throughput

—_— CHAPTER NINE ——

Pipeline and Vector
Processing

IN THIS CHAPTER

9-1 Parallel Processing
9.2 Pipelining

9.3 Arithmetic Pipeline
94 Instruction Pipeline
9.5 RISC Pipeline

96 Vector Processing
9.7 Array Processors

9-1 Parallel Processing

Parallel processing is a term used to denote a large class of techniques that are
used to provide simultaneous data-processing tasks for the purpose of increas-
ing the computational speed of a computer system. Instead of processing each
instruction sequentially as in a conventional computer, a parallel processing
system is able to perform concurrent data processing to achieve faster execu-
tion time. For example, while an instruction is being executed in the ALU, the
next instruction can be read from memory. The system may have two or more
ALUs and be able to execute two or more instructions at the same time.
Furthermore, the system may have two or more processors operating concur-
rently. The purpose of parallel processing is to speed up the computer process-
ing capability and increase its thmughput that is, the amount of
that can be accomplished during a given interval of time. The amount of
hardware increases with parallel processing, and with it, the cost of the system
increases. However, technological developments have reduced hardware costs
to the point where parallel processing techniques are economically feasible.
Parallel processing can be viewed from various levels of complexity. At
the lowest level, we distinguish between parallel and serial operations by the
type of registers used. Shift registers operate in serial fashion one bit at a time,

299

300 CHAPTER NINE Pipeline and Vector Processing

multiple functional
units

while registers with parallel load operate with all the bits of the word simulta-
neously. Parallel processing at a higher level of complexity can be achieved by
having a multiplicity of functional units that perform identical or different
operations simultaneously. Parallel processing is established by distributing
the data among the multiple functional units. For example, the arithmetic,
logic, and shift operations can be separated into three units and the operands
diverted to each unit under the supervision of a control unit.

Figure 9-1 shows one possible way of separating the execution unit into
eight functional units operating in parallel. The operands in the registers are
applied to one of the units depending on the operation specified by the instruc-

Figure 9-1 Processor with multiple functional units.

Adder-subtractor

Integer multiply

Logic unit

Shift unit

To memory —<—>

J111

Processor

registers
Floating—point

add-subtract
Floa(ing—poim
multiply
Floa(i'n g-point
divide

SIMD

MIMD

SECTION 9-1 Parallel Processing 301

tion associated with the operands. The operation performed in each functional
unit is indicated in each block of the diagram. The adder and integer multiplier
perform the arithmetic operations with integer numbers. The floating-point
operations are separated into three circuits operating in parallel. The logic,
shift, and increment operations can be performed concurrently on different
data. All units are independent of each other, so one number can be shifted
while another number is being incremented. A multifunctional organization
is usually associated with a complex control unit to coordinate all the activities
among the various components.

There are a variety of ways that parallel processing can be classified. It
can be considered from the internal organization of the processors, from the
interconnection structure between processors, or from the flow of information
through the system. One classification introduced by M. J. Flynn considers the
organization of a computer system by the number of instructions and data
items that are manipulated simultaneously. The normal operation of a com-
puter is to fetch instructions from memory and execute them in the processor.
The sequence of instructions read from memory constitutes an instruction
stream. The operations performed on the data in the processor constitutes a data
stream. Parallel processing may occur in the instruction stream, in the data
stream, or in both. Flynn’s classification divides computers into four major
groups as follows:

Single instruction stream, single data stream (SISD)
Single instruction stream, multiple data stream (SIMD)
Multiple instruction stream, single data stream (MISD)
Multiple instruction stream, multiple data stream (MIMD)

SISD represents the organization of a single computer containing a con-
trol unit, a processor unit, and a memory unit. Instructions are executed
sequentially and the system may or may not have internal parallel processing
capabilities. Parallel processing in this case may be achieved by means of
multiple functional units or by pipeline processing.

SIMD represents an organization that includes many processing units
under the supervision of a common control unit. All processors receive
the same instruction from the control unit but operate on different items of
data. The shared memory unit must contain multiple modules so that it can
communicate with all the processors simultaneously. MISD structure is only
of theoretical interest since no practical system has been constructed using this
organization. MIMD organization refers to a computer system capable of
processing several programs at the same time. Most multiprocessor and multi-
computer systems can be classified in this category.

Flynn’s classification depends on the distinction between the perform-
ance of the control unit and the data-processing unit. It emphasizes the be-

302 CHAPTER NINE Pipeline and Vector Processing

an example

havioral characteristics of the computer system rather than its operational and
structural interconnections. One type of parallel processing that does not fit
Flynn's classification is pipelining. The only two categories used from this
classification are SIMD array processors discussed in Sec. 9-7, and MIMD
multiprocessors presented in Chap. 13.

In this chapter we consider parallel processing under the following main
topics:

1. Pipeline processing
2. Vector processing
3. Array processors

Pipeline processing is an implementation technique where arithmetic suboper-
ations or the phases of a computer instruction cycle overlap in execution.
Vector processing deals with computations involving large vectors and ma-
trices. Array processors perform computations on large arrays of data.

9-2 Pipelining

Pipelining is a technique of decomposing a sequential process into subopera-
tions, with each subprocess being executed in a special dedicated segment that
operates concurrently with all other segments. A pipeline can be visualized as
a collection of processing segments through which binary information flows.
Each segment performs partial processing dictated by the way the task is
partitioned. The result obtained from the computation in each segment is
transferred to the next segment in the pipeline. The final result is obtained after
the data have passed through all segments. The name “pipeline” implies a
flow of information analogous to an industrial assembly line. It is characteristic
of pipelines that several computations can be in progress in distinct segments
at the same time. The overlapping of computation is made possible by associ-
ating a register with each segment in the pipeline. The registers provide
isolation between each segment so that each can operate on distinct data
simultaneously.

Perhaps the simplest way of viewing the pipeline structure is to imagine
that each segment consists of an input register followed by a combinational
circuit. The register holds the data and the combinational circuit performs the
suboperation in the particular segment. The output of the combinational circuit
in a given segment is applied to the input register of the next segment. A clock
is applied to all registers after enough time has elapsed to perform all segment
activity. In this way the information flows through the pipeline one step at a
time.

The pipeline organization will be demonstrated by means of a simple

SECTION 9-2 Pipelining 303

example. Suppose that we want to perform the combined multiply and add
operations with a stream of numbers.

Ai*B; + C; fori =1,2,3,...,7

Each suboperation is to be implemented in a segment within a pipeline. Each
segment has one or two registers and a combinational circuit as shown in Fig.
9-2. R1 through R5 are registers that receive new data with every clock pulse.
The multiplier and adder are combinational circuits. The suboperations per-
formed in each segment of the pipeline are as follows:

R1<A;, R2<B; Input A; and B;
R3«R1%R2, R4«C; Multiply and input C;
R5«R3 + R4 Add C; to product

The five registers are loaded with new data every clock pulse. The effect of each
clock is shown in Table 9-1. The first clock pulse transfers A4; and B, into R1and

Figure 9-2 Example of pipeline processing.

B; (]

ol >
e

Multiplier

Adder

304 CHAPTERNINE Pipeline and Vector Processing

task

space-time diagram

TABLE 9-1 Content of Registers in Pipeline Example

Clock Segn 1 Seg 2 Segr 3
Pulse
Number R1 R2 R3 R4 RS

1 A, B, — — —
2 A, B, A, x B, G —
3 As By AxB, C A*B+ (G
4 As B, As3xB; Cs A*B, + G
5 As Bs Aq* By Cs AsxB3+ G
6 A¢ B¢ As* Bs Cs As*By + Cy
7 A; B; A¢*Bs Cs As*Bs + Cs
8 —_ — A% B, G Ae* Bs + Cs
9 — - - — AxB,+ G

R2. The second clock pulse transfers the product of R1 and R2 into R3 and C;
into R4. The same clock pulse transfers A, and B, into R1 and R2. The third
clock pulse operates on all three segments simultaneously. It places A, and B
into R1 and R2, transfers the product of R1 and R2 into R3, transfers C, into
R4, and places the sum of R3 and R4 into R5. It takes three clock pulses to fill
up the pipe and retrieve the first output from R5. From there on, each clock
produces a new output and moves the data one step down the pipeline. This
happens as long as new input data flow into the system. When no more input
data are available, the clock must continue until the last output emerges out
of the pipeline.

General Considerations
Any operation that can be decomposed into a sequence of suboperations of
about the same complexity can be implemented by a pipeline processor. The
technique is efficient for those applications that need to repeat the same task
many times with different sets of data. The general structure of a four-segment
pipeline is illustrated in Fig. 9-3. The operands pass through all four segments
in a fixed sequence. Each segment consists of a combinational circuit S; that
performs a suboperation over the data stream flowing through the pipe. The
segments are separated by registers R; that hold the intermediate results
between the stages. Information flows between adjacent stages under the
control of a common clock applied to all the registers simultaneously. We
define a task as the total operation performed going through all the segments
in the pipeline.

The behavior of a pipeline can be illustrated with a space-time diagram.
This is a diagram that shows the segment utilization as a function of time. The
space-time diagram of a four-segment pipeline is demonstrated in Fig. 9-4. The
horizontal axis displays the time in clock cycles and the vertical axis gives the

speedup

SECTION 9-2 Pipelining 305

Clock

V \Y4 V V
Input
— 5 S; Ry S3 R Sa

Figure 9-3 Four-segment pipeline.

segment number. The diagram shows six tasks T; through T; executed in four
segments. Initially, task T; is handled by segment 1. After the first clock,
segment 2 is busy with T;, while segment 1 is busy with task T;. Continuing
in this manner, the first task T; is completed after the fourth clock cycle. From
then on, the pipe completes a task every clock cycle. No matter how many
segments there are in the system, once the pipeline is full, it takes only one
clock period to obtain an output.

Now consider the case where a k-segment pipeline with a clock cycle time
t, is used to execute n tasks. The first task T, requires a time equal to kf, to
complete its operation since there are k segments in the pipe. The remaining
n — 1 tasks emerge from the pipe at the rate of one task per clock cycle and
they will be completed after a time equal to (n — 1)t,. Therefore, to complete
n tasks using a k-segment pipeline requires k + (n — 1) clock cycles. For exam-
ple, the diagram of Fig. 9-4 shows four segments and six tasks. The time
required to complete all the operations is 4 + (6 — 1) = 9 clock cycles, as
indicated in the diagram.

Next consider a nonpipeline unit that performs the same operation and
takes a time equal to £, to complete each task. The total time required for n tasks
is nt,. The speedup of a pipeline processing over an equivalent nonpipeline
processing is defined by the ratio

nt,

S=(k+n—1)t,,

Figure 9-4 Space-time diagram for pipeline.

1 2 3 4 5 6 7 8 9

Clock cycles
Segment: 1| Ty T, T3 N Ts Te
2 T T, T3 Ty Ts 3
3 T T, T3 Ts Ts | Te

4 T, | T, | | Tw|Ts | Ts

306 CHAPTER NINE Pipeline and Vector Processing

As the number of tasks increases, n becomes much larger than k — 1, and
k + n — 1 approaches the value of n. Under this condition, the speedup
becomes

If we assume that the time it takes to process a task is the same in the pipeline
and nonpipeline circuits, we will have t, = kt,. Including this assumption, the
speedup reduces to

kt

P

5

S="F=k

|

This shows that the theoretical maximum speedup that a pipeline can provide
is k, where k is the number of segments in the pipeline.

To clarify the meaning of the speedup ratio, consider the following
numerical example. Let the time it takes to process a suboperation in each
segment be equal to ¢, = 20 ns. Assume that the pipeline has k = 4 seg-
ments and executes n = 100 tasks in sequence. The pipeline system will take
(k+n—1)t,=(4+99 x20=2060 ns to complete. Assuming that t,=
kt, = 4 x 20 = 80ns, a nonpipeline system requires nkt, = 100 x 80 = 8000 ns
to complete the 100 tasks. The speedup ratio is equal to 8000/2060 = 3.88. As
the number of tasks increases, the speedup will approach 4, which is equal to
the number of segments in the pipeline. If we assume that t, = 60 ns, the
speedup becomes 60/20 = 3.

To duplicate the theoretical speed advantage of a pipeline process by
means of multiple functional units, it is necessary to construct k identical units
that will be operating in parallel. The implication is that a k-segment pipeline
processor can be expected to equal the performance of k copies of an equivalent
nonpipeline circuit under equal operating conditions. This is illustrated in
Fig. 9-5, where four identical circuits are connected in parallel. Each P circuit
performs the same task of an equivalent pipeline circuit. Instead of operating
with the input data in sequence as in a pipeline, the parallel circuits accept four
input data items simultaneously and perform four tasks at the same time.
As far as the speed of operation is concerned, this is equivalent to a four
segment pipeline. Note that the four-unit circuit of Fig. 9-5 constitutes a
single-instruction multiple-data (SIMD) organization since the same instruc-
tion is used to operate on multiple data in parallel.

There are various reasons why the pipeline cannot operate at its maxi-
mum theoretical rate. Different segments may take different times to complete
their suboperation. The clock cycle must be chosen to equal the time delay of
the segment with the maximum propagation time. This causes all other seg-
ments to waste time while waiting for the next clock. Moreover, it is not always

SECTION 9-3 Arithmetic Pipeline 307

I; Iig) lisa livs
Py Py Py Py

i i l /

Figure 9-5 Multiple functional units in parallel.

correct to assume that a nonpipe circuit has the same time delay as that of an
equivalent pipeline circuit. Many of the intermediate registers will not be
needed in a single-unit circuit, which can usually be constructed entirely as a
combinational circuit. Nevertheless, the pipeline technique provides a faster
operation over a purely serial sequence even though the maximum theoretical
speed is never fully achieved.

There are two areas of computer design where the pipeline organization
is applicable. An arithmetic pipeline divides an arithmetic operation into sub-
operations for execution in the pipeline segments. An instruction pipeline oper-
ates on a stream of instructions by overlapping the fetch, decode, and execute
phases of the instruction cycle. The two types of pipelines are explained in the
following sections.

9-3 Arithmetic Pipeline

Pipeline arithmetic units are usually found in very high speed computers. They
are used to implement floating-point operations, multiplication of fixed-point
numbers, and similar computations encountered in scientific problems. A
pipeline multiplier is essentially an array multiplier as described in Fig. 10-10,
with special adders designed to minimize the carry propagation time through
the partial products. Floating-point operations are easily decomposed into
suboperations as demonstrated in Sec. 10-5. We will now show an example of
a pipeline unit for floating-point addition and subtraction.

The inputs to the floating-point adder pipeline are two normalized float-
ing-point binary numbers.

X=AXx2
Y=Bx2

308 CHAPTER NINE Pipeline and Vector Processing

A and B are two fractions that represent the mantissas and 4 and b are the
exponents. The floating-point addition and subtraction can be performed in
four segments, as shown in Fig. 9-6. The registers labeled R are placed between
the segments to store intermediate results. The suboperations that are per-
formed in the four segments are:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract the mantissas.
4. Normalize the result.

This follows the procedure outlined in the flowchart of Fig. 10-15 but with some
variations that are used to reduce the execution time of the suboperations. The
exponents are compared by subtracting them to determine their difference.
The larger exponent is chosen as the exponent of the result. The exponent
difference determines how many times the mantissa associated with the
smaller exponent must be shifted to the right. This produces an alignment of
the two mantissas. It should be noted that the shift must be designed as a
combinational circuit to reduce the shift time. The two mantissas are added or
subtracted in segment 3. The result is normalized in segment 4. When an
overflow occurs, the mantissa of the sum or difference is shifted right and the
exponent incremented by one. If an underflow occurs, the number of leading
zeros in the mantissa determines the number of left shifts in the mantissa and
the number that must be subtracted from the exponent.

The following numerical example may clarify the suboperations per-
formed in each segment. For simplicity, we use decimal numbers, although
Fig. 9-6 refers to binary numbers. Consider the two normalized floating-point
numbers:

X =0.9504 x 10°
Y = 0.8200 x 10?
The two exponents are subtracted in the first segment to obtain 3 — 2 = 1. The

larger exponent 3 is chosen as the exponent of the result. The next segment
shifts the mantissa of Y to the right to obtain

X =0.9504 x 10°
Y = 0.0820 x 10°

This aligns the two mantissas under the same exponent. The addition of the
two mantissas in segment 3 produces the sum

Z =1.0324 x 10°

Figure 9-6 Pipeline for floating-point addition and subtraction.

310 CHAPTER NINE Pipeline and Vector Processing

instruction cycle

The sum is adjusted by normalizing the result so that it has a fraction with a
nonzero first digit. This is done by shifting the mantissa once to the right and
incrementing the exponent by one to obtain the normalized sum.

Z =0.10324 x 10*

The comparator, shifter, adder-subtractor, incrementer, and decrementer in
the floating-point pipeline are implemented with combinational circuits. Sup-
pose that the time delays of the four segmentsare t, = 60ns, , = 70 ns, t; = 100
ns, t, = 80 ns, and the interface registers have a delay of ¢, = 10 ns. The clock
cycle is chosen tobe t, = t; + t, = 110 ns. An equivalent nonpipeline floating-
point adder-subtractor will have a delay time t, = t, + t, + t; + t;, + t, = 320
ns. In this case the pipelined adder has a speedup of 320/110 = 2.9 over the
nonpipelined adder.

9-4 Instruction Pipeline

Pipeline processing can occur not only in the data stream but in the instruction
stream as well. An instruction pipeline reads consecutive instructions from
memory while previous instructions are being executed in other segments.
This causes the instruction fetch and execute phases to overlap and perform
simultaneous operations. One possible digression associated with such a
scheme is that an instruction may cause a branch out of sequence. In that case
the pipeline must be emptied and all the instructions that have been read from
memory after the branch instruction must be discarded.

Consider a computer with an instruction fetch unit and an instruction
execution unit designed to provide a two-segment pipeline. The instruction
fetch segment can be implemented by means of a first-in, first-out (FIFO)
buffer. This is a type of unit that forms a queue rather than a stack. Whenever
the execution unit is not using memory, the control increments the program
counter and uses its address value to read consecutive instructions from mem-
ory. The instructions are inserted into the FIFO buffer so that they can be
executed on a first-in, first-out basis. Thus an instruction stream can be placed
in a queue, waiting for decoding and processing by the execution segment. The
instruction stream queuing mechanism provides an efficient way for reducing
the average access time to memory for reading instructions. Whenever there
is space in the FIFO bulffer, the control unit initiates the next instruction fetch
phase. The buffer acts as a queue from which control then extracts the instruc-
tions for the execution unit.

Computers with complex instructions require other phases in addition to
the fetch and execute to process an instruction completely. In the most general
case, the computer needs to process each instruction with the following se-
quence of steps.

SECTION 9-4 Instruction Pipeline 311

. Fetch the instruction from memory.
. Decode the instruction.

. Calculate the effective address.

. Fetch the operands from memory.

. Execute the instruction.

. Store the result in the proper place.

A Uk W N

There are certain difficulties that will prevent the instruction pipeline
from operating at its maximum rate. Different segments may take different
times to operate on the incoming information. Some segments are skipped for
certain operations. For example, a register mode instruction does not need an
effective address calculation. Two or more segments may require memory
access at the same time, causing one segment to wait until another is finished
with the memory. Memory access conflicts are sometimes resolved by using
two memory buses for accessing instructions and data in separate modules. In
this way, an instruction word and a data word can be read simultaneously from
two different modules.

The design of an instruction pipeline will be most efficient if the instruc-
tion cycle is divided into segments of equal duration. The time that each step
takes to fulfill its function depends on the instruction and the way it is executed.

Example: Four-Segment Instruction Pipeline

Assume that the decoding of the instruction can be combined with the calcu-
lation of the effective address into one segment. Assume further that most of
the instructions place the result into a processor register so that the instruction
execution and storing of the result can be combined into one segment. This
reduces the instruction pipeline into four segments.

Figure 9-7 shows how the instruction cycle in the CPU can be processed
with a four-segment pipeline. While an instruction is being executed in seg-
ment 4, the next instruction in sequence is busy fetching an operand from
memory in segment 3. The effective address may be calculated in a separate
arithmetic circuit for the third instruction, and whenever the memory is avail-
able, the fourth and all subsequent instructions can be fetched and placed in
an instruction FIFO. Thus up to four suboperations in the instruction cycle can
overlap and up to four different instructions can be in progress of being
processed at the same time.

Once in a while, an instruction in the sequence may be a program control
type that causes a branch out of normal sequence. In that case the pending
operations in the last two segments are completed and all information stored
in the instruction buffer is deleted. The pipeline then restarts from the new
address stored in the program counter. Similarly, an interrupt request, when
acknowledged, will cause the pipeline to empty and start again from a new
address value.

312 cHapTER NINE Pipeline and Vector Processing

Figure 9-7 Four-segment CPU pipeline.

Figure 9-8 shows the operation of the instruction pipeline. The time in the
horizontal axis is divided into steps of equal duration. The four segments are
represented in the diagram with an abbreviated symbol.

1. Flis the segment that fetches an instruction.

2. DA is the segment that decodes the instruction and calculates the
effective address.

3. FO is the segment that fetches the operand.
4. EX is the segment that executes the instruction.

It is assumed that the processor has separate instruction and data memories
so that the operation in Fl and FO can proceed at the same time. In the absence

pipeline conflicts

SECTION 9-4 Instruction Pipeline 313

Step: 1 2 3 4 5 6 7 8 9 10 (111213
Instruction: I | Fl | DA | FO | EX
2 FI [DA | FO | EX
(Branch) 3 FI | DA| FO | EX
4 F1| - - | FI |DA| FO [EX
5 - - - | Fl |DA| FO | EX
6 FI [DA | FO | EX
7 FI | DA | FO | EX

Figure 9-8 Timing of instruction pipeline.

of a branch instruction, each segment operates on different instructions. Thus,
in step 4, instruction 1 is being executed in segment EX; the operand for
instruction 2 is being fetched in segment FO; instruction 3 is being decoded in
segment DA; and instruction 4 is being fetched from memory in segment FI.

Assume now that instruction 3 is a branch instruction. As soon as this
instruction is decoded in segment DA in step 4, the transfer from FI to DA of
the other instructions is halted until the branch instruction is executed in step
6. If the branch is taken, a new instruction is fetched in step 7. If the branch
is not taken, the instruction fetched previously in step 4 can be used. The
pipeline then continues until a new branch instruction is encountered.

Another delay may occur in the pipeline if the EX segment needs to store
the result of the operation in the data memory while the FO segment needs
to fetch an operand. In that case, segment FO must wait until segment EX has
finished its operation.

In general, there are three major difficulties that cause the instruction
pipeline to deviate from its normal operation.

1. Resource conflicts caused by access to memory by two segments at the
same time. Most of these conflicts can be resolved by using separate
instruction and data memories.

2. Data dependency conflicts arise when an instruction depends on the
result of a previous instruction, but this result is not yet available.

3. Branch difficulties arise from branch and other instructions that change
the value of PC.

Data Dependency
A difficulty that may caused a degradation of performance in an instruction
pipeline is due to possible collision of data or address. A collision occurs when

314 cHAPTER NINE Pipeline and Vector Processing

hardware interlocks

operand forwarding

delayed load

an instruction cannot proceed because previous instructions did not complete
certain operations. A data dependency occurs when an instruction needs data
that are not yet available. For example, an instruction in the FO segment may
need to fetch an operand that is being generated at the same time by the
previous instruction in segment EX. Therefore, the second instruction must
wait for data to become available by the first instruction. Similarly, an address
dependency may occur when an operand address cannot be calculated because
the information needed by the addressing mode is not available. For example,
an instruction with register indirect mode cannot proceed to fetch the operand
if the previous instruction is loading the address into the register. Therefore,
the operand access to memory must be delayed until the required address is
available. Pipelined computers deal with such conflicts between data depen-
dencies in a variety of ways.

The most straightforward method is to insert hardware interlocks. An
interlock is a circuit that detects instructions whose source operands are des-
tinations of instructions farther up in the pipeline. Detection of this situation
causes the instruction whose source is not available to be delayed by enough
clock cycles to resolve the conflict. This approach maintains the program
sequence by using hardware to insert the required delays.

Another technique called operand forwarding uses special hardware to
detect a conflict and then avoid it by routing the data through special paths
between pipeline segments. For example, instead of transferring an ALU result
into a destination register, the hardware checks the destination operand, and
if it is needed as a source in the next instruction, it passes the result directly
into the ALU input, bypassing the register file. This method requires additional
hardware paths through multiplexers as well as the circuit that detects the
conflict.

A procedure employed in some computers is to give the responsibility for
solving data conflicts problems to the compiler that translates the high-level
programming language into a machine language program. The compiler for
such computers is designed to detect a data conflict and reorder the instruc-
tions as necessary to delay the loading of the conflicting data by inserting
no-operation instructions. This method is referred to as delayed load. An exam-
ple of delayed load is presented in the next section.

Handling of Branch Instructions

One of the major problems in operating an instruction pipeline is the occur-
rence of branch instructions. A branch instruction can be conditional or uncon-
ditional. An unconditional branch always alters the sequential program flow
by loading the program counter with the target address. In a conditional
branch, the control selects the target instruction if the condition is satisfied or
the next sequential instruction if the condition is not satisfied. As mentioned
previously, the branch instruction breaks the normal sequence of the instruc-
tion stream, causing difficulties in the operation of the instruction pipeline.

prefetch target
instruction

branch target buffer

loop buffer

branch prediction

delayed branch

SECTION 9-5 RISC Pipeline 315

Pipelined computers employ various hardware techniques to minimize the
performance degradation caused by instruction branching.

One way of handling a conditional branch is to prefetch the target instruc-
tion in addition to the instruction following the branch. Both are saved until
the branch is executed. If the branch condition is successful, the pipeline
continues from the branch target instruction. An extension of this procedure
is to continue fetching instructions from both places until the branch decision
is made. At that time control chooses the instruction stream of the correct
program flow.

Another possibility is the use of a branch target buffer or BTB. The BTB is
an associative memory (see Sec. 12-4) included in the fetch segment of the
pipeline. Each entry in the BTB consists of the address of a previously executed
branch instruction and the target instruction for that branch. It also stores the
next few instructions after the branch target instruction. When the pipeline
decodes a branch instruction, it searches the associative memory BTB for the
address of the instruction. If it is in the BTB, the instruction is available directly
and prefetch continues from the new path. If the instruction is not in the BTB,
the pipeline shifts to a new instruction stream and stores the target instruction
in the BTB. The advantage of this scheme is that branch instructions that have
occurred previously are readily available in the pipeline without interruption.

A variation of the BTB is the loop buffer. This is a small very high speed
register file maintained by the instruction fetch segment of the pipeline. When
a program loop is detected in the program, it is stored in the loop buffer in its
entirety, including all branches. The program loop can be executed directly
without having to access memory until the loop mode is removed by the final
branching out.

Another procedure that some computers use is branch prediction. A
pipeline with branch prediction uses some additional logic to guess the out-
come of a conditional branch instruction before it is executed. The pipeline then
begins prefetching the instruction stream from the predicted path. A correct
prediction eliminates the wasted time caused by branch penalties.

A procedure employed in most RISC processors is the delayed branch. In
this procedure, the compiler detects the branch instructions and rearranges the
machine language code sequence by inserting useful instructions that keep the
pipeline operating without interruptions. An example of delayed branch is the
insertion of a no-operation instruction after a branch instruction. This causes
the computer to fetch the target instruction during the execution of the no-
operation instruction, allowing a continuous flow of the pipeline. An example
of delayed branch is presented in the next section.

9-5 RISC Pipeline

The reduced instruction set computer (RISC) was introduced in Sec. 8-8.
Among the characteristics attributed to RISC is its ability to use an efficient
instruction pipeline. The simplicity of the instruction set can be utilized to

316 cHAPTER NINE Pipeline and Vector Processing

single-cycle
instruction
execution

compiler support

implement an instruction pipeline using a small number of suboperations,
with each being executed in one clock cycle. Because of the fixed-length
instruction format, the decoding of the operation can occur at the same time
as the register selection. All data manipulation instructions have register-to-
register operations. Since all operands are in registers, there is no need for
calculating an effective address or fetching of operands from memory. There-
fore, the instruction pipeline can be implemented with two or three segments.
One segment fetches the instruction from program memory, and the other
segment executes the instruction in the ALU. A third segment may be used to
store the result of the ALU operation in a destination register.

The data transfer instructions in RISC are limited to load and store
instructions. These instructions use register indirect addressing. They usually
need three or four stages in the pipeline. To prevent conflicts between a
memory access to fetch an instruction and to load or store an operand, most
RISC machines use two separate buses with two memories: one for storing the
instructions and the other for storing the data. The two memories can some-
time operate at the same speed as the CPU clock and are referred to as cache
memories (see Sec. 12-6).

As mentioned in Sec. 8-8, one of the major advantages of RISC is its ability
to execute instructions at the rate of one per clock cycle. It is not possible to
expect that every instruction be fetched from memory and executed in one
clock cycle. What is done, in effect, is to start each instruction with each clock
cycle and to pipeline the processor to achieve the goal of single-cycle instruc-
tion execution. The advantage of RISC over CISC (complex instruction set
computer) is that RISC can achieve pipeline segments, requiring just one clock
cycle, while CISC uses many segments in its pipeline, with the longest segment
requiring two or more clock cycles.

Another characteristic of RISC is the support given by the compiler that
translates the high-level language program into machine language program.
Instead of designing hardware to handle the difficulties associated with data
conflicts and branch penalties, RISC processors rely on the efficiency of the
compiler to detect and minimize the delays encountered with these problems.
The following examples show how a compiler can optimize the machine
language program to compensate for pipeline conflicts.

Example: Three-Segment Instruction Pipeline

A typical set of instructions for a RISC processor are listed in Table 8-12. We
see from this table that there are three types of instructions. The data manip-
ulation instructions operate on data in processor registers. The data transfer
instructions are load and store instructions that use an effective address ob-
tained from the addition of the contents of two registers or a register and a
displacement constant provided in the instruction. The program control in-
structions use register values and a constant to evaluate the branch address,
which is transferred to a register or the program counter PC.

SECTION 9-5 RISC Pipeline 317

Now consider the hardware operation for such a computer. The control
section fetches the instruction from program memory into an instruction reg-
ister. The instruction is decoded at the same time that the registers needed for
the execution of the instruction are selected. The processor unit consists of a
number of registers and an arithmetic logic unit (ALU) that performs the
necessary arithmetic, logic, and shift operations. A data memory is used to
load or store the data from a selected register in the register file. The instruction
cycle can be divided into three suboperations and implemented in three
segments:

I: Instruction fetch
A: ALU operation
E: Execute instruction

The I segment fetches the instruction from program memory. The instruction
is decoded and an ALU operation is performed in the A segment. The ALU
is used for three different functions, depending on the decoded instruction.
It performs an operation for a data manipulation instruction, it evaluates the
effective address for a load or store instruction, or it calculates the branch
address for a program control instruction. The E segment directs the output
of the ALU to one of three destinations, depending on the decoded instruction.
It transfers the result of the ALU operation into a destination register in the
register file, it transfers the effective address to a data memory for loading or
storing, or it transfers the branch address to the program counter.

Delayed Load

Consider now the operation of the following four instructions:

1. LOAD: R1<M/[address 1]
2. LOAD: R2<M/[address 2]
3. ADD: R3<R1 + R2

4. STORE: M[address 3] <R3

If the three-segment pipeline proceeds without interruptions, there will be a
data conflict in instruction 3 because the operand in R2 is not yet available in
the A segment. This can be seen from the timing of the pipeline shown in
Fig. 9-9(a). The E segment in clock cycle 4 is in a process of placing the memory
data into R2. The A segment in clock cycle 4 is using the data from R2, but the
value in R2 will not be the correct value since it has not yet been transferred
from memory. It is up to the compiler to make sure that the instruction
following the load instruction uses the data fetched from memory. If the
compiler cannot find a useful instruction to put after the load, it inserts a no-op
(no-operation) instruction. This is a type of instruction that is fetched from

318

CHAPTER NINE Pipeline and Vector Processing

Clock cycles: 1123|4516
1. Load RI1 I|{A[E

2.Load R2 I[A|E

3.Add Rl +R2 I1|A|E

4. Store R3 I1|[A|E

(a) Pipeline timing with data conflict

Clock cycle: 1 3145167
1. Load R1 I1|{A|E

2. Load R2 1(A|E

3. No-operation I|A|E

4. Add R1 + R2 1

5. Store R3 I1|A|E

(b) Pipeline timing with delayed load

Figure 9-9 Three-segment pipeline timing.

memory but has no operation, thus wasting a clock cycle. This concept of
delaying the use of the data loaded from memory is referred to as delayed load.

Figure 9-9(b) shows the same program with a no-op instruction inserted
after the load to R2 instruction. The data is loaded into R2 in clock cycle 4. The
add instruction uses the value of R2 in step 5. Thus the no-op instruction is
used to advance one clock cycle in order to compensate for the data conflict in
the pipeline. (Note that no operation is performed in segment A during clock
cycle 4 or segment E during clock cycle 5.) The advantage of the delayed load
approach is that the data dependency is taken care of by the compiler rather
than the hardware. This results in a simpler hardware segment since the
segment does not have to check if the content of the register being accessed
is currently valid or not.

Delayed Branch

It was shown in Fig. 9-8 that a branch instruction delays the pipeline operation
until the instruction at the branch address is fetched. Several techniques for
reducing branch penalties were discussed in the preceding section. The
method used in most RISC processors is to rely on the compiler to redefine the
branches so that they take effect at the proper time in the pipeline. This method
is referred to as delayed branch.

SECTION 9-6 Vector Processing 319

The compiler for a processor that uses delayed branches is designed to
analyze the instructions before and after the branch and rearrange the program
sequence by inserting useful instructions in the delay steps. For example, the
compiler can determine that the program dependencies allow one or more
instructions preceding the branch to be moved into the delay steps after the
branch. These instructions are then fetched from memory and executed
through the pipeline while the branch instruction is being executed in other
segments. The effect is the same as if the instructions were executed in their
original order, except that the branch delay is removed. It is up to the compiler
to find useful instructions to put after the branch instruction. Failing that, the
compiler can insert no-op instructions.

An example of delayed branch is shown in Fig. 9-10. The program for this
example consists of five instructions:

Load from memory to R1
Increment R2

Add R3 to R4

Subtract RS from R6
Branch to address X

In Fig. 9-10(a) the compiler inserts two no-op instructions after the branch.
The branch address X is transferred to PC in clock cycle 7. The fetching of the
instruction at X is delayed by two clock cycles by the no-op instructions. The
instruction at X starts the fetch phase at clock cycle 8 after the program counter
PC has been updated.

The program in Fig. 9-10(b) is rearranged by placing the add and subtract
instructions after the branch instruction instead of before as in the original
program. Inspection of the pipeline timing shows that PC is updated to the
value of X in clock cycle 5, but the add and subtract instructions are fetched
from memory and executed in the proper sequence. In other words, if the load
instruction is at address 101 and X is equal to 350, the branch instruction is
fetched from address 103. The add instruction is fetched from address 104 and
executed in clock cycle 6. The subtract instruction is fetched from address 105
and executed in clock cycle 7. Since the value of X is transferred to PC with clock
cycle 5 in the E segment, the instruction fetched from memory at clock cycle
6 is from address 350, which is the instruction at the branch address.

9-6 Vector Processing

There is a class of computational problems that are beyond the capabilities of
a conventional computer. These problems are characterized by the fact that
they require a vast number of computations that will take a conventional
computer days or even weeks to complete. In many science and engineering

320 CHAPTER NINE Pipeline and Vector Processing

applications

Clock cycles: 1

1. Load I|A

>l m|w

2. Increment I

3. Add I1[A|E

4. Subtract I]1A|E

5.Branchto X 1

6. No-operation I1|A|E

7. No-operation I

8. Instruction in X I1|A|E

(a) Using no-operation instructions

Clock cycles: 1 3|14|5[6|7]8
1. Load I1{(A|E

2. Increment I [A|E

3.Branchto X I11AlE

4, Add I1A|E

5. Subtract I1|A|E

6. Instruction in X I1lA|E

(b) Rearranging the instructions

Figure 9-10 Example of delayed branch.

applications, the problems can be formulated in terms of vectors and matrice:
that lend themselves to vector processing.

Computers with vector processing capabilities are in demand in special
ized applications. The following are representative application areas wher
vector processing is of the utmost importance.

Long-range weather forecasting

Petroleum explorations

Seismic data analysis

Medical diagnosis

Aerodynamics and space flight simulations

SECTION 9-6 Vector Processing 321

Artificial intelligence and expert systems
Mapping the human genome
Image processing

Without sophisticated computers, many of the required computations cannot
be completed within a reasonable amount of time. To achieve the required level
of high performance it is necessary to utilize the fastest and most reliable
hardware and apply innovative procedures from vector and parallel processing
techniques.

Vector Operations

Many scientific problems require arithmetic operations on large arrays of
numbers. These numbers are usually formulated as vectors and matrices of
floating-point numbers. A vector is an ordered set of a one-dimensional array
of data items. A vector V of length n is represented as a row vector by
V=W V, Vi .-+ V,].Itmayberepresented asa column vector if the data
items are listed in a column. A conventional sequential computer is capable of
processing operands one at a time. Consequently, operations on vectors must
be broken down into single computations with subscripted variables. The
element V; of vector V is written as V(I) and the index I refers to a memory
address or register where the number is stored. To examine the difference
between a conventional scalar processor and a vector processor, consider the
following Fortran DO loop:

DO20I=1, 100
20 C(I)=B(I)+A(I)

This is a program for adding two vectors A and B of length 100 to produce a
vector C. This is implemented in machine language by the following sequence
of operations.

InitializeI =0

c0 Read A(I)
Read B(I)
Store C(I)=A(I)+ B(I)
IncrementI=I+1
IfI=100go toe0
Continue

This constitutes a program loop that reads a pair of operands from arrays A
and B and performs a floating-point addition. The loop control variable is then
updated and the steps repeat 100 times.

A computer capable of vector processing eliminates the overhead associ-
ated with the time it takes to fetch and execute the instructions in the program

322

CHAPTER NINE Pipeline and Vector Processing

loop. It allows operations to be specified with a single vector instruction of the
form

C(1:100) = A(1:100) + B(1:100)

The vector instruction includes the initial address of the operands, the length
of the vectors, and the operation to be performed, all in one composite instruc-
tion. The addition is done with a pipelined floating-point adder similar to the
one shown in Fig. 9-6.

A possible instruction format for a vector instruction is shown in Fig. 9-11.
This is essentially a three-address instruction with three fields specifying the
base address of the operands and an additional field that gives the length of
the data items in the vectors. This assumes that the vector operands reside in
memory. It is also possible to design the processor with a large number of
registers and store all operands in registers prior to the addition operation. In
that case the base address and length in the vector instruction specify a group
of CPU registers.

Matrix Multiplication

Matrix multiplication is one of the most computational intensive operations
performed in computers with vector processors. The multiplication of two
n X n matrices consists of n? inner products or n* multiply-add operations. An
n X m matrix of numbers has n rows and m columns and may be considered
as constituting a set of 7 row vectors or a set of m column vectors. Consider,
for example, the multiplication of two 3 X 3 matrices A and B.

an A 4 by bp by n Ci2 C3
Ay A An| X |by by bu|l=|cn cn
a3 Ay A by by by C1 Cn Cxn

The product matrix C is a 3 X 3 matrix whose elements are related to the
elements of A and B by the inner product:

3
Cij = > ay X by
k=1

For example, the number in the first row and first column of matrix C is
calculated by letting i = 1,j = 1, to obtain

cn = anby + anby + apby

Figure 9-11 Instruction format for vector processor.

Operation Base address Base address Base address Vector
code source 1 source 2 destination length

SECTION 9-6 Veector Processing 323

This requires three multiplications and (after initializing ¢y, to 0) three addi-
tions. The total number of multiplications or additions required to compute the
matrix productis 9 X 3 = 27. If we consider the linked multiply—-add operation
¢ + a X basacumulative operation, the productof twon X nmatricesrequires
n® multiply-add operations. The computation consists of n* inner products,
with each inner product requiring 7 multiply-add operations, assuming that
¢ is initialized to zero before computing each element in the product matrix.

In general, the inner product consists of the sum of k product terms of
the form

C=AB + A;B; + A3By + AiBy + - + ABe

In a typical application k may be equal to 100 or even 1000. The inner product
calculation on a pipeline vector processor is shown in Fig. 9-12. The values of
A and B are either in memory or in processor registers. The floating-point
multiplier pipeline and the floating-point adder pipeline are assumed to have
four segments each. All segment registers in the multiplier and adder are
initialized to 0. Therefore, the output of the adder is 0 for the first eight cycles
until both pipes are full. A; and B; pairs are brought in and multiplied at a rate
of one pair per cycle. After the first four cycles, the products begin to be added
to the output of the adder. During the next four cycles 0 is added to the
products entering the adder pipeline. At the end of the eighth cycle, the first
four products A, B, through A, B, are in the four adder segments, and the next
four products, AsBs through AgBs, are in the multiplier segments. At the
beginning of the ninth cycle, the output of the adder is A, B, and the output
of the multiplier is As Bs. Thus the ninth cycle starts the addition A, B, + AsBs
in the adder pipeline. The tenth cycle starts the addition A; B, + A¢Bs, and so
on. This pattern breaks down the summation into four sections as follows:

C=AB + AsBs + AgBy + A3Bi3 + - -+
+A;B; + A¢Bs + AyoBio + AuBis + - -+
+A;B; + A;B; + AuBy + AisBis + - -+
+A4By + AgBg + AppBpp + AygBig + -+ -

Figure 9-12 Pipeline for calculating an inner product.

Source
: L.
Source | Multiplier Adder

B pipeline pipeline

324

CHAPTER NINE Pipeline and Vector Processing

When there are no more product terms to be added, the system inserts four
zeros into the multiplier pipeline. The adder pipeline will then have one partial
product in each of its four segments, corresponding to the four sums listed in
the four rows in the above equation. The four partial sums are then added to
form the final sum.

Memory Interleaving

Pipeline and vector processors often require simultaneous access to memory
from two or more sources. An instruction pipeline may require the fetching of
an instruction and an operand at the same time from two different segments.
Similarly, an arithmetic pipeline usually requires two or more operands to
enter the pipeline at the same time. Instead of using two memory buses for
simultaneous access, the memory can be partitioned into a number of modules
connected to a common memory address and data buses. A memory module
is a memory array together with its own address and data registers. Figure 9-13
shows a memory unit with four modules. Each memory array has its own
address register AR and data register DR. The address registers receive infor-
mation from a common address bus and the data registers communicate with
abidirectional data bus. The two least significant bits of the address can be used
to distinguish between the four modules. The modular system permits one
module to initiate a memory access while other modules are in the process of
reading or writing a word and each module can honor a memory request
independent of the state of the other modules.

Figure 9-13 Multiple module memory organization.

Address bus

m_] [] [] []

Memory Memory Memory Memory
array array array array

Data bus

SECTION 9-6 Vector Processing 325

The advantage of a modular memory is that it allows the use of a tech-
nique called interleaving. In an interleaved memory, different sets of addresses
are assigned to different memory modules. For example, in a two-module
memory system, the even addresses may be in one module and the odd
addresses in the other. When the number of modules is a power of 2, the least
significant bits of the address select a memory module and the remaining bits
designate the specific location to be accessed within the selected module.

A modular memory is useful in systems with pipeline and vector process-
ing. A vector processor that uses an n-way interleaved memory can fetch n
operands from n different modules. By staggering the memory access, the
effective memory cycle time can be reduced by a factor close to the number of
modules. A CPU with instruction pipeline can take advantage of multiple
memory modules so that each segment in the pipeline can access memory
independent of memory access from other segments.

Supercomputers

A commercial computer with vector instructions and pipelined floating-point
arithmetic operations is referred to as a supercomputer. Supercomputers are
very powerful, high-performance machines used mostly for scientific compu-
tations. To speed up the operation, the components are packed tightly together
to minimize the distance that the electronic signals have to travel. Supercom-
puters also use special techniques for removing the heat from circuits to
prevent them from burning up because of their close proximity.

The instruction set of supercomputers contains the standard data trans-
fer, data manipulation, and program control instructions of conventional com-
puters. This is augmented by instructions that process vectors and combina-
tions of scalars and vectors. A supercomputer is a computer system best known
for its high computational speed, fast and large memory systems, and the
extensive use of parallel processing. It is equipped with multiple functional
units and each unit has its own pipeline configuration. Although the super-
computer is capable of general-purpose applications found in all other comput-
ers, it is specifically optimized for the type of numerical calculations involving
vectors and matrices of floating-point numbers.

Supercomputers are not suitable for normal everyday processing of a
typical computer installation. They are limited in their use to a number of
scientific applications, such as numerical weather forecasting, seismic wave
analysis, and space research. They have limited use and limited market be-
cause of their high price.

A measure used to evaluate computers in their ability to perform a given
number of floating-point operations per second is referred to as flops. The term
megaflops is used to denote million flops and gigaflops to denote billion flops.
A typical supercomputer has a basic cycle time of 4 to 20 ns. If the processor
can calculate a floating-point operation through a pipeline each cycle time, it
will have the ability to perform 50 to 250 megaflops. This rate would be

326

CHAPTER NINE Pipeline and Vector Processing

sustained from the time the first answer is produced and does not include the
initial setup time of the pipeline.

The first supercomputer developed in 1976 is the Cray-1 supercomputer.
It uses vector processing with 12 distinct functional units in parallel. Each
functional unit is segmented to process the incoming data through a pipeline.
All the functional units can operate concurrently with operands stored in the
large number of registers (over 150) in the CPU. A floating-point operation can
be performed on two sets of 64-bit operands during one clock cycle of 12.5 ns.
This gives a rate of 80 megaflops during the time that the data are processed
through the pipeline. It has a memory capacity of 4 million 64-bit words. The
memory is divided into 16 banks, with each bank having a 50-ns access time.
This means that when all 16 banks are accessed simultaneously, the memory
transfer rate is 320 million words per second. Cray research extended its
supercomputer to a multiprocessor configuration called Cray X-MP and Cray
Y-MP. The new Cray-2 supercomputer is 12 times more powerful than the
Cray-1 in vector processing mode.

Another early model supercomputer is the Fujitsu VP-200. It has a scalar
processor and a vector processor that can operate concurrently. Like the Cray
supercomputers, a large number of registers and multiple functional units are
used to enable register-to-register vector operations. There are four execution
pipelines in the vector processor, and when operating simultaneously, they
can achieve up to 300 megaflops. The main memory has 32 million words
connected to the vector registers through load and store pipelines. The VP-200
has 83 vector instructions and 195 scalar instructions. The newer VP-2600 uses
a clock cycle of 3.2 ns and claims a peak performance of 5 gigaflops.

9-7 Array Processors

An array processor is a processor that performs computations on large arrays
of data. The term is used to refer to two different types of processors. An
attached array processor is an auxiliary processor attached to a general-purpose
computer. It is intended to improve the performance of the host computer in
specific numerical computation tasks. An SIMD array processor is a processor
that has a single-instruction multiple-data organization. It manipulates vector
instructions by means of multiple functional units responding to a common
instruction. Although both types of array processors manipulate vectors, their
internal organization is different.

Attached Array Processor

An attached array processor is designed as a peripheral for a conventional host
computer, and its purpose is to enhance the performance of the computer by
providing vector processing for complex scientific applications. It achieves

SECTION 9-7 Array Processors 327

high performance by means of parallel processing with multiple functional
units. It includes an arithmetic unit containing one or more pipelined floating-
point adders and multipliers. The array processor can be programmed by the
user to accommodate a variety of complex arithmetic problems.

Figure 9-14 shows the interconnection of an attached array processor to
a host computer. The host computer is a general-purpose commercial com-
puter and the attached processor is a back-end machine driven by the host
computer. The array processor is connected through an input-output con-
troller to the computer and the computer treats it like an external interface. The
data for the attached processor are transferred from main memory to a local
memory through a high-speed bus. The general-purpose computer without
the attached processor serves the users that need conventional data process-
ing. The system with the attached processor satisfies the needs for complex
arithmetic applications.

Some manufacturers of attached array processors offer a model that can
be connected to a variety of different host computers. For example, when
attached toa VAX 11 computer, the FSP-164/MAX from Floating-Point Systems
increases the computing power of the VAX to 100 megaflops. The objective of
the attached array processor is to provide vector manipulation capabilities to
a conventional computer at a fraction of the cost of supercomputers.

SIMD Array Processor

An SIMD array processor is a computer with multiple processing units oper-
ating in parallel. The processing units are synchronized to perform the same
operation under the control of a common control unit, thus providing a single
instruction stream, multiple data stream (SIMD) organization. A general block
diagram of an array processor is shown in Fig. 9-15. It contains a set of identical
processing elements (PEs), each having a local memory M. Each processor
element includes an ALU, a floating-point arithmetic unit, and working regis-
ters. The master control unit controls the operations in the processor elements.
The main memory is used for storage of the program. The function of the
master control unit is to decode the instructions and determine how the
instruction is to be executed. Scalar and program control instructions are

Figure 9-14 Attached array processor with host computer.

General-purpose Input-output Attached array
computer interface processor

. High-speed memory-to-
Main memory memory bus Local memory
ry

328

CHAPTER NINE Pipeline and Vector Processing

PE M,
| | L 1

Master control P M
unit |—]E2 | |

Main memory

Figure 9-15 SIMD array processor organization.

directly executed within the master control unit. Vector instructions are broad-
cast to all PEs simultaneously. Each PE uses operands stored in its local
memory. Vector operands are distributed to the local memories prior to the
parallel execution of the instruction.

Consider, for example, the vector addition C = A + B. The master con-
trol unit first stores the ith components 4; and b; of A and B in local memory
M fori=1,2,3,...,n. It then broadcasts the floating-point add instruction
¢ = a; + b; to all PEs, causing the addition to take place simultaneously. The
components of ¢; are stored in fixed locations in each local memory. This
produces the desired vector sum in one add cycle.

Masking schemes are used to control the status of each PE during the
execution of vector instructions. Each PE has a flag that is set when the PE is
active and reset when the PE is inactive. This ensures that only those PEs that
need to participate are active during the execution of the instruction. For
example, suppose that the array processor contains a set of 64 PEs. If a vector
length of less than 64 data items is to be processed, the control unit selects the
proper number of PEs to be active. Vectors of greater length than 64 must be
divided into 64-word portions by the control unit.

The best known SIMD array processor is the ILLIAC IV computer devel-
oped at the University of [llinois and manufactured by the Burroughs Corp.
This computer is no longer in operation. SIMD processors are highly special-
ized computers. They are suited primarily for numerical problems that can be
expressed in vector or matrix form. However, they are not very efficient in
other types of computations or in dealing with conventional data-processing
programs.

SECTION 9.7 Amay Processors 329

| e=s = 1

9-1.

9-2.

97,

9-9.

9-10.

l PROBLEMS |

hmﬂzmsuenhﬁcmmputaﬂnnsﬂlsmoessuytopeﬁormﬂmmﬂmwhc
operation (A; + B)(C: + D;) with a stream of Specify a 1i
configuration to carry out this task. Lwtﬂlemnhnisnfaﬂmglslﬂsmlhe
pipeline for i = 1 through 6.

Draw a space-time diagram for a six-segment pipeline showing the time it
takes to process eight tasks.

Determine the number of clock cydes that it takes to process 200 tasks in a
six-segment pipeline.

A nonpipeline system takes 50 ns to process a task. The same task can be
processed in a six-segment pipeline with a clock cycle of 10 ns. Determine
the speedup ratio of the pipeline for 100 tasks. What is the maximum
speedup that can be achieved?

The pipeline of Fig. 9-2 has the following propagation times: 40 ns for the
operands to be read from memory into registers R1 and R2, 45 ns for the
signal to propagate through the multiplier, 5 ns for the transfer into R3, and
15 ns to add the two numbers into R5.

a. Whahsthemh'mumclockcydehrmﬂnlunbeuud?

b. A ipeline system can perf the same ion by gR3
and R4. How Iung will it take to multiply and add the opermda without
using the pipeline?

¢. Calculate the speedup of the pipeline for 10 tasks and again for 100 tasks.
d. What is the maximum speedup that can be achieved?
Itis y to design a pipeline for a fixed-point multiplier that multiplies
two B-bit binary integ) Each consists of a ber of AND gates
and a binary adder similar to an a array multiplier as shown in Fig. 10-10.
a. How many AND gates are there in each segment, and what size of adder
is needed?
b. How many segments are there in the pipeline?
¢. If the propagation delay in each segment is 30 ns, what is the average time
that it takes to multiply two fixed-point numbers in the pipeline?
The time delay of the four segments in the pipeline of Fig. 9-6 are as follows:
t = 50ns, t = 30ns, ty = 95ns, and fy = 45 ns. The interface registers delay
time t, = 5 ns.
a. How long would it take to add 100 pairs of numbers in the pipeline?
b. How can we reduce the total time to about one-half of the time calculated
in part (a)?
How would you use the floating-point pipeline adder of Fig. 9-6 to add 100
floating-point numbers X, + Xz + Xy + 4 Xyp?
Formulate a six-segment instruction pipeline for a computer. Specify the
operations to be perf d in each seg
Explain four possible hard schemes that can be used in an instruction
pipeline in order to minimize the performance degradation caused by in-
struction branching,.

330 CHAPTERNINE Pipeline and Vector Processing

9-11.

9-12.

9-13.

9-14.

9-15.

9-16.

9-17.

9-18.

9-19.

9-20.

Consider the four instructions in the followi Suppose that the
ﬁ:slmslnu:hmmmimmswplmtthlpdhensedinﬁg.ﬂ-&w
what operations are performed in the four segments during step 4.

Load Ri—M[312]
ADD R2e—R2 + H[313]
INC RI—R3I+1
STORE M[314]«R3

Give an example of a program that will cause data conflict in the three-seg-

ment pipeline of Sec. 9-5.

Give an example that uses delayed load with the three-segment pipeline of

Sec. 9-5.

Give an example of a program that will cause a branch penalty in the

three-segment pipeline of Sec. 9-5.

Give an example that uses delayed branch with the three-segment pipeline

of Sec. 9-5.

Consider the multiplication of two 40 x 40 matrices using a vector

a. Howmanypmdurlhmnsmﬂ'mmn&mmwodm:ndhnwmw
inner products must be evaluated?

b. How many multiply-add operations are needed to calculate the product
matrix?

How many dock cycles does it take to process an inner product in the
pipeline of Fig. 9-12 when used to evaluate the product of two 60 x 60

matrices? How many inner ploducumihere and how many dock cycles

does it take to evaluate the p

Malgnlddmulloanmyofdnhoiiﬂ!iwnrdawbemmdmﬂ!
memory described in Fig. 9-13.

A her forecasting computati quires 250 billion floating-point oper-
ations. The problem is p d in a superc that can perform 100
megaflops. leonswﬂlilukcwdothnuuk\dlﬂom?

Consider a P with four floating-point pipeline processors. Suppose
that each processor uses a cycle time of 40 ns. How long will it take to perform
400 floating-point operations? Is there a difference if the same 400 operations
are carried out using a single pipeline processor with a cycle time of 10 ns?

| L

1 REFERENCES |

1. Dasgupta, 5., Computer Architecture: A Modern Synthesis, Vol. 2. New York: John
Wiley, 1989.

2. DeCegama, A. L., Parallel Processing Architecture and VLSI Hardware. Englewood
Cliffs, NJ: Prentice Hall, 1989.

b

10.

11.

12.

SECTION 9-7 Array Processors 331

. Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice

Hall, 1991.

. Hays,]. F., Computer Architecture and Organization, 2nd ed. New York: McGraw-Hill,

1988.

. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New

York: McGraw-Hill, 1984.

. Kain, R., Computer Architecture: Software and Hardware. Vol. 2. Englewood Cliffs, NJ:

Prentice Hall, 1989.

Lee, J. K. F, and A. J. Smith, “Branch Prediction Strategies and Branch Target
Buffer Design.” Computer, Vol. 17, No. 1 (January 1984), pp. 6-22.

. Lilja, D. ., “Reducing the Branch Penalties in Pipeline Processors.” Computer, Vol.

21, No. 7 (July 1988), pp. 47-55.

Patterson, D. A., and]. L. Hennessy, Computer Architecture: A Quantitative Approach.
San Mateo, CA: Morgan Kaufmann Publishers, 1990.

Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice
Hall, 1990.

Stone, H. S., High-Performance Computer Architecture, 2nd ed. Reading, MA:
Addison-Wesley, 1990.

Tabak, D., Multiprocessors. Englewood Cliffs, NJ: Prentice Hall, 1990.

