6 bitsof A > B
-10001 Shift right B and subtract: enter 1 in Q
-010110 7 bits of remainder > B
--10001 Shift right B and subtract; enter 1 in Q
--001010 Remainder < B; enter 0 in Q; shift right B
---010100 Remainder > B
----10001 Shift right B and subtract; enter 1 in Q

Remainder < B; enter 0 in Q
Final remainder

350 CHAPTER TEN Computer Arithmetic

Divisor B = 10001, B+1=01111
E A Q Ne

e, e, A,
Dividend: 01110 00000 5
shl EAQ 0 11100 00000
addB +1 01111
E=1 1 01011
SetQ, =1 1 01011 00001 4
shl EAQ 0 10110 00010
AddB+1 01111
E=1 1 00101
SetQ, =1 1 00101 00011 3
shl EAQ 0 01010 00110
AddB+1 01111
E=0;leave 0, =0 0 11001 00110
Add B 10001 2
Restore remainder 1 01010
shl EAQ 0 10100 01100
AddB +1 01111
E=1 1 00011
SetQ, =1 1 00011 01101 1
shl EAQ 0 00110 11010
AddB +1 01111
E=0;leave 0, =0 0 10101 11010
Add B 10001
Restore remainder 1 00110 11010 0
Neglect £
Remainderin 4: 00110
Quotient in Q: 11010

Figure 10-12 Example of binary division with digital hardware.

proposed division process. The divisor is stored in the B register and the
double-length dividend is stored in registers A and Q. The dividend is shifted
to the left and the divisor is subtracted by adding its 2's complement value. The
information about the relative magnitude is available in E. If E = 1, it signifies
that A = B. A quotient bit 1 is inserted into Q, and the partial remainder is
shifted to the left to repeat the process. If E = 0, it signifies that A < B so the
quotient in Q, remains a 0 (inserted during the shift). The value of B is then
added to restore the partial remainder in A to its previous value. The partial
remainder is shifted to the left and the process is repeated again until all five
quotient bits are formed. Note that while the partial remainder is shifted left,
the quotient bits are shifted also and after five shifts, the quotient is in Q and
the final remainder is in A.

Before showing the algorithm in flowchart form, we have to consider the
sign of the result and a possible overflow condition. The sign of the quotient
is determined from the signs of the dividend and the divisor. If the two signs

SECTION 10-4 Division Algorithms 351

are alike, the sign of the quotient is plus. If they are unalike, the sign is minus.
The sign of the remainder is the same as the sign of the dividend.

Divide Overflow

The division operation may result in a quotient with an overflow. This is not
a problem when working with paper and pencil but is critical when the
operation is implemented with hardware. This is because the length of regis-
ters is finite and will not hold a number that exceeds the standard length. To
see this, consider a system that has 5-bit registers. We use one register to hold
the divisor and two registers to hold the dividend. From the example of
Fig. 10-11 we note that the quotient will consist of six bits if the five most
significant bits of the dividend constitute a number greater than the divisor.
The quotient is to be stored in a standard 5-bit register, so the overflow bit will
require one more flip-flop for storing the sixth bit. This divide-overflow condi-
tion must be avoided in normal computer operations because the entire quo-
tient will be too long for transfer into a memory unit that has words of standard
length, that is, the same as the length of registers. Provisions to ensure that
this condition is detected must be included in either the hardware or the
software of the computer, or in a combination of the two.

When the dividend is twice as long as the divisor, the condition for
overflow can be stated as follows: A divide-overflow condition occurs if the
high-order half bits of the dividend constitute a number greater than or equal
to the divisor. Another problem associated with division is the fact that a
division by zero must be avoided. The divide-overflow condition takes care of
this condition as well. This occurs because any dividend will be greater than
or equal to a divisor which is equal to zero. Overflow condition is usually
detected when a special flip-flop is set. We will call it a divide-overflow flip-flop
and label it DVF.

The occurrence of a divide overflow can be handled in a variety of ways.
In some computers it is the responsibility of the programmers to check if DVF
is set after each divide instruction. They then can branch to a subroutine that
takes a corrective measure such as rescaling the data to avoid overflow. In some
older computers, the occurrence of a divide overflow stopped the computer
and this condition was referred to as a divide stop. Stopping the operation of
the computer is not recommended because it is time consuming. The proce-
dure in most computers is to provide an interrupt request when DVF is set.
The interrupt causes the computer to suspend the current program and branch
to a service routine to take a corrective measure. The most common corrective
measure is to remove the program and type an error message explaining the
reason why the program could not be completed. It is then the responsibility
of the user who wrote the program to rescale the data or take any other
corrective measure. The best way to avoid a divide overflow is to use floating-
point data. We will see in Sec. 10-5 that a divide overflow can be handled very
simply if numbers are in floating-point representation.

352 CHAPTER TEN Computer Arithmetic

Hardware Algorithm

The hardware divide algorithm is shown in the flowchart of Fig. 10-13. The
dividend is in A and Q and the divisor in B. The sign of the result is transferred
into Q; to be part of the quotient. A constant is set into the sequence counter
SC to specify the number of bits in the quotient. As in multiplication, we
assume that operands are transferred to registers from a memory unit that has

Figure 10-13 Flowchart for divide operation.

Divide operation

Dividend in AQ

Divisor in B

Divide magnitudes

EA«~A+B+1

A>B

EA+A+B
DVF«+1

END
(Divide overflow)

END
(Quotient is in Q
remainder is in 4)

restoring method

comparison and
nonrestoring method

SECTION 10-4 Division Algorithms 353

words of n bits. Since an operand must be stored with its sign, one bit of the
word will be occupied by the sign and the magnitude will consist of n—1 bits.

A divide-overflow condition is tested by subtracting the divisor in B from
half of the bits of the dividend stored in A. If A = B, the divide-overflow
flip-flop DVF is set and the operation is terminated prematurely. If A < B,
no divide overflow occurs so the value of the dividend is restored by adding
Bto A.

The division of the magnitudes starts by shifting the dividend in AQ to
the left with the high-order bit shifted into E. If the bit shifted into E is 1, we
know that EA > B because EA consists of a 1 followed by n—1 bits while B
consists of only n—1 bits. In this case, B must be subtracted from EA and 1
inserted into Q, for the quotient bit. Since register A is missing the high-order
bit of the dividend (which is in E), its value is EA — 2"~'. Adding to this value
the 2’s complement of B results in

(EA-2"Y)+ (' -B)=EA - B

The carry from this addition is not transferred to E if we want E to remain
al.

If the shift-left operation inserts a 0 into E, the divisor is subtracted by
adding its 2's complement value and the carry is transferred into E. If E = 1,
it signifies that A = B; therefore, Q, is set to 1. If E = 0, it signifies that A < B
and the original number is restered by adding B to A. In the latter case we leave
a 0in Q, (0 was inserted during the shift).

This process is repeated again with register A holding the partial remain-
der. Aftern — 1 times, the quotient magnitude is formed in register Q and the
remainder is found in register A. The quotient sign is in Q and the sign of the
remainder in A; is the same as the original sign of the dividend.

Other Algorithms

The hardware method just described is called the restoring method. The reason
for this name is that the partial remainder is restored by adding the divisor to
the negative difference. Two other methods are available for dividing numbers,
the comparison method and the nonrestoring method. In the comparison method
A and B are compared prior to the subtraction operation. Then if A = B, B is
subtracted from A. If A < B nothing is done. The partial remainder is shifted
left and the numbers are compared again. The comparison can be determined
prior to the subtraction by inspecting the end-carry out of the parallel-adder
prior to its transfer to register E.

In the nonrestoring method, B is not added if the difference is negative
but instead, the negative difference is shifted left and then B is added. To see
why this is possible consider the case when A < B. From the flowchart in Fig.
9-11 we note that the operations performed are A — B + B; that is, B is sub-

354 cHAPTER TEN Computer Arithmetic

integer declaration
statement

tracted and then added to restore A. The next time around the loop, this
number is shifted left (or multiplied by 2) and B subtracted again. This gives
2(A — B + B) — B =2A — B. This result is obtained in the nonrestoring
method by leaving A — B as is. The next time around the loop, the number is
shifted left and B added to give 2(A — B) + B = 2A — B, which is the same as
before. Thus, in the nonrestoring method, B is subtracted if the previous value
of Q, was a1, but Bis added if the previous value of Q, was a 0 and no restoring
of the partial remainder is required. This process saves the step of adding the
divisor if A is less than B, but it requires special control logic to remember the
previous result. The first time the dividend is shifted, B must be subtracted.
Also, if the last bit of the quotient is 0, the partial remainder must be restored
to obtain the correct final remainder.

10-5 Floating-Point Arithmetic Operations

Many high-level programming languages have a facility for specifying floating-
point numbers. The most common way is to specify them by a real declaration
statement as opposed to fixed-point numbers, which are specified by an integer
declaration statement. Any computer that has a compiler for such high-level
programming language must have a provision for handling floating-point
arithmetic operations. The operations are quite often included in the internal
hardware. If no hardware is available for the operations, the compiler must be
designed with a package of floating-point software subroutines. Although the
hardware method is more expensive, it is so much more efficient than the
software method that floating-point hardware is included in‘most computers
and is omitted only in very small ones.

Basic Considerations

Floating-point representation of data was introduced in Sec. 3-4. A floating-
point number in computer registers consists of two parts: a mantissa m and an
exponent e. The two parts represent a number obtained from multiplying m
times a radix r raised to the value of e; thus

mXr

The mantissa may be a fraction or an integer. The location of the radix point
and the value of the radix r are assumed and are not included in the registers.
For example, assume a fraction representation and a radix 10. The decimal
number 537.25 is represented in a register with m = 53725 and e¢ = 3 and is
interpreted to represent the floating-point number

.53725 x 10°

SECTION 10-5 Floating-Point Arithmetic Operations 355

A floating-point number is normalized if the most significant digit of the
mantissa is nonzero. In this way the mantissa contains the maximum possible
number of significant digits. A zero cannot be normalized because it does not
have a nonzero digit. It is represented in floating-point by all 0's in the mantissa
and exponent.

Floating-point representation increases the range of numbers that can be
accommodated in a given register. Consider a computer with 48-bit words.
Since one bit must be reserved for the sign, the range of fixed-point integer
numbers will be (27 — 1), which is approximately +10%. The 48 bits can be
used to represent a floating-point number with 36 bits for the mantissa and 12
bits for the exponent. Assuming fraction representation for the mantissa and
taking the two sign bits into consideration, the range of numbers that can be
accommodated is

£(1 - 27%) x 2%

This number is derived from a fraction that contains 35 1’s, an exponent of 11
bits (excluding its sign), and the fact that 2" — 1 = 2047. The largest number
that can be accommodated is approximately 10°°, which is a very large number.
The mantissa can accommodate 35 bits (excluding the sign) and if considered
as an integer it can store a number as large as (2* — 1). This is approximately
equal to 10'°, which is equivalent to a decimal number of 10 digits.
Computers with shorter word lengths use two or more words to represent
a floating-point number. An 8-bit microcomputer may use four words to
represent one floating-point number. One word of 8 bits is reserved for the
exponent and the 24 bits of the other three words are used for the mantissa.
Arithmetic operations with floating-point numbers are more complicated
than with fixed-point numbers and their execution takes longer and requires
more complex hardware. Adding or subtracting two numbers requires first an
alignment of the radix point since the exponent parts must be made equal
before adding or subtracting the mantissas. The alignment is done by shifting
one mantissa while its exponent is adjusted until it is equal to the other
exponent. Consider the sum of the following floating-point numbers:

.5372400 x 10?
+ .1580000 x 107!

It is necessary that the two exponents be equal before the mantissas can be
added. We can either shift the first number three positions to the left, or shift
the second number three positions to the right. When the mantissas are stored
in registers, shifting to the left causes a loss of most significant digits. Shifting
to the right causes a loss of least significant digits. The second method is
preferable because it only reduces the accuracy, while the first method may
cause an error. The usual alignment procedure is to shift the mantissa that has

356 cHAPTER TEN Computer Arithmetic

the smaller exponent to the right by a number of places equal to the difference
between the exponents. After this is done, the mantissas can be added:

.5372400 x 10?
+.0001580 x 10°
.5373980 x 10?

When two normalized mantissas are added, the sum may contain an
overflow digit. An overflow can be corrected easily by shifting the sum once
to the right and incrementing the exponent. When two numbers are sub-
tracted, the result may contain most significant zeros as shown in the following
example:

.56780 x 10°
—.56430 x 10°
.00350 x 10°

A floating-point number that has a 0 in the most significant position of the
mantissa is said to have an underflow. To normalize a number that contains an
underflow, it is necessary to shift the mantissa to the left and decrement the
exponent until a nonzero digit appears in the first position. In the example
above, it is necessary to shift left twice to obtain .35000 X 10°. In most comput-
ers, anormalization procedure is performed after each operation to ensure that
all results are in a normalized form.

Floating-point multiplication and division do not require an alignment of
the mantissas. The product can be formed by multiplying the two mantissas
and adding the exponents. Division is accomplished by dividing the mantissas
and subtracting the exponents.

The operations performed with the mantissas are the same as in fixed-
point numbers, so the two can share the same registers and circuits. The
operations performed with the exponents are compare and increment (for
aligning the mantissas), add and subtract (for multiplication and division), and
decrement (to normalize the result). The exponent may be represented in any
one of the three representations: signed-magnitude, signed-2's complement,
or signed-1’s complement.

A fourth representation employed in many computers is known as a
biased exponent. In this representation, the sign bit is removed from being a
separate entity. The bias is a positive number that is added to each exponent
as the floating-point number is formed, so that internally all exponents are
positive. The following example may clarify this type of representation. Con-
sider an exponent that ranges from —50 to 49. Internally, it is represented by
two digits (without a sign) by adding to it a bias of 50. The exponent register
contains the number e + 50, where e is the actual exponent. This way, the
exponents are represented in registers as positive numbers in the range of 00

SECTION 105 Floating-Point Arithmetic Operations 357

to 99. Positive exponents in registers have the range of numbers from 99 to 50.
The subtraction of 50 gives the positive values from 49 to 0. Negative exponents
are represented in registers in the range from 49 to 00. The subtraction of 50
gives the negative values in the range of —1 to —50.

The advantage of biased exponents is that they contain only positive
numbers. It is then simpler to compare their relative magnitude without being
concerned with their signs. As a consequence, a magnitude comparator can be
used to compare their relative magnitude during the alignment of the man-
tissa. Another advantage is that the smallest possible biased exponent contains
all zeros. The floating-point representation of zero is then a zero mantissa and
the smallest possible exponent.

In the examples above, we used decimal numbers to demonstrate some
of the concepts that must be understood when dealing with floating-point
numbers. Obviously, the same concepts apply to binary numbers as well. The
algorithms developed in this section are for binary numbers. Decimal computer
arithmetic is discussed in the next section.

Register Configuration

The register configuration for floating-point operations is quite similar to the
layout for fixed-point operations. As a general rule, the same registers and
adder used for fixed-point arithmetic are used for processing the mantissas.
The difference lies in the way the exponents are handled.

The register organization for floating-point operations is shown in Fig.
10-14. There are three registers, BR, AC, and QR. Each register is subdivided
into two parts. The mantissa part has the same uppercase letter symbols as in
fixed-point representation. The exponent part uses the corresponding lower-
case letter symbol.

It is assumed that each floating-point number has a mantissa in signed-
magnitude representation and a biased exponent. Thus the AC has a mantissa

Figure 10-14 Registers for floating-point arithmetic operations.
[&] B | [b | 5r

Parallel-adder
and comparator

% Y O
Gl e] [+ J«

| Parallel-adder |

358

CHAPTER TEN Computer Arithmetic

whose sign is in A, and a magnitude that is in A. The exponent is in the part
of the register denoted by the lowercase letter symbol a. The diagram shows
explicitly the most significant bit of A, labeled by A;. The bit in this position
must be a 1 for the number to be normalized. Note that the symbol AC
represents the entire register, that is, the concatenation of A,, A, and a.

Similarly, register BR is subdivided into B;, B, and b, and QR into Q;, Q,
and g. A parallel-adder adds the two mantissas and transfers the sum into A
and the carry into E. A separate parallel-adder is used for the exponents. Since
the exponents are biased, they do not have a distinct sign bit but are repre-
sented as a biased positive quantity. It is assumed that the floating-point
numbers are so large that the chance of an exponent overflow is very remote,
and for this reason the exponent overflow will be neglected. The exponents are
also connected to a magnitude comparator that provides three binary outputs
to indicate their relative magnitude.

The number in the mantissa will be taken as a fraction, so the binary point
is assumed to reside to the left of the magnitude part. Integer representation
for floating-point causes certain scaling problems during multiplication and
division. To avoid these problems, we adopt a fraction representation.

The numbers in the registers are assumed to be initially normalized. After
each arithmetic operation, the result will be normalized. Thus all floating-point
operands coming from and going to the memory unit are always normalized.

Addition and Subtraction
During addition or subtraction, the two floating-point operands are in AC and
BR. The sum or difference is formed in the AC. The algorithm can be divided
into four consecutive parts:

1. Check for zeros.

2. Align the mantissas.

3. Add or subtract the mantissas.
4. Normalize the result.

A floating-point number that is zero cannot be normalized. If this number
is used during the computation, the result may also be zero. Instead of check-
ing for zeros during the normalization process we check for zeros at the
beginning and terminate the process if necessary. The alignment of the man-
tissas must be carried out prior to their operation. After the mantissas are
added or subtracted, the result may be unnormalized. The normalization
procedure ensures that the result is normalized prior to its transfer to memory.

The flowchart for adding or subtracting two floating-point binary num-
bers is shown in Fig. 10-15. If BR is equal to zero, the operation is terminated,
with the value in the AC being the result. If AC is equal to zero, we transfer

SECTION 10-5 Floating-Point Arithmetic Operations 359

Add or subtract

Align
mantissa
Mantissa
addition
EA<—A+B+|] I EA+~A+B or
btraction
= =0
AT £
s A
=1
#0 =0
A

AC+0
Normalization

Figure 10-15 Addition and subtraction of floating-point numbers.

360

CHAPTER TEN Computer Arithmetic

the content of BR into AC and also complement its sign if the numbers are to
be subtracted. If neither number is equal to zero, we proceed to align the
mantissas.

The magnitude comparator attached to exponents a and b provides three
outputs that indicate their relative magnitude. If the two exponents are equal,
we go to perform the arithmetic operation. If the exponents are not equal, the
mantissa having the smaller exponent is shifted to the right and its exponent
incremented. This process is repeated until the two exponents are equal.

The addition and subtraction of the two mantissas is identical to the
fixed-point addition and subtraction algorithm presented in Fig. 10-2. The
magnitude part is added or subtracted depending on the operation and the
signs of the two mantissas. If an overflow occurs when the magnitudes are
added, it is transferred into flip-flop E. If E is equal to 1, the bit is transferred
into A, and all other bits of A are shifted right. The exponent must be incre-
mented to maintain the correct number. No underflow may occur in this case
because the original mantissa that was not shifted during the alignment was
already in a normalized position.

If the magnitudes were subtracted, the result may be zero or may have
an underflow. If the mantissa is zero, the entire floating-point number in the
AC is made zero. Otherwise, the mantissa must have at least one bit that is
equal to 1. The mantissa has an underflow if the most significant bit in position
Ay is 0. In that case, the mantissa is shifted left and the exponent decremented.
The bit in A, is checked again and the process is repeated until it is equal to
1. When A, = 1, the mantissa is normalized and the operation is completed.

Multiplication

The multiplication of two floating-point numbers requires that we multiply the
mantissas and add the exponents. No comparison of exponents or alignment
of mantissas is necessary. The multiplication of the mantissas is performed in
the same way as in fixed-point to provide a double-precision product. The
double-precision answer is used in fixed-point numbers to increase the accu-
racy of the product. In floating-point, the range of a single-precision mantissa
combined with the exponent is usually accurate enough so that only single-
precision numbers are maintained. Thus the half most significant bits of the
mantissa product and the exponent will be taken together to form a single-
precision floating-point product.

The multiplication algorithm can be subdivided into four parts:

1. Check for zeros.

2. Add the exponents.

3. Multiply the mantissas.
4. Normalize the product.

SECTION 105 Floating-Point Arithmetic Operations ~ 361

Steps 2 and 3 can be done simultaneously if separate adders are available for
the mantissas and exponents.

The flowchart for floating-point multiplication is shown in Fig. 10-16. The
two operands are checked to determine if they contain a zero. If either operand
is equal to zero, the product in the AC is set to zero and the operation is

Figure 10-16 Multiplication of floating-point numbers.

Multiply

Multiplicand in BR
Multiplier in QR

=

| a+<a+b l
n*a—biasl
mantissa
. 10-6

shlAQ
a+a-1

END
(product is in AC)

362 cHAPTER TEN Computer Arithmetic

dividend alignment

terminated. If neither of the operands is equal to zero, the process continues
with the exponent addition.

The exponent of the multiplier is in g and the adder is between exponents
a and b. It is necessary to transfer the exponents from g to 4, add the two
exponents, and transfer the sum into 4. Since both exponents are biased by the
addition of a constant, the exponent sum will have double this bias. The correct
biased exponent for the product is obtained by subtracting the bias number
from the sum.

The multiplication of the mantissas is done as in the fixed-point case with
the product residing in A and Q. Overflow cannot occur during multiplication,
so there is no need to check for it.

The product may have an underflow, so the most significant bit in A is
checked. If it is a 1, the product is already normalized. If it is a 0, the mantissa
in AQ is shifted left and the exponent decremented. Note that only one
normalization shift is necessary. The multiplier and multiplicand were origi-
nally normalized and contained fractions. The smallest normalized operand is
0.1, so the smallest possible product is 0.01. Therefore, only one leading zero
may occur.

Although the low-order half of the mantissa is in Q, we do not use it for
the floating-point product. Only the value in the AC is taken as the product.

Division

Floating-point division requires that the exponents be subtracted and the
mantissas divided. The mantissa division is done as in fixed-point except that
the dividend has a single-precision mantissa that is placed in the AC. Remem-
ber that the mantissa dividend is a fraction and not an integer. For integer
representation, a single-precision dividend must be placed in register Q and
register A must be cleared. The zeros in A are to the left of the binary point
and have no significance. In fraction representation, a single-precision divi-
dend is placed in register A and register Q is cleared. The zeros in Q are to the
right of the binary point and have no significance.

The check for divide-overflow is the same as in fixed-point representa-
tion. However, with floating-point numbers the divide-overflow imposes no
problems. If the dividend is greater than or equal to the divisor, the dividend
fraction is shifted to the right and its exponent incremented by 1. For normal-
ized operands this is a sufficient operation to ensure that no mantissa divide-
overflow will occur. The operation above is referred to as a dividend alignment.

The division of two normalized floating-point numbers will always result
in a normalized quotient provided that a dividend alignment is carried out
before the division. Therefore, unlike the other operations, the quotient ob-
tained after the division does not require a normalization.

The division algorithm can be subdivided into five parts:

1. Check for zeros.
2. Initialize registers and evaluate the sign.

SECTION 106 Decimal Arithmetic Unit 363

3. Align the dividend.
4. Subtract the exponents.
5. Divide the mantissas.

The flowchart for floating-point division is shown in Fig. 10-17. The two
operands are checked for zero. If the divisor is zero, it indicates an attempt to
divide by zero, which is an illegal operation. The operation is terminated with
an error message. An alternative procedure would be to set the quotient in QR
to the most positive number possible (if the dividend is positive) or to the most
negative possible (if the dividend is negative). If the dividend in AC is zero, the
quotient in QR is made zero and the operation terminates.

If the operands are not zero, we proceed to determine the sign of the
quotient and store it in Q;. The sign of the dividend in A, is left unchanged to
be the sign of the remainder. The Q register is cleared and the sequence counter
SC is set to a number equal to the number of bits in the quotient.

The dividend alignment is similar to the divide-overflow check in the
fixed-point operation. The proper alignment requires that the fraction divi-
dend be smaller than the divisor. The two fractions are compared by a subtrac-
tion test. The carry in E determines their relative magnitude. The dividend
fraction is restored to its original value by adding the divisor. If A = B, it is
necessary to shift A once to the right and increment the dividend exponent.
Since both operands are normalized, this alignment ensures that A < B.

Next, the divisor exponent is subtracted from the dividend exponent.
Since both exponents were originally biased, the subtraction operation gives
the difference without the bias. The bias is then added and the result trans-
ferred into g because the quotient is formed in QR.

The magnitudes of the mantissas are divided as in the fixed-point case.
After the operation, the mantissa quotient resides in Q and the remainder in
A. The floating-point quotient is already normalized and resides in QR. The
exponent of the remainder should be the same as the exponent of the dividend.
The binary point for the remainder mantissa lies (n — 1) positions to the left
of A;. The remainder can be converted to a normalized fraction by subtracting
n — 1 from the dividend exponent and by shift and decrement until the bit in
A, is equal to 1. This is not shown in the flow chart and is left as an exercise.

10-6 Decimal Arithmetic Unit

The user of a computer prepares data with decimal numbers and receives
results in decimal form. A CPU with an arithmetic logic unit can perform
arithmetic microoperations with binary data. To perform arithmetic operations
with decimal data, it is necessary to convert the input decimal numbers to
binary, to perform all calculations with binary numbers, and to convert the
results into decimal. This may be an efficient method in applications requiring
a large number of calculations and a relatively smaller amount of input and

364

CHAPTER TEN Computer Arithmetic

Divisor in BR
Dividend in AC

0
Divide by
zero

A<B

A+A+B

Divide magnitude of
issas as in Fig. 10-13

END
(Quotient is in QR)

Figure 10-17 Division of floating-point numbers.

SECTION 106 Decimal Arithmetic Unit 365

output data. When the application calls for a large amount of input-output and
a relatively smaller number of arithmetic calculations, it becomes convenient
to do the internal arithmetic directly with the decimal numbers. Computers
capable of performing decimal arithmetic must store the decimal data in binary-
coded form. The decimal numbers are then applied to a decimal arithmetic unit
capable of executing decimal arithmetic microoperations.

Electronic calculators invariably use an internal decimal arithmetic unit
since inputs and outputs are frequent. There does not seem to be a reason for
converting the keyboard input numbers to binary and again converting the
displayed results to decimal, since this process requires special circuits and also
takes a longer time to execute. Many computers have hardware for arithmetic
calculations with both binary and decimal data. Users can specify by pro-
grammed instructions whether they want the computer to perform calculations
with binary or decimal data.

A decimal arithmetic unit is a digital function that performs decimal
microoperations. It can add or subtract decimal numbers, usually by forming
the 9’s or 10’s complement of the subtrahend. The unit accepts coded decimal
numbers and generates results in the same adopted binary code. A single-stage
decimal arithmetic unit consists of nine binary input variables and five binary
output variables, since a minimum of four bits is required to represent each
coded decimal digit. Each stage must have four inputs for the augend digit,
four inputs for the addend digit, and an input-carry. The outputs include four
terminals for the sum digit and one for the output-carry. Of course, there is
a wide variety of possible circuit configurations dependent on the code used
to represent the decimal digits.

BCD Adder

Consider the arithmetic addition of two decimal digits in BCD, together with
a possible carry from a previous stage. Since each input digit does not exceed
9, the output sum cannot be greaterthan9 + 9 + 1 = 19, the 1in the sum being
an input-carry. Suppose that we apply two BCD digits to a 4-bit binary adder.
The adder will form the sum in binary and produce a result that may range from
0 to 19. These binary numbers are listed in Table 104 and are labeled by
symbols K, Zs, Z,, Z,, and Z,. K is the carry and the subscripts under the letter
Z represent the weights 8, 4, 2, and 1 that can be assigned to the four bits in
the BCD code. The first column in the table lists the binary sums as they appear
in the outputs of a 4-bit binary adder. The output sum of two decimal numbers
must be represented in BCD and should appear in the form listed in the second
column of the table. The problem is to find a simple rule by which the binary
number in the first column can be converted to the correct BCD digit represen-
tation of the number in the second column.

In examining the contents of the table, it is apparent that when the binary
sum is equal to or less than 1001, the corresponding BCD number is identical

366

CHAPTER TEN Computer Arithmetic

TABLE 10-4 Derivation of BCD Adder

Binary Sum BCD Sum
K Zs Zs Z, Z, C Ss Ss S2 S1 Decimal
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 1 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 1 0 1 1 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1 0 0 1 1 13
0 1 1 1 0 1 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
1 0 0 0 1 1 0 1 1 1 17
1 0 0 1 0 1 1 0 0 0 18
1 0 0 1 1 1 1 0 0 1 19

and therefore no conversion is needed. When the binary sum is greater than
1001, we obtain a nonvalid BCD representation. The addition of binary 6 (0110)
to the binary sum converts it to the correct BCD representation and also
produces an output-carry as required.

One method of adding decimal numbers in BCD would be to employ one
4-bit binary adder and perform the arithmetic operation one digit at a time. The
low-order pair of BCD digits is first added to produce a binary sum. If the result
is equal or greater than 1010, it is corrected by adding 0110 to the binary sum.
This second operation will automatically produce an output-carry for the next
pair of significant digits. The next higher-order pair of digits, together with the
input-carry, is then added to produce their binary sum. If this result is equal
to or greater than 1010, it is corrected by adding 0110. The procedure is
repeated until all decimal digits are added.

The logic circuit that detects the necessary correction can be derived from
the table entries. It is obvious that a correction is needed when the binary sum
has an output carry K = 1. The other six combinations from 1010 to 1111 that
need a correction have a 1 in position Zs. To distinguish them from binary 1000
and 1001 which also have a 1 in position Zs, we specify further that either Z,

SECTION 106 Decimal Arithmetic Unit 367

or Z, must have a 1. The condition for a correction and an output-carry can be
expressed by the Boolean function

C=K+ZyZ+ 237,

When C = 1, it is necessary to add 0110 to the binary sum and provide an
output-carry for the next stage.

ABCD adder is a circuit that adds two BCD digits in parallel and produces
a sum digit also in BCD. A BCD adder must include the correction logic in its
internal construction. To add 0110 to the binary sum, we use a second 4-bit
binary adder as shown in Fig. 10-18. The two decimal digits, together with the
input-carry, are first added in the top 4-bit binary adder to produce the binary
sum. When the output-carry is equal to 0, nothing is added to the binary sum.
When it is equal to 1, binary 0110 is added to the binary sum through the
bottom 4-bit binary adder. The output-carry generated from the bottom binary
adder may be ignored, since it supplies information already available in the
output-carry terminal.

Figure 10-18 Block diagram of BCD adder.
Addend Augend

L HiH

4-bit binary adder
Carry
out K e—Carry

Zy Z, 2z, 2z,

Output
carry

T

4-bit binary adder

oo

S S¢S 0§

368

CHAPTER TEN Computer Arithmetic

A decimal parallel-adder that adds n decimal digits needs n BCD adder
stages with the output-carry from one stage connected to the input-carry of the
next-higher-order stage. To achieve shorter propagation delays, BCD adders
include the necessary circuits for carry look-ahead. Furthermore, the adder
circuit for the correction does not need all four full-adders, and this circuit can
be optimized.

BCD Subtraction

A straight subtraction of two decimal numbers will require a subtractor circuit
that will be somewhat different from a BCD adder. It is more economical to
perform the subtraction by taking the 9’s or 10’s complement of the subtrahend
and adding it to the minuend. Since the BCD is not a self-complementing code,
the 9's complement cannot be obtained by complementing each bit in the code.
It must be formed by a circuit that subtracts each BCD digit from 9.

The 9’s complement of a decimal digit represented in BCD may be ob-
tained by complementing the bits in the coded representation of the digit
provided a correction is included. There are two possible correction methods.
In the first method, binary 1010 (decimal 10) is added to each complemented
digit and the carry discarded after each addition. In the second method, binary
0110 (decimal 6) is added before the digit is complemented. As a numerical
illustration, the 9’s complement of BCD 0111 (decimal 7) is computed by first
complementing each bit to obtain 1000. Adding binary 1010 and discarding the
carry, we obtain 0010 (decimal 2). By the second method, we add 0110 to 0111
to obtain 1101. Complementing each bit, we obtain the required result of 0010.
Complementing each bit of a 4-bit binary number N is identical to the subtrac-
tion of the number from 1111 (decimal 15). Adding the binary equivalent of
decimal 10 gives 15 — N + 10 = 9 — N + 16. But 16 signifies the carry that is
discarded, so the resultis 9 — N as required. Adding the binary equivalent of
decimal 6 and then complementing gives 15 — (N + 6) = 9 — N as required.

The 9’s complement of a BCD digit can also be obtained through a
combinational circuit. When this circuit is attached to a BCD adder, the result
is a BCD adder/subtractor. Let the subtrahend (or addend) digit be denoted by
the four binary variables By, By, B,, and B,. Let M be a mode bit that controls
the add/subtract operation. When M = 0, the two digits are added; when
M = 1, the digits are subtracted. Let the binary variables xs, x4, x;, and x, be
the outputs of the ¥’s complementer circuit. By an examination of the truth
table for the circuit, it may be observed (see Prob. 10-30) that B, should always
be complemented; B, is always the same in the 9’s complement as in the original
digit; x, is 1 when the exclusive-OR of B, and B, is 1; and xs is 1 when
By B4 B, = 000. The Boolean functions for the 9's complementer circuit are

% =B M + BM

x =B,

SECTION 10-7 Decimal Arithmetic Operations 369

x4 = BiM' + (B{ B, + B,B;)M
xg = BgM’' + BgB;B;M

From these equations we see that x = B when M = 0. When M = 1, the x
outputs produce the 9's complement of B.

One stage of a decimal arithmetic unit that can add or subtract two BCD
digits is shown in Fig. 10-19. It consists of a BCD adder and a 9’s complementer.
The mode M controls the operation of the unit. With M = 0, the S outputs form
the sum of A and B. With M = 1, the S outputs form the sum of A plus the
9’s complement of B. For numbers with n decimal digits we need n such stages.
The output carry Ci,; from one stage must be connected to the input carry C;
of the next-higher-order stage. The best way to subtract the two decimal
numbers is to let M = 1 and apply a 1 to the input carry C; of the first stage.
The outputs will form the sum of A plus the 10’s complement of B, which
is equivalent to a subtraction operation if the carry-out of the last stage is
discarded.

10-7 Decimal Arithmetic Operations

The algorithms for arithmetic operations with decimal data are similar to the
algorithms for the corresponding operations with binary data. In fact, except
for a slight modification in the multiplication and division algorithms, the same

Figure 10-19 One stage of a decimal arithmetic unit.

Bs B, B, B,
BCD9's
M —> complementer
Xg Xy X2 x| As Ay A A
Ciy) ~— BCD adder (Fig. 10-18) re—2C;

b

Sg Ss S2 M

370

CHAPTER TEN Computer Arithmetic

flowcharts can be used for both types of data provided that we interpret the
microoperation symbols properly. Decimal numbers in BCD are stored in
computer registers in groups of four bits. Each 4-bit group represents a decimal
digit and must be taken as a unit when performing decimal microoperations.

For convenience, we will use the same symbols for binary and decimal
arithmetic microoperations but give them a different interpretation. As shown
in Table 10-5, a bar over the register letter symbol denotes the 9’s complement
of the decimal number stored in the register. Adding 1 to the 9's complement
produces the 10’s complement. Thus, for decimal numbers, the symbol
A<A + B + 1denotes a transfer of the decimal sum formed by adding the
original content A to the 10’s complement of B. The use of identical symbols
for the 9's complement and the 1’s complement may be confusing if both types
of data are employed in the same system. If this is the case, it may be better
to adopt a different symbol for the 9's complement. If only one type of data
is being considered, the symbol would apply to the type of data used.

Incrementing or decrementing a register is the same for binary and
decimal except for the number of states that the register is allowed to have. A
binary counter goes through 16 states, from 0000 to 1111, when incremented.
A decimal counter goes through 10 states from 0000 to 1001 and back to 0000,
since 9 is the last count. Similarly, a binary counter sequences from 1111 to 0000
when decremented. A decimal counter goes from 1001 to 0000.

A decimal shift right or left is preceded by the letter d to indicate a shift
over the four bits that hold the decimal digits. As a numerical illustration
consider a register A holding decimal 7860 in BCD. The bit pattern of the 12
flip-flops is

0111 1000 0110 0000

The microoperation dshr A shifts the decimal number one digit to the right to
give 0786. This shift is over the four bits and changes the content of the register
into

0000 0111 1000 0110

TABLE 10-5 Decimal Arithmetic Microoperation Symbols

Symbolic Designation Description
A<A+B Add decimal numbers and transfer sum into A
B _ 9’s complement of B
A<A+B +1 Content of A plus 10’s complement of B into A
QeQ+1 Increment BCD number in Q.
dshr A Decimal shift-right register A

dshl A Decimal shift-left register A

SECTION 10-7 Decimal Arithmetic Operations 371

Addition and Subtraction

The algorithm for addition and subtraction of binary signed-magnitude num-
bers applies also to decimal signed-magnitude numbers provided that we
interpret the microoperation symbols in the proper manner. Similarly, the
algorithm for binary signed-2’s complement numbers applies to decimal
signed-10’s complement numbers. The binary data must employ a binary
adder and a complementer. The decimal data must employ a decimal arith-
metic unit capable of adding two BCD numbers and forming the 9's comple-
ment of the subtrahend as shown in Fig. 10-19.

Decimal data can be added in three different ways, as shown in Fig. 10-20.
The parallel method uses a decimal arithmetic unit composed of as many BCD
adders as there are digits in the number. The sum is formed in parallel and
requires only one microoperation. In the digit-serial bit-parallel method, the
digits are applied to a single BCD adder serially, while the bits of each coded
digit are transferred in parallel. The sum is formed by shifting the decimal
numbers through the BCD adder one at a time. For k decimal digits, this
configuration requires k microoperations, one for each decimal shift. In the all
serial adder, the bits are shifted one at a time through a full-adder. The binary
sum formed after four shifts must be corrected into a valid BCD digit. This
correction, discussed in Sec. 10-6, consists of checking the binary sum. If it is
greater than or equal to 1010, the binary sum is corrected by adding to it 0110
and generating a carry for the next pair of digits.

The parallel method is fast but requires a large number of adders. The
digit-serial bit-parallel method requires only one BCD adder, which is shared
by all the digits. It is slower than the parallel method because of the time
required to shift the digits. The all serial method requires a minimum amount
of equipment but is very slow.

Multiplication
The multiplication of fixed-point decimal numbers is similar to binary except
for the way the partial products are formed. A decimal multiplier has digits that
range in value from 0 to 9, whereas a binary multiplier has only 0 and 1 digits.
In the binary case, the multiplicand is added to the partial product if the
multiplier bit is 1. In the decimal case, the multiplicand must be multiplied by
the digit multiplier and the result added to the partial product. This operation
can be accomplished by adding the multiplicand to the partial product a
number of times equal to the value of the multiplier digit.

The registers organization for the decimal multiplication is shown in
Fig. 10-21. We are assuming here four-digit numbers, with each digit occupy-
ing four bits, for a total of 16 bits for each number. There are three registers,
A, B, and Q, each having a corresponding sign flip-flop A,, B,, and Q.

372 CHAPTER TEN Computer Arithmetic

01

i W

00

A

|

i |

e——O

1
BCD adder r—

1
BCD adder [BCD adder

m

1

H

0000

W

0011

(a) Parallel decimal addition: 624 + 879 = 1503

- =00

Augend

ofofo

110(1

1j{1{o

ojojo BCD

adder

110]1

0j1}0

0110

of1]1 —; 1
Addend

(b) Digit-serial, bit-parallel decimal addition

Augend Sum
[o1 1 0Joo 1 0fo1 0 of— Sh— [[
FA
frooofori 1 1]io0 1} c
Addend

Correction

(c) All serial decimal addition

Figure 10-20 Three ways of adding decimal numbers.

SECTION 10-7 Decimal Arithmetic Operations 373

B

e\ —
’)
ll03|I02|IO'|10°| L Ne |
...
BCD arithmetic unit J
|10’l 102| lo'l 100
\
Y

A

llo’llo2 l |o']
Q

Increment
Decrement

J

Figure 10-21 Registers for decimal arithmetic multiplication and division.

Registers A and B have four more bits designated by A, and B, that provide an
extension of one more digit to the registers. The BCD arithmetic unit adds the
five digits in parallel and places the sum in the five-digit A register. The
end-carry goes to flip-flop E. The purpose of digit A, is to accommodate an
overflow while adding the multiplicand to the partial product during multipli-
cation. The purpose of digit B, is to form the 9’s complement of the divisor
when subtracted from the partial remainder during the division operation. The
least significant digit in register Q is denoted by ;. This digit can be incre-
mented or decremented.

A decimal operand coming from memory consists of 17 bits. One bit (the
sign) is transferred to B, and the magnitude of the operand is placed in the
lower 16 bits of B. Both B, and A, are cleared initially. The result of the operation
is also 17 bits long and does not use the A, part of the A register.

The decimal multiplication algorithm is shown in Fig. 10-22. Initially, the
entire A register and B, are cleared and the sequence counter SC is set to a
number k equal to the number of digits in the multiplier. The low-order digit
of the multiplier in Q: is checked. If it is not equal to 0, the multiplicand in B
is added to the partial product in A once and Q, is decremented. Q, is checked
again and the process is repeated until it is equal to 0. In this way, the
multiplicand in B is added to the partial product a number of times equal to
the multiplier digit. Any temporary overflow digit will reside in A, and can
range in value from 0 to 9.

Next, the partial product and the multiplier are shifted once to the right.
This places zero in A, and transfers the next multiplier quotient into Q,. The
process is then repeated k times to form a double-length product in AQ.

374 CHAPTER TEN Computer Arithmetic

Multiply

Multiplicand in B
Multiplier in Q

A!‘-QSQBS
A<0,B,+0
SC+k

o #*0

AvA+B
=0 [/

dshr AQ
SC«SC—-1

#0 jsc\ =0
END
(Product is in 4Q)

Figure 10-22 Flowchart for decimal multiplication.

Division

Decimal division is similar to binary division except of course that the quotient
digits may have any of the 10 values from 0 to 9. In the restoring division
method, the divisor is subtracted from the dividend or partial remainder as
many times as necessary until a negative remainder results. The correct re-
mainder is then restored by adding the divisor. The digit in the quotient reflects
the number of subtractions up to but excluding the one that caused the
negative difference.

The decimal division algorithm is shown in Fig. 10-23. It is similar to the
algorithm with binary data except for the way the quotient bits are formed. The
dividend (or partial remainder) is shifted to the left, with its most significant
digit placed in A,. The divisor is then subtracted by adding its 10’s complement
value. Since B, is initially cleared, its complement value is 9 as required. The
carry in E determines the relative magnitude of A and B. If E = 0, it signifies

SECTION 10-7 Decimal Arithmetic Operations 375

Divide

Divisor in B
Dividend in AQ

Check for overflow

QS “A,@B,
SC+k, B, <0

(Remainder is in 4)

Figure 10-23 Flowchart for decimal division.

that A < B. In this case the divisor is added to restore the partial remainder
and (; stays at 0 (inserted there during the shift). If E = 1, it signifies that
A = B. The quotient digit in Q, is incremented once and the divisor subtracted
again. This process is repeated until the subtraction results in a negative
difference which is recognized by E being 0. When this occurs, the quotient
digit is not incremented but the divisor is added to restore the positive remain-
der. In this way, the quotient digit is made equal to the number of times that
the partial remainder “goes” into the divisor.

376 CHAPTER TEN Computer Arithmetic

The partial remainder and the quotient bits are shifted once to the leftand
the process is repeated k times to form k quotient digits. The remainder is then
found in register A and the quotient is in register Q. The value of E is neglected.

Floating-Point Operations

Decimal floating-point arithmetic operations follow the same procedures as
binary operations. The algorithms in Sec. 10-5 can be adopted for decimal data
provided that the microoperation symbols are interpreted correctly. The mul-
tiplication and division of the mantissas must be done by the methods de-
scribed above.

i PROBLEMS |

10-1. The complementer shown in Fig. 10-1 is not needed if i d of performi
A+ B +1we perform B + A(Bpluamzlsmmplmmluhu Derive an
nlgunthmhﬂuwdnrllomh:dd:mmdsubu‘chonofﬁuddpuim
binary bers in signed representation with the magnitudes
wbutmdbythetwomwp!ﬂﬁomd.c—d and EA+A + B.

10-2. Mark each individual path in the flowchart of Fig. 10-2 by a number and then
h\djcamhemﬂlpam&mﬂ\enlgodﬂunuknmmheblbwmgdped-

bers are s Inea&ﬂsegiveﬂwuluofﬁlﬂ" The
leftmost bit in the folk ing P ts the sign bit.
a. 0 101101 + 0 011111
b. 1 011111 + 1 101101
c 0 101101 - 0 011111
d. 0 101101 - 0 101101
e. 1 011111 - 0 101101

10-3. Perform the arithmetic upeuﬁmsbelowwithhnuymunbeumdmm
mglﬁv!mmb!nb'lligmdl‘u P Use seven bits
to ac each togeth wllhhml’.nendlme,dﬂermlne
iihreilanmrﬂawby:hchngl}nminwandwtdﬂw@w
position.

a. (+35) + (+40)
b. (—35) + (—40)
¢ (=35) = (+40)

104, Cmsﬂerﬂwhlnnym:mb«swhen&eymhdpﬁ:‘s
P ber has n bits: one for the signand k = n — 1 for
the itud A ti ber —X is reg das 2+ (2" - X),
Mmtheﬁ:ﬁ?dzugnm&nslgnhund{? X) is the 2's complement
of X, A positive number is represented as 0 + X, where the 0 designates the
sign bit, and X, the k-bit magnitude. Using these generalized symbols, prove

10-5.

10-6.

10-7.

10-8.

10-9.

10-10.

10-11.

10-12.

10-13.

10-14.

10-15.

10-16.

10-17.

Problems 377

that the sum (£X) + (£Y) can be formed by adding the numbers including
their sign bits and discarding the carry-out of the sign-bit position. In other
words, prove the algonthm for adding two binary numbers in signed-2’s

s ref tion
¥) 4

Formulate a hardware procedure for detecting an overflow by comparing the

sign of the sum with the sngns of the augend and addend. The numbers are

in signed-2's compl ion

a. Perform the operahon (9) + (—6) = —15 with binary numbers in
signed-1's compl tation using only five bits to represent
each number (mcludmg the sign). Show that the overflow detection
procedure of checking the inequality of the last two carries fails in this
case.

b. Suggesta modified procedure for detecting an overflow when signed-1's
complement numbers are used.

Derive an algorithm in flowchart form for adding and subtracting two fixed-

point binary numbers when negative numbers are in signed-1's complement

representation.

Prove that the multiplication of two n-digit numbers in base r gives a product
no more than 2n digits in length. Show that this statement implies that no
overflow can occur in the multiplication operation.

Show the contents of registers E, A, Q, and SC (as in Table 10-2) during the
process of multiplication of two binary numbers, 11111 (multiplicand) and
10101 (multiplier). The signs are not included.

Show the contents of registers E, A, Q, and SC (as in Fig. 10-12) during the
process of division of (a) 10100011 by 1011; (b) 00001111 by 0011. (Use a
dividend of eight bits.)

Show that adding B after the operation A + B + 1restores the original value
of A. What should be done with the end carry?

Why should the sign of the remainder after a division be the same as the sign
of the dividend?

Design an array multiplier that multiplies two 4-bit numbers. Use AND gates
and binary adders.

Show the step-by-step multiplication process using Booth algorithm (as in
Table 10-3) when the following binary numbers are multiplied. Assume 5-bit
registers that hold signed numbers. The multiplicand in both cases is +15.
a. (+15) x (+13)

b. (+15) x (~13)

Derive an algorithm in flowchart form for the nonrestoring method of fixed-
point binary division.

Derive an algorithm for evaluating the square root of a binary fixed-point
number.

A binary floating-point number has seven bits for a biased exponent. The
constant used for the bias is 64.
a. List the biased representation of all exponents from —64 to +63.

378

CHAPTER TEN Computer Arithmetic

10-18.

10-19.
10-20.

10-21.

10-22.
10-23.

10-24.

10-25.

10-26.

b. Show that a 7-bit magnitude comparator can be used to compare the
relative magnitude of the two exponents.

¢. Show that after the addition of two biased exponents it is necessary to
subtract 64 in order to have a biased exponents sum. How would you
subtract 64 by adding its 2's complement value?

d. Show that after the subtraction of two biased exponents it is necessary
to add 64 in order to have a biased exponent difference.

Derive an algorithm in flowchart form for the comparison of two signed

binary numbers when negative numbers are in signed-2's complement rep-

resentation:

a. By means of a subtraction operation with the signed-2's complement
numbers.

b. By scanning and comparing pairs of bits from left to right.

Repeat Prob. 10-18 for signed-magnitude binary numbers.

Let n be the number of bits of the mantissa in a binary floating-point number.
When the mantissas are aligned during the addition or subtraction, the
exponent difference may be greater than n — 1. If this occurs, the mantissa
with the smaller exponent is shifted entirely out of the register. Modify the
mantissa alignment in Fig. 10-15 by including a sequence counter SC that
counts the number of shifts. If the number of shifts is greater than n — 1,
the larger number is then used to determine the result.

The procedure for aligning mantissas during addition or subtraction of
floating-point numbers can be stated as follows: Subtract the smaller expo-
nent from the larger and shift right the mantissa having the smaller exponent
a number of places equal to the difference between the exponents. The
exponent of the sum (or difference) is equal to the larger exponents. Without
using a magnitude comparator, assuming biased exponents, and taking into
account that only the AC can be shifted, derive an algorithm in flowchart
form for aligning the mantissas and placing the larger exponent in the AC.

Show that there can be no mantissa overflow after a multiplication operation.

Show that the division of two normalized floating-point numbers with
fractional mantissas will always result in a normalized quotient provided a
dividend alignment is carried out prior to the division operation.

Extend the flowchart of Fig. 10-17 to provide a normalized floating-point
remainder in the AC. The mantissa should be a fraction.

The algorithms for the floating-point arithmetic operations in Sec. 10-5

neglect the possibility of exponent overflow or underflow.

a. Go over the three flowcharts and find where an exponent overflow may
occur.

b. Repeat (a) for exponent underflow. An exponent underflow occurs if the
exponent is more negative than the smallest number that can be accom-
modated in the register.

¢. Show how an exponent overflow or underflow can be detected by the
hardware.

If we assume integer representation for the mantissa of floating-point num-
bers, we encounter certain scaling problems during multiplication and divi-

10-27.

10-28.

10-29.

10-30.

10-31.

10-32.

10-33.

10-34.

10-35.

10-36.

10-37.

Problems 379

sion. Let the number of bits in the magnitude part of the mantissa be (n — 1).

For integer representation:

a. Show that if a single-precision product is used, (n — 1) must be added
to the exponent product in the AC.

b. Show that if a single-precision mantissa dividend is used, (n — 1) must
be subtracted from the exponent dividend when Q is cleared.

Show the hardware to be used for the addition and subtraction of two
decimal numbers in signed-magnitude representation. Indicate how an
overflow is detected.

Show that 673 — 356 can be computed by adding 673 to the 10’s complement
of 356 and discarding the end carry. Draw the block diagram of a three-stage
decimal arithmetic unit and show how this operation is implemented. List
all input bits and output bits of the unit.

Show that the lower 4-bit binary adder in Fig. 10-1 can be replaced by one
full-adder and two half-adders.

Using combinational circuit design techniques, derive the Boolean functions
for the BCD 9’s complementer of Fig. 10-19. Draw the logic diagram.

It is necessary to design an adder for two decimal digits represented in the

excess-3 code (Table 3-6). Show that the correction after adding two digits

with a 4-bit binary adder is as follows:

a. The output carry is equal to the uncorrected carry.

b. If output carry = 1, add 0011.

c. If output carry = 0, add 1101 and ignore the carry from this addition.
Show that the excess-3 adder can be constructed with seven full-adders
and two inverters.

Derive the circuit for a 9's complementer when decimal digits are repre-
sented in the excess-3 code (Table 3-6). A mode control input determines
whether the digit is complemented or not. What is the advantage of using
this code over BCD?

Show the hardware to be used for the addition and subtraction of two
decimal numbers with negative numbers in signed-10’s complement repre-
sentation. Indicate how an overflow is detected. Derive the flowchart al-
gorithm and try a few numbers to convince yourself that the algorithm
produces correct results.

Show the content of registers A, B, Q, and SC during the decimal multipli-
cation (Fig. 10-22) of (a) 470 X 152 and (b) 999 X 199. Assume three-digit
registers and take the second number as the multiplier.

Show the content of registers A, E, Q, and SC during the decimal division
(Fig. 10-23) of 1680/32. Assume two-digit registers.

Show that subregister A. in Fig. 10-21 is zero at the termination of (a) the
decimal multiplication as specified in Fig. 10-22, and (b) the decimal division
as specified in Fig. 10-23.

Change the floating-point arithmetic algorithms in Sec. 10-5 from binary to
decimal data. In a table, list how each microoperation symbol should be
interpreted.

380

CHAPTER TEN Computer Arithmetic

. Blaauw, G., Digital Systems Tmpl ion. Englewood Cliffs, NJ: Prentice Hall,

1976.

. Cavanagh,]. J. F., Digital Computer Arithmetic. New York: McGraw-Hill, 1984.
. Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.

New York: McGraw-Hill, 1990.

X Hays, 1. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill,

.HiIiF] and G. R. P Digital 5 Hards Organization and Design, 3rd

ed. New York: John Wiley, 1987.
Hwang, K., Computer Arithmetic. New York: John Wiley, 1979.

. Kulisch, V. W., and W. L. Miranker, Computer Arithmetic in Theory and Practice. New

York: Academic Press, 1980.

. Schmid, H., Decimal Arithmetic. New York: John Wiley, 1979,

