CHAPTER EIGHT

Central Processing
Unit

IN THIS CHAPTER

81 Introduction

B8-2  General Register Organization

8-3  Srack Organization

8-4 Instruction Formars

8-5  Addressing Modes

8-6  Data Transfer and Manipulation
87 Program Control

8-8  Reduced Instruction Set Compurer

8-1 Introduction

The part of the computer that performs the bulk of data-processing operations
is called the central processing unit and is referred to as the CPU. The CPU is
made up of three major parts, as shown in Fig. 8-1. The register set stores
intermediate data used during the execution of the instructions. The arithmetic
logic unit (ALU) performs the required microoperations for executing the
instructions. The control unit supervises the transfer of information among the
registers and instructs the ALU as to which operation to perform.

The CPU performs a variety of functions dictated by the type of in-
structions that are incorporated in the computer. Computer architecture is
sometimes defined as the computer structure and behavior as seen by the
programmer that uses machine language instructions. This includes the in-
struction formats, addressing modes, the instruction set, and the general
organization of the CPU registers.

One boundary where the computer designer and the computer pro-
grammer see the same machine is the part of the CPU associated with the
instruction set. From the designer’s point of view, the computer instruction set
provides the specifications for the design of the CPU. The design of a CPU is

241



242 CHAPTER EIGHT Central Processing Unit

bus system

Register set

e
0
1 Arithmetic

logic unit
(ALU)

Figure 8-1 Major components of CPU.

a task that in large part involves choosing the hardware for implementing the
machine instructions. The user who programs the computer in machine or
assembly language must be aware of the register set, the memory structure,
the type of data supported by the instructions, and the function that each
instruction performs.

Design examples of simple CPUs are carried out in Chaps. 5 and 7. This
chapter describes the organization and architecture of the CPU with an empha-
sis on the user’s view of the computer. We briefly describe how the registers
communicate with the ALU through buses and explain the operation of the
memory stack. We then present the type of instruction formats available, the
addressing modes used to retrieve data from memory, and typical instructions
commonly incorporated in computers. The last section presents the concept of
reduced instruction set computer (RISC).

8-2 General Register Organization

In the programming examples of Chap. 6, we have shown that memory
locations are needed for storing pointers, counters, return addresses, tempo-
rary results, and partial products during multiplication. Having to refer to
memory locations for such applications is time consuming because memory
access is the most time-consuming operatiqn in a comypuies. Y3s more conve-
nient and more efficient to store these intermediate values in processor regis-
ters. When a large number of registers are included in the CPU, it is most
efficient to connect them through a common bus system. The registers commu-
nicate with each other not only for direct data transfers, but also while perform-
ing various microoperations. Hence it is necessary to provide a common unit
that can perform all the arithmetic, logic, and shift microoperations in the
processor.

A bus organization for seven CPU registers is shown in Fig. 8-2. The
output of each register is connected to two multiplexers (MUX) to form the two
buses A and B. The selection lines in each multiplexer select one register or the
input data for the particular bus. The A and B buses form the inputs to a



SECTION 8.2 General Register Organization 243

Figure 8-2 Register set with common ALU.



244 CHAPTER EIGHT Central Processing Unit

control word

common arithmetic logic unit (ALU). The operation selected in the ALU deter-
mines the arithmetic or logic microoperation that is to be performed. The result
of the microoperation is available for output data and also goes into the inputs
of all the registers. The register that receives the information from the output
bus is selected by a decoder. The decoder activates one of the register load
inputs, thus providing a transfer path between the data in the output bus and
the inputs of the selected destination register.

The control unit that operates the CPU bus system directs the information
flow through the registers and ALU by selecting the various components in the
system. For example, to perform the operation

R1<R2+ R3

the control must provide binary selection variables to the following selector
inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A.

2. MUX B selector (SELB): to place the content of R3 into bus B.

3. ALU operation selector (OPR): to provide the arithmetic addition
A+ B.

4. Decoder destination selector (SELD): to transfer the content of the
output bus into R1.

The four control selection variables are generated in the control unit and
must be available at the beginning of a clock cycle. The data from the two source
registers propagate through the gates in the multiplexers and the ALU, to the
output bus, and into the inputs of the destination register, all during the clock
cycle interval. Then, when the next clock transition occurs, the binary informa-
tion from the output bus is transferred into R1. To achieve a fast response time,
the ALU is constructed with high-speed circuits. The buses are implemented
with multiplexers or three-state gates, as shown in Sec. 4-3.

Control Word
There are 14 binary selection inputs in the unit, and their combined value
specifies a control word. The 14-bit control word is defined in Fig. 8-2(b). It
consists of four fields. Three fields contain three bits each, and one field has
five bits. The three bits of SELA select a source register for the A input of the
ALU. The three bits of SELB select a register for the B input of the ALU. The
three bits of SELD select a destination register using the decoder and its seven
load outputs. The five bits of OPR select one of the operations in the ALU. The
14-bit control word when applied to the selection inputs specify a particular
microoperation.

The encoding of the register selections is specified in Table 8-1. The 3-bit



ALU

SECTION 8.2 General Register Organization 245

TABLE 8-1 Encoding of Register Selection Fields

Binary
Code SELA  SELB SELD

000 Input Input None

001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 Ré6 R6
111 R7 R7 R7

binary code listed in the first column of the table specifies the binary code for
each of the three fields. The register selected by fields SELA, SELB, and SELD
is the one whose decimal number is equivalent to the binary number in the
code. When SELA or SELB is 000, the corresponding multiplexer selects the
external input data. When SELD = 000, no destination register is selected but
the contents of the output bus are available in the external output.

The ALU provides arithmetic and logic operations. In addition, the CPU
must provide shift operations. The shifter may be placed in the input of the
ALU to provide a preshift capability, or at the output of the ALU to provide
postshifting capability. In some cases, the shift operations are included with
the ALU. An arithmetic logic and shift unit was designed in Sec. 4-7. The
function table for this ALU is listed in Table 4-8. The encoding of the ALU
operations for the CPU is taken from Sec. 4-7 and is specified in Table 8-2. The
OPR field has five bits and each operation is designated with a symbolic name.

TABLE 8-2 Encoding of ALU Operations

OPR

Select Operation Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A+ B ADD
00101 Subtract A — B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA

11000 Shift left A SHLA




246  CHAPTER EIGHT Central Processing Unit

Examples of Microoperations

A control word of 14 bits is needed to specify a microoperation in the CPU. The
control word for a given microoperation can be derived from the selection
variables. For example, the subtract microoperation given by the statement

R1<R2 - R3

specifies R2 for the A input of the ALU, R3 for the B input of the ALU, R1 for
the destination register, and an ALU operation to subtract A — B. Thus the
control word is specified by the four fields and the corresponding binary value
for each field is obtained from the encoding listed in Tables 8-1 and 8-2. The
binary control word for the subtract microoperation is 010 011 001 00101 and
is obtained as follows:

Field: SELA SELB SELD OPR
Symbol: R2 R3 R1 SUB
Control word: 010 011 001 00101

The control word for this microoperation and a few others are listed in
Table 8-3.

The increment and transfer microoperations do not use the B input of the
ALU. For these cases, the B field is marked with a dash. We assign 000 to any
unused field when formulating the binary control word, although any other
binary number may be used. To place the content of a register into the output
terminals we place the content of the register into the A input of the ALU, but
none of the registers are selected to accept the data. The ALU operation TSFA
places the data from the register, through the ALU, into the output terminals.
The direct transfer from input to output is accomplished with a control word

TABLE 8-3 Examples of Microoperations for the CPU

Symbolic Designation

Microoperation SELA SELB SELD  OPR Control Word

R1<R2-R3 R2 R3 R1 SUB 010 011 001 00101
R4<R4\/ R5 R4 R5 R4 OR 100 101 100 01010
R6<R6 + 1 R6 — R6 INCA 110 000 110 00001
R7<«R1 R1 — R7 TSFA 001 000 111 00000
Output < R2 R2 — None TSFA 010 000 000 00000
Output«<Input  Input — None TSFA 000 000 000 00000
R4 <shl R4 R4 - R4 SHLA 100 000 100 11000

R5<0 R5 R5 R5 XOR 101 101 101 01100




LIFO

stack pointer

SECTION 8-3 Stack Organization 247

of all 0’s (making the B field 000). A register can be cleared to 0 with an
exclusive-OR operation. This is because x®@x = 0.

It is apparent from these examples that many other microoperations can
be generated in the CPU. The most efficient way to generate control words with
a large number of bits is to store them in a memory unit. A memory unit that
stores control words is referred to as a control memory. By reading consecutive
control words from memory, it is possible to initiate the desired sequence of
microoperations for the CPU. This type of control is referred to as micropro-
grammed control. A microprogrammed control unit is shown in Fig. 7-8. The
binary control word for the CPU will come from the outputs of the control
memory marked ““micro-ops.”

8-3 Stack Organization

A useful feature that is included in the CPU of most computers is a stack or
last-in, first-out (LIFO) list. A stack is a storage device that stores information
in such a manner that the item stored last is the first item retrieved. The
operation of a stack can be compared to a stack of trays. The last tray placed
on top of the stack is the first to be taken off.

The stack in digital computers is essentially a memory unit with an
address register that can count only (after an initial value is loaded into it). The
register that holds the address for the stack is called a stack pointer (SP) because
its value always points at the top item in the stack. Contrary to a stack of trays
where the tray itself may be taken out or inserted, the physical registers of a
stack are always available for reading or writing. It is the content of the word
that is inserted or deleted.

The two operations of a stack are the insertion and deletion of items. The
operation of insertion is called push (or push-down) because it can be thought
of as the result of pushing a new item on top. The operation of deletion is called
pop (or pop-up) because it can be thought of as the result of removing one item
so that the stack pops up. However, nothing is pushed or popped in a com-
puter stack. These operations are simulated by incrementing or decrementing
the stack pointer register.

Register Stack

A stack can be placed in a portion of a large memory or it can be organized as
a collection of a finite number of memory words or registers. Figure 8-3 shows
the organization of a 64-word register stack. The stack pointer register SP
contains a binary number whose value is equal to the address of the word that
is currently on top of the stack. Three items are placed in the stack: A, B, and
C, in that order. Item C is on top of the stack so that the content of SP is now
3. To remove the top item, the stack is popped by reading the memory word



248

push

CHAPTER EIGHT Central Processing Unit

Address

63

©
l
[
Now oA

Figure 8-3 Block diagram of a 64-word stack.

at address 3 and decrementing the content of SP. Item B is now on top of the
stack since SP holds address 2. To insert a new item, the stack is pushed by
incrementing SP and writing a word in the next-higher location in the stack.
Note that item C has been read out but not physically removed. This does not
matter because when the stack is pushed, a new item is written in its place.

Ina 64-word stack, the stack pointer contains 6 bits because 2 = 64. Since
SP has only six bits, it cannot exceed a number greater than 63 (111111 in
binary). When 63isincremented by 1, the resultis 0 since 111111 + 1 = 1000000
in binary, but SP can accommodate only the six least significant bits. Similarly,
when 000000 is decremented by 1, the result is 111111. The one-bit register
FULL is set to 1 when the stack is full, and the one-bit register EMTY is set to
1 when the stack is empty of items. DR is the data register that holds the binary
data to be written into or read out of the stack.

Initially, SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0, so
that SP points to the word at address 0 and the stack is marked empty and not
full. If the stack is not full (if FULL = 0), a new item is inserted with a push
operation. The push operation is implemented with the following sequence of
microoperations:

SP<«SP +1 Increment stack pointer
M([SP]«<DR Write item on top of the stack



pop

SECTION 8-3 Stack Organization 249

If (SP = 0) then (FULL «-1)  Check if stack is full
EMTY «0 Mark the stack not empty

The stack pointer is incremented so that it points to the address of the
next-higher word. A memory write operation inserts the word from DR into
the top of the stack. Note that SP holds the address of the top of the stack and
that M[SP] denotes the memory word specified by the address presently
available in SP. The first item stored in the stack is at address 1. The last item
is stored at address 0. If SP reaches 0, the stack is full of items, so FULL is set
to 1. This condition is reached if the top item prior to the last push was in
location 63 and, after incrementing SP, the last item is stored in location 0. Once
an item is stored in location 0, there are no more empty registers in the stack.
If an item is written in the stack, obviously the stack cannot be empty, so EMTY
is cleared to 0.

A new item is deleted from the stack if the stack is not empty (if
EMTY = 0). The pop operation consists of the following sequence of micro-
operations:

DR «M[SP] Read item from the top of stack
SP«<SP -1 Decrement stack pointer

If (SP = 0) then (EMTY «1) Check if stack is empty

FULL <0 Mark the stack not full

The top item is read from the stack into DR. The stack pointer is then
decremented. If its value reaches zero, the stack is empty, so EMTY is set to
1. This condition is reached if the item read was in location 1. Once this item
is read out, SPis decremented and reaches the value 0, which is the initial value
of SP. Note that if a pop operation reads the item from location 0 and then SP
is decremented, SP changes to 111111, which is equivalent to decimal 63. In
this configuration, the word in address 0 receives the last item in the stack.
Note also that an erroneous operation will result if the stack is pushed when
FULL =1 or popped when EMTY = 1.

Memory Stack

A stack can exist as a stand-alone unit as in Fig. 8-3 or can be implemented in
a random-access memory attached to a CPU. The implementation of a stack
in the CPU is done by assigning a portion of memory to a stack operation and
using a processor register as a stack pointer. Figure 8-4 shows a portion of
computer memory partitioned into three segments: program, data, and stack.
The program counter PC points at the address of the next instruction in the
program. The address register AR points at an array of data. The stack pointer



250  CHAPTER EIGHT Central Processing Unit

g

8g¥i¢

Figure B-4 Computer memory with program, data, and stack segments.

SP points at the top of the stack. The three registers are connected to acommon
address bus, and either one can provide an address for memory. PC is used
during the fetch phase to read an instruction. AR is used during the execute
phase to read an operand. SP is used to push or pop items into or from the
stack.

As shown in Fig. 84, the initial value of SP is 4001 and the stack grows
with decreasing addresses. Thus the first item stored in the stack is at address
4000, the second item is stored at address 3999, and the last address that can
be used for the stack is 3000. No provisions are available for stack limit checks.



stack limits

SECTION 8-3 Stack Organization 251

We assume that the items in the stack communicate with a data register
DR. A new item is inserted with the push operation as follows:

SP<SP -1
M[SP] < DR

The stack pointer is decremented so that it points at the address of the next
word. A memory write operation inserts the word from DR into the top of the
stack. A new item is deleted with a pop operation as follows:

DR «M[SP]
SP—SP +1

The top item is read from the stack into DR. The stack pointer is then incre-
mented to point at the next item in the stack.

Most computers do not provide hardware to check for stack overflow (full
stack) or underflow (empty stack). The stack limits can be checked by using two
processor registers: one to hold the upper limit (3000 in this case), and the other
to hold the lower limit (4001 in this case). After a push operation, SP is
compared with the upper-limit register and after a pop operation, SP is com-
pared with the lower-limit register.

The two microoperations needed for either the push or pop are (1) an
access to memory through SP, and (2) updating SP. Which of the two micro-
operations is done first and whether SP is updated by incrementing or decre-
menting depends on the organization of the stack. In Fig. 8-4 the stack grows
by decreasing the memory address. The stack may be constructed to grow by
increasing the memory address as in Fig. 8-3. In such a case, SP is incremented
for the push operation and decremented for the pop operation. A stack may
be constructed so that SP points at the next empty location above the top of the
stack. In this case the sequence of microoperations must be interchanged.

A stack pointer is loaded with an initial value. This initial value must be
the bottom address of an assigned stack in memory. Henceforth, SPis automat-
ically decremented or incremented with every push or pop operation. The
advantage of a memory stack is that the CPU can refer to it without having to
specify an address, since the address is always available and automatically
updated in the stack pointer.

Reverse Polish Notation

A stack organization is very effective for evaluating arithmetic expressions. The
common mathematical method of writing arithmetic expressions imposes dif-
ficulties when evaluated by a computer. The common arithmetic expressions



252

CHAPTER EIGHT Central Processing Unit

are written in infix notation, with each operator written between the operands.
Consider the simple arithmetic expression

A*B + C*D

The star (denoting multiplication) is placed between two operands A and B or
C and D. The plus is between the two products. To evaluate this arithmetic
expression it is necessary to compute the product A *B, store this product
while computing C * D, and then sum the two products. From this example we
see that to evaluate arithmetic expressions in infix notation it is necessary to
scan back and forth along the expression to determine the next operation to
be performed.

The Polish mathematician Lukasiewicz showed that arithmetic expres-
sions can be represented in prefix notation. This representation, often referred
to as Polish notation, places the operator before the operands. The postfix
notation, referred to as reverse Polish notation (RPN), places the operator after the
operands. The following examples demonstrate the three representations:

A + B Infix notation
+AB Prefix or Polish notation
AB+ Postfix or reverse Polish notation

The reverse Polish notation is in a form suitable for stack manipulation. The
expression

A*B + C*xD
is written in reverse Polish notation as
AB*CD * +

and is evaluated as follows: Scan the expression from left to right. When an
operator is reached, perform the operation with the two operands found on
the left side of the operator. Remove the two operands and the operator and
replace them by the number obtained from the result of the operation. Con-
tinue to scan the expression and repeat the procedure for every operator
encountered until there are no more operators.

For the expression above we find the operator * after A and B. We
perform the operation A * B and replace A, B, and * by the product to obtain

(A*B)CDx+

where (A * B) is a single quantity obtained from the product. The next operator



conversion to RPN

SECTION 8-3 Stack Organization 253

is a * and its previous two operands are C and D, so we perform C * D and
obtain an expression with two operands and one operator:

(A*B)(C*D) +

The next operatoris + and the two operands to be added are the two products,
so we add the two quantities to obtain the result.

The conversion from infix notation to reverse Polish notation must take
into consideration the operational hierarchy adopted for infix notation. This
hierarchy dictates that we first perform all arithmetic inside inner parentheses,
then inside outer parentheses, and do multiplication and division operations
before addition and subtraction operations. Consider the expression

(A + B)*[C*(D + E) + F]

To evaluate the expression we must first perform the arithmetic inside the
parentheses (A + B) and (D + E). Next we must calculate the expression
inside the square brackets. The multiplication of C* (D + E) must be done
prior to the addition of F since multiplication has precedence over addition. The
last operation is the multiplication of the two terms between the parentheses
and brackets. The expression can be converted to reverse Polish notation,
without the use of parentheses, by taking into consideration the operation
hierarchy. The converted expression is

AB + DE + C*F + *

Proceeding from left to right, we first add A and B, then add D and E. At this
point we are left with

(A + B)D + E)C*F + *

where (A + B) and (D + E) are each a single number obtained from the sum.
The two operands for the next * are C and (D+E). These two numbers are
multiplied and the product added to F. The final * causes the multiplication
of the two terms.

Evaluation of Arithmetic Expressions

Reverse Polish notation, combined with a stack arrangement of registers, is the
most efficient way known for evaluating arithmetic expressions. This proce-
dure is employed in some electronic calculators and also in some computers.
The stack is particularly useful for handling long, complex problems involving
chain calculations. It is based on the fact that any arithmetic expression can be
expressed in parentheses-free Polish notation.



254  CHAPTER EIGHT Central Processing Unit

stack operations

The procedure consists of first converting the arithmetic expression into
its equivalent reverse Polish notation. The operands are pushed into the stack
in the order in which they appear. The initiation of an operation depends on
whether we have a calculator or a computer. In a calculator, the operators are
entered through the keyboard. In a computer, they must be initiated by
instructions that contain an operation field (no address field is required). The
following microoperations are executed with the stack when an operation is
entered in a calculator or issued by the control in a computer: (1) the two
topmost operands in the stack are used for the operation, and (2) the stack is
popped and the result of the operation replaces the lower operand. By pushing
the operands into the stack continuously and performing the operations as
defined above, the expression is evaluated in the proper order and the final
result remains on top of the stack.

The following numerical example may clarify this procedure. Consider
the arithmetic expression

(3*4) + (5%6)
In reverse Polish notation, it is expressed as
34 %56 * +

Now consider the stack operations shown in Fig. 8-5. Each box represents one
stack operation and the arrow always points to the top of the stack. Scanning
the expression from left to right, we encounter two operands. First the number
3 is pushed into the stack, then the number 4. The next symbol is the multi-
plication operator *. This causes a multiplication of the two topmost items in
the stack. The stack is then popped and the product is placed on top of the
stack, replacing the two original operands. Next we encounter the two
operands 5 and 6, so they are pushed into the stack. The stack operation that
results from the next * replaces these two numbers by their product. The last
operation causes an arithmetic addition of the two topmost numbers in the
stack to produce the final result of 42.

Scientific calculators that employ an internal stack require that the user
convert the arithmetic expressions into reverse Polish notation. Computers
that use a stack-organized CPU provide a system program to perform the

Figure 8-5 Stack operations to evaluate 3 « 4 + 5 « 6.

3 4 . 5




register address

SECTION 8-4 Instruction Formats 255

conversion for the user. Most compilers, irrespective of their CPU organiza-
tion, convert all arithmetic expressions into Polish notation anyway because
this is the most efficient method for translating arithmetic expressions into
machine language instructions. So in essence, a stack-organized CPU may be
more efficient in some applications than a CPU without a stack.

8-4 Instruction Formats

The physical and logical structure of computers is normally described in refer-
ence manuals provided with the system. Such manuals explain the internal
construction of the CPU, including the processor registers available and their
logical capabilities. They list all hardware-implemented instructions, specify
their binary code format, and provide a precise definition of each instruction.
A computer will usually have a variety of instruction code formats. It is the
function of the control unit within the CPU to interpret each instruction code
and provide the necessary control functions needed to process the instruction.

The format of an instruction is usually depicted in a rectangular box
symbolizing the bits of the instruction as they appear in memory words or in
a control register. The bits of the instruction are divided into groups called
fields. The most common fields found in instruction formats are:

1. An operation code field that specifies the operation to be performed.

2. An address field that designates a memory address or a processor
register.

3. A mode field that specifies the way the operand or the effective address
is determined.

Other special fields are sometimes employed under certain circumstances, as
for example a field that gives the number of shifts in a shift-type instruction.

The operation code field of an instruction is a group of bits that define
various processor operations, such as add, subtract, complement, and shift.
The most common operations available in computer instructions are enumer-
ated and discussed in Sec. 8-6. The bits that define the mode field of an
instruction code specify a variety of alternatives for choosing the operands
from the given address. The various addressing modes that have been formu-
lated for digital computers are presented in Sec. 8-5. In this section we are
concerned with the address field of an instruction format and consider the
effect of including multiple address fields in an instruction.

Operations specified by computer instructions are executed on some data
stored in memory or processor registers. Operands residing in memory are
specified by their memory address. Operands residing in processor registers
are specified with a register address. A register address is a binary number of
k bits that defines one of 2* registers in the CPU. Thus a CPU with 16 processor



256

CHAPTER EIGHT Central Processing Unit

registers R0 through R15 will have a register address field of four bits. The
binary number 0101, for example, will designate register R5.

Computers may have instructions of several different lengths containing
varying number of addresses. The number of address fields in the instruction
format of a computer depends on the internal organization of its registers. Most
computers fall into one of three types of CPU organizations:

1. Single accumulator organization.
2. General register organization.
3. Stack organization.

An example of an accumulator-type organization is the basic computer
presented in Chap. 5. All operations are performed with an implied accumu-
lator register. The instruction format in this type of computer uses one address
field. For example, the instruction that specifies an arithmetic addition is
defined by an assembly language instruction as

ADD X

where X is the address of the operand. The ADD instruction in this case results
in the operation AC <~ AC + M[X]. AC is the accumulator register and M[X]
symbolizes the memory word located at address X.

An example of a general register type of organization was presented in
Fig. 7-1. The instruction format in this type of computer needs three register
address fields. Thus the instruction for an arithmetic addition may be written
in an assembly language as

ADD Rl, R2, R3

to denote the operation R1<«R2 + R3. The number of address fields in the
instruction can be reduced from three to two if the destination register is the
same as one of the source registers. Thus the instruction

ADD R1, Re

would denote the operation R1«~R1 + R2. Only register addresses for R1and
R2 need be specified in this instruction.

Computers with multiple processor registers use the move instruction
with a mnemonic MOV to symbolize a transfer instruction. Thus the instruc-
tion

MOV R1, R2

denotes the transfer R1<R2 (or R2«R1, depending on the particular com-
puter). Thus transfer-type instructions need two address fields to specify the
source and the destination.

General register-type computers employ two or three address fields in



SECTION 8-4 Instruction Formats 257

their instruction format. Each address field may specify a processor register or
a memory word. An instruction symbolized by

ADD R1, X

would specify the operation R1«R1 + M[X]. It has two address fields, one
for register R1 and the other for the memory address X.

The stack-organized CPU was presented in Fig. 8-4. Computers with
stack organization would have PUSH and POP instructions which require an
address field. Thus the instruction

PUSH X

will push the word at address X to the top of the stack. The stack pointer is
updated automatically. Operation-type instructions do not need an address
field in stack-organized computers. This is because the operation is performed
on the two items that are on top of the stack. The instruction

ADD

in a stack computer consists of an operation code only with no address field.
This operation has the effect of popping the two top numbers from the stack,
adding the numbers, and pushing the sum into the stack. There is no need to
specify operands with an address field since all operands are implied to be in
the stack.

Most computers fall into one of the three types of organizations that have
just been described. Some computers combine features from more than one
organizational structure. For example, the Intel 8080 microprocessor has seven
CPU registers, one of which is an accumulator register. As a consequence, the
processor has some of the characteristics of a general register type and some
of the characteristics of an accumulator type. All arithmetic and logic instruc-
tions, as well as the load and store instructions, use the accumulator register,
so these instructions have only one address field. On the other hand, instruc-
tions that transfer data among the seven processor registers have a format that
contains two register address fields. Moreover, the Intel 8080 processor has a
stack pointer and instructions to push and pop from a memory stack. The
processor, however, does not have the zero-address-type instructions which
are characteristic of a stack-organized CPU.

To illustrate the influence of the number of addresses on computer pro-
grams, we will evaluate the arithmetic statement

X=(A+B)*(C+D)
using zero, one, two, or three address instructions. We will use the symbols

ADD, SUB, MUL, and DIV for the four arithmetic operations; MOV for
the transfer-type operation; and LOAD and STORE for transfers to and



258  CHAPTER EIGHT Central Processing Unit

from memory and AC register. We will assume that the operands are in
memory addresses A, B, C, and D, and the result must be stored in memory
at address X.

Three-Address Instructions

Computers with three-address instruction formats can use each address field
to specify either a processor register or a memory operand. The program in
assembly language that evaluates X = (A + B) *(C + D) is shown below, to-
gether with comments that explain the register transfer operation of each
instruction.

ADD R1, R, B RL<M[A] + M[B]
ADD R2,C,D R2<M[C] + M[D]
MUL X, Rl, R2  M[X]<RL*R2

It is assumed that the computer has two processor registers, R1 and R2. The
symbol M[A] denotes the operand at memory address symbolized by A.

The advantage of the three-address format is that it results in short
programs when evaluating arithmetic expressions. The disadvantage is that
the binary-coded instructions require too many bits to specify three addresses.
An example of a commercial computer that uses three-address instructions is
the Cyber 170. The instruction formats in the Cyber computer are restricted to
either three register address fields or two register address fields and one
memory address field.

Two-Address Instructions

Two-address instructions are the most common in commercial computers.
Here again each address field can specify either a processor register or a
memory word. The program to evaluate X = (A + B)*(C + D) is as follows:

MOV  R1, A  Rl<M[A]

ADD R1,B  R1«Rl+ M[B]
MOV R2,C  R2<M[C]

ADD R2,D  R2<RE+ M[D]
MUL R1,R2 R1<RLx*R2
MOV X, Rl M[X]<Rl

The MOV instruction moves or transfers the operands to and from memory
and processor registers. The first symbol listed in an instruction is assumed to
be both a source and the destination where the result of the operation is
transferred.



SECTION 8-4 Instruction Formats 259

One-Address Instructions

One-address instructions use an implied accumulator (AC) register for all data
manipulation. For multiplication and division there is a need for a second
register. However, here we will neglect the second register and assume that
the AC contains the result of all operations. The program to evaluate
X=(A+B)*x(C+D)is

LORD A AC<M[A]
ADD B AC«AC + M[B]
STORE T M[T]<AC
LORD C AC<M[C]

ADD D AC<«AC+ M[D]
MUL T AC<RC*M[T]
STORE X M[X]<«AC

All operations are done between the AC register and a memory operand.
T is the address of a temporary memory location required for storing the
intermediate result.

Zero-Address Instructions

A stack-organized computer does not use an address field for the instructions
ADD and MUL. The PUSH and POP instructions, however, need an address
field to specify the operand that communicates with the stack. The following
program shows how X = (A + B)*(C + D) will be written for a stack-
organized computer. (TOS stands for top of stack.)

PUSH A TOS<A

PUSH B TOS<B

ADD TOS « (A + B)

PUSH C TOS<C

PUSH D TOS<D

ADD TOS« (C + D)

MUL TOS« (C+D)*(A+B)
POP X  M[X]<TOS

To evaluate arithmetic expressions in a stack computer, it is necessary to
convert the expression into reverse Polish notation. The name "’zero-address”
is given to this type of computer because of the absence of an address field in
the computational instructions.

RISC Instructions

The advantages of a reduced instruction set computer (RISC) architecture are
explained in Sec. 8-8. The instruction set of a typical RISC processor is restricted



260

CHAPTER EIGHT Central Processing Unit

to the use of load and store instructions when communicating between mem-
ory and CPU. All other instructions are executed within the registers of the
CPU without referring to memory. A program for a RISC-type CPU consists
of LOAD and STORE instructions that have one memory and one register
address, and computational-type instructions that have three addresses with
all three specifying processor registers. The following is a program to evaluate
X=(A+B)x(C+D)

LOAD R1, A RL<«<M[A]
LOAD R2, B R2 <« M[B]
LOAD R3, C RI<M([C]
LOAD R4, D R4 < M([D]
ADD Rl, R, R2  RL<Rl +R2
ADD R3, R3, R2 R3I«R3I +R4
MUL Rl, Rl, R3 Rl <«R1*R3
STORE X, Rl M[X] <R1

The load instructions transfer the operands from memory to CPU registers.
The add and multiply operations are executed with data in the registers
without accessing memory. The result of the computations is then stored in
memory with a store instruction.

8-5 Addressing Modes

The operation field of an instruction specifies the operation to be performed.
This operation must be executed on some data stored in computer registers or
memory words. The way the operands are chosen during program execution
is dependent on the addressing mode of the instruction. The addressing mode
specifies a rule for interpreting or modifying the address field of the instruction
before the operand is actually referenced. Computers use addressing mode
techniques for the purpose of accommodating one or both of the following
provisions:

1. To give programming versatility to the user by providing such facilities
as pointers to memory, counters for loop control, indexing of data, and
program relocation.

2. To reduce the number of bits in the addressing field of the instruction.

The availability of the addressing modes gives the experienced assembly
language programmer flexibility for writing programs that are more efficient
with respect to the number of instructions and execution time.

To understand the various addressing modes to be presented in this
section, it is imperative that we understand the basic operation cycle of the



program counter (PC)

mode field

SECTION 8.5 Addressing Modes 261

computer. The control unit of a computer is designed to go through an instruc-
tion cycle that is divided into three major phases:

1. Fetch the instruction from memory.
2. Decode the instruction.
3. Execute the instruction.

There is one register in the computer called the program counter or PC that
keeps track of the instructions in the program stored in memory. PC holds the
address of the instruction to be executed next and is incremented each time an
instruction is fetched from memory. The decoding done in step 2 determines
the operation to be performed, the addressing mode of the instruction, and the
location of the operands. The computer then executes the instruction and
returns to step 1 to fetch the next instruction in sequence.

In some computers the addressing mode of the instruction is specified
with a distinct binary code, just like the operation code is specified. Other
computers use a single binary code that designates both the operation and the
mode of the instruction. Instructions may be defined with a variety of address-
ing modes, and sometimes, two or more addressing modes are combined in
one instruction.

An example of an instruction format with a distinct addressing mode field
is shown in Fig. 8-6. The operation code specifies the operation to be per-
formed. The mode field is used to locate the operands needed for the opera-
tion. There may or may not be an address field in the instruction. If there is
an address field, it may designate a memory address or a processor register.
Moreover, as discussed in the preceding section, the instruction may have
more than one address field, and each address field may be associated with
its own particular addressing mode.

Although most addressing modes modify the address field of the instruc-
tion, there are two modes that need no address field at all. These are the
implied and immediate modes.

Implied Mode: In this mode the operands are specified implicitly in the
definition of the instruction. For example, the instruction "’complement accu-
mulator” is an implied-mode instruction because the operand in the accumu-
lator register is implied in the definition of the instruction. In fact, all register
reference instructions that use an accumulator are implied-mode instructions.

Figure 8-6 Instruction format with mode field.

Opcode Mode Address j




262 CHAPTER EIGHT Central Processing Unit

effective address

Zero-address instructions in a stack-organized computer are implied-mode
instructions since the operands are implied to be on top of the stack.

Immediate Mode: In this mode the operand is specified in the instruction
itself. In other words, an immediate-mode instruction has an operand field
rather than an address field. The operand field contains the actual operand to
be used in conjunction with the operation specified in the instruction. Imme-
diate-mode instructions are useful for initializing registers to a constant value.

It was mentioned previously that the address field of an instruction may
specify either a memory word or a processor register. When the address field
specifies a processor register, the instruction is said to be in the register mode.

Register Mode: In this mode the operands are in registers that reside within
the CPU. The particular register is selected from a register field in the instruc-
tion. A k-bit field can specify any one of 2" registers.

Register Indirect Mode: In this mode the instruction specifies a register in the
CPU whose contents give the address of the operand in memory. In other
words, the selected register contains the address of the operand rather than
the operand itself. Before using a register indirect mode instruction, the pro-
grammer must ensure that the memory address of the operand is placed in the
processor register with a previous instruction. A reference to the register is
then equivalent to specifying a memory address. The advantage of a register
indirect mode instruction is that the address field of the instruction uses fewer
bits to select a register than would have been required to specify a memory
address directly.

Autoincrement or Autodecrement Mode: This is similar to the register in-
direct mode except that the register is incremented or decremented after (or
before) its value is used to access memory. When the address stored in the
register refers to a table of data in memory, it is necessary to increment or
decrement the register after every access to the table. This can be achieved by
using the increment or decrement instruction. However, because it is such a
common requirement, some computers incorporate a special mode that auto-
matically increments or decrements the content of the register after data access.

The address field of an instruction is used by the control unit in the CPU
to obtain the operand from memory. Sometimes the value given in the address
field is the address of the operand, but sometimes it is just an address from
which the address of the operand is calculated. To differentiate among the
various addressing modes it is necessary to distinguish between the address
part of the instruction and the effective address used by the control when
executing the instruction. The effective address is defined to be the memory
address obtained from the computation dictated by the given addressing
mode. The effective address is the address of the operand in a computational-



SECTION 85 Addressing Modes 263

type instruction. It is the address where control branches in response to a
branch-type instruction. We have already defined two addressing modes in
Chap. 5. They are summarized here for reference.

Direct Address Mode: In this mode the effective address is equal to the
address part of the instruction. The operand resides in memory and its address
is given directly by the address field of the instruction. In a branch-type
instruction the address field specifies the actual branch address.

Indirect Address Mode: In this mode the address field of the instruction
gives the address where the effective address is stored in memory. Control
fetches the instruction from memory and uses its address part to access mem-
ory again to read the effective address. The indirect address mode is also
explained in Sec. 5-1 in conjunction with Fig. 5-2.

A few addressing modes require that the address field of the instruction
be added to the content of a specific register in the CPU. The effective address
in these modes is obtained from the following computation:

effective address = address part of instruction + content of CPU register

The CPU register used in the computation may be the program counter, an
index register, or a base register. In either case we have a different addressing
mode which is used for a different application.

Relative Address Mode: In this mode the content of the program counter is
added to the address part of the instruction in order to obtain the effective
address. The address part of the instruction is usually a signed number (in 2’s
complement representation) which can be either positive or negative. When
this number is added to the content of the program counter, the result pro-
duces an effective address whose position in memory is relative to the address
of the next instruction. To clarify with an example, assume that the program
counter contains the number 825 and the address part of the instruction
contains the number 24. The instruction at location 825 is read from memory
during the fetch phase and the program counter is then incremented by one
to 826. The effective address computation for the relative address mode is
826 + 24 = 850. This is 24 memory locations forward from the address of the
next instruction. Relative addressing is often used with branch-type instruc-
tions when the branch address is in the area surrounding the instruction word
itself. It results in a shorter address field in the instruction format since the
relative address can be specified with a smaller number of bits compared to the
number of bits required to designate the entire memory address.

Indexed Addressing Mode: In this mode the content of an index register is
added to the address part of the instruction to obtain the effective address. The



264

CHAPTER EIGHT Central Processing Unit

index register is a special CPU register that contains an index value. The
address field of the instruction defines the beginning address of a data array
in memory. Each operand in the array is stored in memory relative to the
beginning address. The distance between the beginning address and the
address of the operand is the index value stored in the index register. Any
operand in the array can be accessed with the same instruction provided that
the index register contains the correct index value. The index register can be
incremented to facilitate access to consecutive operands. Note that if an index-
type instruction does not include an address field in its format, the instruction
converts to the register indirect mode of operation.

Some computers dedicate one CPU register to function solely as an index
register. This register is involved implicitly when the index-mode instruction
is used. In computers with many processor registers, any one of the CPU
registers can contain the index number. In such a case the register must be
specified explicitly in a register field within the instruction format.

Base Register Addressing Mode: In this mode the content of a base register
is added to the address part of the instruction to obtain the effective address.
This is similar to the indexed addressing mode except that the register is now
called a base register instead of an index register. The difference between the
two modes is in the way they are used rather than in the way that they are
computed. An index register is assumed to hold an index number that is
relative to the address part of the instruction. A base register is assumed to hold
a base address and the address field of the instruction gives a displacement
relative to this base address. The base register addressing mode is used in
computers to facilitate the relocation of programs in memory. When programs
and data are moved from one segment of memory to another, as required in
multiprogramming systems, the address values of instructions must reflect
this change of position. With a base register, the displacement values of
instructions do not have to change. Only the value of the base register requires
updating to reflect the beginning of a new memory segment.

Numerical Example

To show the differences between the various modes, we will show the effect
of the addressing modes on the instruction defined in Fig. 8-7. The two-word
instruction at address 200 and 201 is a “load to AC” instruction with an address
field equal to 500. The first word of the instruction specifies the operation code
and mode, and the second word specifies the address part. PC has the value
200 for fetching this instruction. The content of processor register R1 is 400,
and the content of an index register XR is 100. AC receives the operand after
the instruction is executed. The figure lists a few pertinent addresses and
shows the memory content at each of these addresses.



SECTION 8.5 Addressing Modes 265

Address Memory

PC=200 200 LoadtoAC | Mode

201 Address = 500
R1=400 202 Next instruction
XR =100

399 450

P —

500 800

600 900

702 325

800 300

Figure 8-7 Numerical example for addressing modes.

The mode field of the instruction can specify any one of a number of
modes. For each possible mode we calculate the effective address and the
operand that must be loaded into AC. In the direct address mode the effective
address is the address part of the instruction 500 and the operand to be loaded
into AC is 800. In the immediate mode the second word of the instruction is
taken as the operand rather than an address, so 500 is loaded into AC. (The
effective address in this case is 201.) In the indirect mode the effective address
is stored in memory at address 500. Therefore, the effective address is 800 and
the operand is 300. In the relative mode the effective address is 500 + 202 =
702 and the operand is 325. (Note that the value in PC after the fetch phase and
during the execute phase is 202.) In the index mode the effective address is
XR + 500 = 100 + 500 = 600 and the operand is 900. In the register mode the
operand is in R1 and 400 is loaded into AC. (There is no effective address in
this case.) In the register indirect mode the effective address is 400, equal to
the content of R1 and the operand loaded into AC is 700. The autoincrement
mode is the same as the register indirect mode except that R1 is incremented
to 401 after the execution of the instruction. The autodecrement mode decre-
ments R1 to 399 prior to the execution of the instruction. The operand loaded
into AC is now 450. Table 8-4 lists the values of the effective address and the
operand loaded into AC for the nine addressing modes.



266  CHAPTEREIGHT Central Processing Unit

set of
basic operations

TABLE 8-4 Tabular List of Numerical Example

Addressing Effective  Content
Mode Address of AC
Direct address 500 800
Immediate operand 201 500
Indirect address 800 300
Relative address 702 325
Indexed address 600 900
Register —_ 400
Register indirect 400 700
Autoincrement 400 700
Autodecrement 399 450

8-6 Data Transfer and Manipulation

Computers provide an extensive set of instructions to give the user the flexi-
bility to carry out various computational tasks. The instruction set of different
computers differ from each other mostly in the way the operands are deter-
mined from the address and mode fields. The actual operations available in the
instruction set are not very different from one computer to another. It so
happens that the binary code assignments in the operation code field is differ-
ent in different computers, even for the same operation. It may also happen
that the symbolic name given to instructions in the assembly language notation
is different in different computers, even for the same instruction. Nevertheless,
there is a set of basic operations that most, if not all, computers include in their
instruction repertoire. The basic set of operations available in a typical com-
puter is the subject covered in this and the next section.
Most computer instructions can be classified into three categories:

1. Data transfer instructions
2. Data manipulation instructions
3. Program control instructions

Data transfer instructions cause transfer of data from one location to another
without changing the binary information content. Data manipulation instruc-
tions are those that perform arithmetic, logic, and shift operations. Program
control instructions provide decision-making capabilities and change the path
taken by the program when executed in the computer. The instruction set of
a particular computer determines the register transfer operations and control
decisions that are available to the user.



SECTION 86 Data Transfer and Manipulation ~ 267

Data Transfer Instructions

Data transfer instructions move data from one place in the computer to another
without changing the data content. The most common transfers are between
memory and processor registers, between processor registers and input or
output, and between the processor registers themselves. Table 8-5 gives a list
of eight data transfer instructions used in many computers. Accompanying
each instruction is a mnemonic symbol. It must be realized that different
computers use different mnemonics for the same instruction name.

The load instruction has been used mostly to designate a transfer from
memory to a processor register, usually an accumulator. The store instruction
designates a transfer from a processor register into memory. The move instruc-
tion has been used in computers with multiple CPU registers to designate a
transfer from one register to another. It has also been used for data transfers
between CPU registers and memory or between two memory words. The
exchange instruction swaps information between two registers or a register and
amemory word. The input and output instructions transfer data among proces-
sor registers and input or output terminals. The push and pop instructions
transfer data between processor registers and a memory stack.

It must be realized that the instructions listed in Table 8-5, as well as in
subsequent tables in this section, are often associated with a variety of address-
ing modes. Some assembly language conventions modify the mnemonic sym-
bol to differentiate between the different addressing modes. For example, the
mnemonic for load immediate becomes LDI. Other assembly language conven-
tions use a special character to designate the addressing mode. For example,
the immediate mode is recognized from a pound sign # placed before the
operand. In any case, the important thing is to realize that each instruction can
occur with a variety of addressing modes. As an example, consider the load to
accumulator instruction when used with eight different addressing modes.

TABLE 8-5 Typical Data Transfer

Instructions
Name Mnemonic

Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output ouT
Push PUSH

Pop POP




268 CHAPTER EIGHT Central Processing Unit

TABLE 8-6 Eight Addressing Modes for the Load Instruction

Assembly

Mode Convention Register Transfer
Direct address LD ADR AC «— M[ADR]
Indirect address LD @ADR AC «— M[M[ADR]]
Relative address LD $ADR AC — M[PC + ADR]
Immediate operand LD #NBR AC — NBR
Index addressing LD ADR(X) AC «— M[ADR + XR]
Register LD RI AC — R1
Register indirect LD (R1) AC — M[R1]
Autoincrement LD (RD)+ AC «— M[RI), R1 — R1 +1

Table 8-6 shows the recommended assembly language convention and the
actual transfer accomplished in each case. ADR stands for an address, NBR is
anumber or operand, X is an index register, R1 is a processor register, and AC
is the accumulator register. The @ character symbolizes an indirect address.
The $ character before an address makes the address relative to the program
counter PC. The # character precedes the operand in an immediate-mode
instruction. An indexed mode instruction is recognized by a register that is
placed in parentheses after the symbolic address. The register mode is symbol-
ized by giving the name of a processor register. In the register indirect mode,
the name of the register that holds the memory address is enclosed in paren-
theses. The autoincrement mode is distinguished from the register indirect
mode by placing a plus after the parenthesized register. The autodecrement
mode would use a minus instead. To be able to write assembly language
programs for a computer, it is necessary to know the type of instructions
available and also to be familiar with the addressing modes used in the partic-
ular computer.

Data Manipulation Instructions

Data manipulation instructions perform operations on data and provide the
computational capabilities for the computer. The data manipulation instruc-
tions in a typical computer are usually divided into three basic types:

1. Arithmetic instructions
2. Logical and bit manipulation instructions
3. Shift instructions

A list of data manipulation instructions will look very much like the list of
microoperations given in Chap. 4. It must be realized, however, that each
instruction when executed in the computer must go through the fetch phase



data type

SECTION 8.6 Data Transfer and Manipulation 269

to read its binary code value from memory. The operands must also be brought
into processor registers according to the rules of the instruction addressing
mode. The last step is to execute the instruction in the processor. This last step
is implemented by means of microoperations as explained in Chap. 4 or
through an ALU and shifter as shown in Fig. 8-2. Some of the arithmetic
instructions need special circuits for their implementation.

Arithmetic Instructions

The four basic arithmetic operations are addition, subtraction, multiplication,
and division. Most computers provide instructions for all four operations.
Some small computers have only addition and possibly subtraction instruc-
tions. The multiplication and division must then be generated by means of
software subroutines. The four basic arithmetic operations are sufficient for
formulating solutions to scientific problems when expressed in terms of nu-
merical analysis methods.

Alist of typical arithmetic instructions is given in Table 8-7. The increment
instruction adds 1 to the value stored in a register or memory word. One
common characteristic of the increment operations when executed in processor
registers is that a binary number of all 1’s when incremented produces a result
of all 0s. The decrement instruction subtracts 1 from a value stored in a register
or memory word. A number with all 0’s, when decremented, produces a
number with all 1's.

The add, subtract, multiply, and divide instructions may be available for
different types of data. The data type assumed to be in processor registers
during the execution of these arithmetic operations is included in the definition
of the operation code. An arithmetic instruction may specify fixed-point or
floating-point data, binary or decimal data, single-precision or double-preci-
sion data. The various data types are presented in Chap. 3.

It is not uncommon to find computers with three or more add instruc-

TABLE 8-7 Typical Arithmetic Instructions

Name Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with borrow SUBB

Negate (2’s complement) NEG




270  CHAPTER EIGHT Central Processing Unit

clear selected bits

tions: one for binary integers, one for floating-point operands, and one for
decimal operands. The mnemonics for three add instructions that specify
different data types are shown below.

ADDI Rdd two binary integer numbers
ADDF Bdd two floating-point numbers
ADDD Add two decimal numbers in BCD

Algorithms for integer, floating-point, and decimal arithmetic operations are
developed in Chap. 10.

The number of bits in any register is of finite length and therefore the
results of arithmetic operations are of finite precision. Some computers provide
hardware double-precision operations where the length of each operand is
taken to be the length of two memory words. Most small computers provide
special instructions to facilitate double-precision arithmetic. A special carry
flip-flop is used to store the carry from an operation. The instruction “add with
carry”” performs the addition on two operands plus the value of the carry from
the previous computation. Similarly, the “’subtract with borrow” instruction
subtracts two words and a borrow which may have resulted from a previous
subtract operation. The negate instruction forms the 2’s complement of a
number, effectively reversing the sign of an integer when represented in the
signed-2’s complement form.

Logical and Bit Manipulation Instructions
Logical instructions perform binary operations on strings of bits stored in
registers. They are useful for manipulating individual bits or a group of bits
that represent binary-coded information. The logical instructions consider
each bit of the operand separately and treat it as a Boolean variable. By proper
application of the logical instructions it is possible to change bit values, to clear
a group of bits, or to insert new bit values into operands stored in registers or
memory words.

Some typical logical and bit manipulation instructions are listed in Table
8-8. The clear instruction causes the specified operand to be replaced by 0's.
The complement instruction produces the 1’s complement by inverting all the
bits of the operand. The AND, OR, and XOR instructions produce the corre-
sponding logical operations on individual bits of the operands. Although they
perform Boolean operations, when used in computer instructions, the logical
instructions should be considered as performing bit manipulation operations.
There are three bit manipulation operations possible: a selected bit can be
cleared to 0, or can be set to 1, or can be complemented. The three logical
instructions are usually applied to do just that.

The AND instruction is used to clear a bit or a selected group of bits of
an operand. For any Boolean variable x, the relationships xb0 = 0and xb1 = x
dictate that a binary variable ANDed with a 0 produces a 0; but the variable



set selected bits

complement selected
bits

SECTION 8.6 Data Transfer and Manipulation ~ 271

TABLE 8-8 Typical Logical and Bit
Manipulation Instructions

Name Mnemonic
Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable interrupt EI
Disable interrupt DI

does not change in value when ANDed with a 1. Therefore, the AND instruc-
tion can be used to clear bits of an operand selectively by ANDing the operand
with another operand that has 0’s in the bit positions that must be cleared. The
AND instruction is also called a mask because it masks or inserts 0’s in a selected
portion of an operand.

The OR instruction is used to set a bit or a selected group of bits of an
operand. Forany Boolean variable x, the relationshipsx + 1 = landx + 0 = x
dictate that a binary variable ORed with a 1 produces a 1; but the variable does
not change when ORed with a 0. Therefore, the OR instruction can be used
to selectively set bits of an operand by ORing it with another operand with 1's
in the bit positions that must be set to 1.

Similarly, the XOR instruction is used to selectively complement bits of
an operand. This is because of the Boolean relationships x@®1 = x’ and
x@0 = x. Thus a binary variable is complemented when XORed with a 1 but
does not change in value when XORed with a 0. Numerical examples showing
the three logic operations are given in Sec. 4-5.

A few other bit manipulation instructions are included in Table 8-8.
Individual bits such as a carry can be cleared, set, or complemented with
appropriate instructions. Another example is a flip-flop that controls the inter-
rupt facility and is either enabled or disabled by means of bit manipulation
instructions.

Shift Instructions

Instructions to shift the content of an operand are quite useful and are often
provided in several variations. Shifts are operations in which the bits of a word
are moved to the left or right. The bit shifted in at the end of the word
determines the type of shift used. Shift instructions may specify either logical



272

CHAPTER EIGHT Central Processing Unit

shifts, arithmetic shifts, or rotate-type operations. In either case the shift may
be to the right or to the left.

Table 8-9 lists four types of shift instructions. The logical shift inserts 0
to the end bit position. The end position is the leftmost bit for shift right and
the rightmost bit position for the shift left. Arithmetic shifts usually con-
form with the rules for signed-2’s complement numbers. These rules are given
in Sec. 4-6. The arithmetic shift-right instruction must preserve the sign bit in
the leftmost position. The sign bit is shifted to the right together with the rest
of the number, but the sign bit itself remains unchanged. This is a shift-right
operation with the end bit remaining the same. The arithmetic shift-left in-
struction inserts 0 to the end position and is identical to the logical shift-left
instruction. For this reason many computers do not provide a distinct arith-
metic shift-left instruction when the logical shift-left instruction is already
available.

The rotate instructions produce a circular shift. Bits shifted out at one end
of the word are not lost as in a logical shift but are circulated back into the other
end. The rotate through carry instruction treats a carry bit as an extension of
the register whose word is being rotated. Thus a rotate-left through carry
instruction transfers the carry bit into the rightmost bit position of the register,
transfers the leftmost bit position into the carry, and at the same time, shifts
the entire register to the left.

Some computers have a multiple-field format for the shift instructions.
One field contains the operation code and the others specify the type of shift
and the number of times that an operand is to be shifted. A possible instruction
code format of a shift instruction may include five fields as follows:

opP REG TYPE RL COUNT

Here OP is the operation code field; REG is a register address that specifies the
location of the operand; TYPE is a 2-bit field specifying the four different types
of shifts; RL is a 1-bit field specifying a shift right or left; and COUNT is a k-bit
field specifying up to 2" — 1 shifts. With such a format, it is possible to specify
the type of shift, the direction, and the number of shifts, all in one instruction.

TABLE 8-9 Typical Shift Instructions

Name Mnemonic
Logical shift right SHR
Logical shift left SHL
Arithmetic shift right SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL

Rotate right through carry RORC
Rotate left through carry ROLC




SECTION 8.7 Program Control 273

8-7 Program Control

Instructions are always stored in successive memory locations. When proc-
essed in the CPU, the instructions are fetched from consecutive memory
locations and executed. Each time an instruction is fetched from memory, the
program counter is incremented so that it contains the address of the next
instruction in sequence. After the execution of a data transfer or data manip-
ulation instruction, control returns to the fetch cycle with the program counter
containing the address of the instruction next in sequence. On the other hand,
a program control type of instruction, when executed, may change the address
value in the program counter and cause the flow of control to be altered. In
other words, program control instructions specify conditions for altering the
content of the program counter, while data transfer and manipulation in-
structions specify conditions for data-processing operations. The change in
value of the program counter as a result of the execution of a program con-
trol instruction causes a break in the sequence of instruction execution. This
is an important feature in digital computers, as it provides control over the flow
of program execution and a capability for branching to different program
segments.

Some typical program control instructions are listed in Table 8-10. The
branch and jump instructions are used interchangeably to mean the same
thing, but sometimes they are used to denote different addressing modes. The
branch is usually a one-address instruction. It is written in assembly language
as BR ADR, where ADR is a symbolic name for an address. When executed,
the branch instruction causes a transfer of the value of ADR into the program
counter. Since the program counter contains the address of the instruction to
be executed, the next instruction will come from location ADR.

Branch and jump instructions may be conditional or unconditional. An
unconditional branch instruction causes a branch to the specified address with-
out any conditions. The conditional branch instruction specifies a condition
such as branch if positive or branch if zero. If the condition is met, the program
counter is loaded with the branch address and the next instruction is taken

TABLE 8-10 Typical Program Control Instructions

Name Mnemonic
Branch BR
Jump IMP
Skip SKP
Call CALL
Return RET

Compare (by subtraction) CMP
Test (by ANDing) TST



274  CHAPTER EIGHT Central Processing Unit

from this address. If the condition is not met, the program counter is not
changed and the next instruction is taken from the next location in sequence.

The skip instruction does not need an address field and is therefore a
zero-address instruction. A conditional skip instruction will skip the next
instruction if the condition is met. This is accomplished by incrementing the
program counter during the execute phase in addition to its being incremented
during the fetch phase. If the condition is not met, control proceeds with the
next instruction in sequence where the programmer inserts an unconditional
branch instruction. Thus a skip-branch pair of instructions causes a branch if
the condition is not met, while a single conditional branch instruction causes
a branch if the condition is met.

The call and return instructions are used in conjunction with subroutines.
Their performance and implementation are discussed later in this section. The
compare and test instructions do not change the program sequence directly.
They are listed in Table 8-10 because of their application in setting conditions
for subsequent conditional branch instructions. The compare instruction per-
forms a subtraction between two operands, but the result of the operation is
not retained. However, certain status bit conditions are set as a result of the
operation. Similarly, the test instruction performs the logical AND of two
operands and updates certain status bits without retaining the result or chang-
ing the operands. The status bits of interest are the carry bit, the sign bit, a zero
indication, and an overflow condition. The generation of these status bits will
be discussed first and then we will show how they are used in conditional
branch instructions.

Status Bit Conditions

It is sometimes convenient to supplement the ALU circuit in the CPU with a
status register where status bit conditions can be stored for further analysis.
Status bits are also called condition-code bits or flag bits. Figure 8-8 shows the
block diagram of an 8-bit ALU with a 4-bit status register. The four status bits
are symbolized by C, S, Z, and V. The bits are set or cleared as a result of an
operation performed in the ALU.

1. Bit C (carry) is set to 1 if the end carry Cy is 1. It is cleared to 0 if the carry
is 0.

2. Bit S (sign) is set to 1 if the highest-order bit F, is 1. It is set to 0 if the
bit is 0.

3. Bit Z (zero) is set to 1 if the output of the ALU contains all 0's. It is cleared
to 0 otherwise. In other words, Z = 1 if the output is zero and Z = 0
if the output is not zero.

4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is
equal to 1, and cleared to 0 otherwise. This is the condition for an



SECTION 8.7 Program Control 275

W,

Cy
8-bit ALU
Cg
Clzls1c]
Fy
Check for zero output
8
Output F

Figure 8-8 Status register bits.

overflow when negative numbers are in 2's complement (see Sec. 3-3).
For the 8-bit ALU, V = 1 if the output is greater than +127 or less than
—128.

The status bits can be checked after an ALU operation to determine
certain relationships that exist between the values of A and B. If bit V is set after
the addition of two signed numbers, it indicates an overflow condition. If Z is
set after an exclusive-OR operation, it indicates that A = B. This is so because
x®x = 0, and the exclusive-OR of two equal operands gives an all-0’s result
which sets the Z bit. A single bit in A can be checked to determine if it is 0 or
1 by masking all bits except the bit in question and then checking the Z status
bit. For example, let A = 101x1100, where x is the bit to be checked. The AND
operation of A with B = 00010000 produces a result 000x0000. If x = 0, the Z
status bit is set, butif x = 1, the Z bit is cleared since the result is not zero. The
AND operation can be generated with the TEST instruction listed in Table 8-10
if the original content of A must be preserved.

Conditional Branch Instructions

Table 8-11 gives a list of the most common branch instructions. Each mnemonic
is constructed with the letter B (for branch) and an abbreviation of the condition
name. When the opposite condition state is used, the letter N (for no) is



276  CHAPTER EIGHT Central Processing Unit

TABLE 8-11 Conditional Branch Instructions

Mnemonic Branch condition Tested condition
BZ Branch if zero Z=1
BNZ Branch if not zero Z=0
BC Branch if carry C=1
BNC Branch if no carry C=0
BP Branch if plus S$=0
BM Branch if minus S=1
BV Branch if overflow V=1
BNV Branch if no overflow V=0

Unsigned compare conditions (4 — B)
BHI Branch if higher A>B
BHE Branch if higher or equal A>B
BLO Branch if lower A<B
BLOE Branch if lower or equal A<B
BE Branch if equal =B
BNE Branch if not equal A#*B

Signed compare conditions (4 — B)
BGT Branch if greater than A>B
BGE Branch if greater or equal A>B
BLT Branch if less than A<B
BLE Branch if less or equal A<B
BE Branch if equal A=B
BNE Branch if not equal A#+B

inserted to define the 0 state. Thus BC is Branch on Carry, and BNC is Branch
on No Carry. If the stated condition is true, program control is transferred to
the address specified by the instruction. If not, control continues with the
instruction that follows. The conditional instructions can be associated also
with the jump, skip, call, or return type of program control instructions.

The zero status bit is used for testing if the result of an ALU operation
is equal to zero or not. The carry bit is used to check if there is a carry out of
the most significant bit position of the ALU. It is also used in conjunction with
the rotate instructions to check the bit shifted from the end position of a register
into the carry position. The sign bit reflects the state of the most significant bit
of the output from the ALU. S = 0 denotesa positive signand S = 1, anegative
sign. Therefore, a branch on plus checks for a sign bit of 0 and a branch on
minus checks for a sign bit of 1. It must be realized, however, that these two
conditional branch instructions can be used to check the value of the most
significant bit whether it represents a sign or not. The overflow bit is used in
conjunction with arithmetic operations done on signed numbers in 2’s comple-
ment representation.



numerical example

SECTION 87 Program Control 277

As stated previously, the compare instruction performs a subtraction of
two operands, say A — B. The result of the operation is not transferred into
a destination register, but the status bits are affected. The status register
provides information about the relative magnitude of A and B. Some comput-
ers provide conditional branch instructions that can be applied right after the
execution of a compare instruction. The specific conditions to be tested depend
on whether the two numbers A and B are considered to be unsigned or signed
numbers. Table 8-11 gives a list of such conditional branch instructions. Note
that we use the words higher and lower to denote the relations between
unsigned numbers, and greater and less than for signed numbers. The relative
magnitude shown under the tested condition column in the table seems to be
the same for unsigned and signed numbers. However, this is not the case since
each must be considered separately as explained in the following numerical
example.

Consider an 8-bit ALU as shown in Fig. 8-8. The largest unsigned number
that can be accommodated in 8 bits is 255. The range of signed numbers is
between +127 and —128. The subtraction of two numbers is the same whether
they are unsigned or in signed-2’s complement representation (see Chap. 3).
Let A = 11110000 and B = 00010100. To perform A — B, the ALU takes the 2's
complement of B and adds it to A.

A: 11110000
B + 1: +11101100
A - B: 11011100 Cc=1 S=1 V=0 Z=0

The compare instruction updates the status bits as shown. C = 1 because there
is a carry out of the last stage. S = 1 because the leftmost bitis 1. V = 0 because
the last two carries are both equal to 1, and Z = Obecause the result is not equal
to 0.

If we assume unsigned numbers, the decimal equivalent of A is 240 and
that of B is 20. The cubtraction in decimal is 240 — 20 = 220. The binary result
11011100 is indeed the equivalent of decimal 220. Since 240 > 20, we have that
A >Band A + B. These two relations can also be derived from the fact that
status bit C is equal to 1 and bit Z is equal to 0. The instructions that will cause
abranch after this comparison are BHI (branch if higher), BHE (branch if higher
or equal), and BNE (branch if not equal).

If we assume signed numbers, the decimal equivalent of A is —16. This
is because the sign of A is negative and 11110000 is the 2’s complement of
00010000, which is the decimal equivalent of +16. The decimal equivalent of
Bis +20. The subtraction in decimal is (—16) — (+20) = —36. The binary result
11011100 (the 2’s complement of 00100100) is indeed the equivalent of decimal
—36. Since (—16) < (+20) we havethat A < Band A # B. These two relations
can also be derived from the fact that status bits S = 1 (negative), V = 0 (no
overflow), and Z = 0 (not zero). The instructions that will cause a branch after
this comparison are BLT (branch if less than), BLE (branch if less or equal), and
BNE (branch if not equal).



278

CHAPTER EIGHT Central Processing Unit

It should be noted that the instruction BNE and BNZ (branch if not zero)
are identical. Similarly, the two instructions BE (branch if equal) and BZ
(branch if zero) are also identical. Each is repeated three times in Table 8-11 for
the purpose of clarity and completeness.

It should be obvious from the example that the relative magnitude of
two unsigned numbers can be determined (after a compare instruction) from
the values of status bits C and Z (see Prob. 8-26). The relative magnitude of two
signed numbers can be determined from the values of S, V, and Z (see
Prob. 8-27).

Some computers consider the C bit to be a borrow bit after a subtraction
operation A — B. A borrow does notoccurif A = B, buta bit must be borrowed
from the next most significant position if A < B. The condition for a borrow
is the complement of the carry obtained when the subtraction is done by taking
the 2's complement of B. For this reason, a processor that considers the C bit
to be a borrow after a subtraction will complement the C bit after adding the
2’'s complement of the subtrahend and denote this bit a borrow.

Subroutine Call and Return

A subroutine is a self-contained sequence of instructions that performs a given
computational task. During the execution of a program, a subroutine may be
called to perform its function many times at various points in the main pro-
gram. Each time a subroutine is called, a branch is executed to the beginning
of the subroutine to start executing its set of instructions. After the subroutine
has been executed, a branch is made back to the main program.

The instruction that transfers program control to a subroutine is known
by different names. The most common names used are call subroutine, jump to
subroutine, branch to subroutine, or branch and save address. A call subroutine
instruction consists of an operation code together with an address that specifies
the beginning of the subroutine. The instruction is executed by performing two
operations: (1) the address of the next instruction available in the program
counter (the return address) is stored in a temporary location so the subroutine
knows where to return, and (2) control is transferred to the beginning of the
subroutine. The last instruction of every subroutine, commonly called return
from subroutine, transfers the return address from the temporary location into
the program counter. This results in a transfer of program control to the
instruction whose address was originally stored in the temporary location.

Different computers use a different temporary location for storing the
return address. Some store the return address in the first memory location of
the subroutine, some store it in a fixed location in memory, some store it in
a processor register, and some store it in a memory stack. The most efficient
way is to store the return address in a memory stack. The advantage of using
a stack for the return address is that when a succession of subroutines is called,
the sequential return addresses can be pushed into the stack. The return from



SECTION 8.7 Program Control 279

subroutine instruction causes the stack to pop and the contents of the top of
the stack are transferred to the program counter. In this way, the return is
always to the program that last called a subroutine. A subroutine call is
implemented with the following microoperations:

SP«SP -1 Decrement stack pointer
M|[SP] «PC Push content of PC onto the stack

PC < effective address Transfer control to the subroutine

If another subroutine is called by the current subroutine, the new return
address is pushed into the stack, and so on. The instruction that returns from
the last subroutine is implemented by the microoperations:

PC «M|[SP] Pop stack and transfer to PC
SP<«SP +1 Increment stack pointer

By using a subroutine stack, all return addresses are automatically stored
by the hardware in one unit. The programmer does not have to be concerned
or remember where the return address was stored.

A recursive subroutine is a subroutine that calls itself. If only one register
or memory location is used to store the return address, and the recursive
subroutine calls itself, it destroys the previous return address. This is undesir-
able because vital information is destroyed. This problem can be solved if
different storage locations are employed for each use of the subroutine while
another lighter-level use is still active. When a stack is used, each return
address can be pushed into the stack without destroying any previous values.
This solves the problem of recursive subroutines because the next subroutine
to exit is always the last subroutine that was called.

Program Interrupt

The concept of program interrupt is used to handle a variety of problems that
arise out of normal program sequence. Program interrupt refers to the transfer
of program control from a currently running program to another service pro-
gram as a result of an external or internal generated request. Control returns
to the original program after the service program is executed.

The interrupt procedure is, in principle, quite similar to a subroutine call
except for three variations: (1) The interrupt is usually initiated by an internal
or external signal rather than from the execution of an instruction (except for
software interrupt as explained later); (2) the address of the interrupt service
program is determined by the hardware rather than from the address field of
an instruction; and (3) an interrupt procedure usually stores all the information



280  CHAPTER EIGHT Central Processing Unit

program status word

supervisor mode

necessary to define the state of the CPU rather than storing only the program
counter. These three procedural concepts are clarified further below.

After a program has been interrupted and the service routine been exe-
cuted, the CPU must return to exactly the same state that it was when the
interrupt occurred. Only if this happens will the interrupted program be able
to resume exactly as if nothing had happened. The state of the CPU at the end
of the execute cycle (when the interrupt is recognized) is determined from:

1. The content of the program counter
2. The content of all processor registers
3. The content of certain status conditions

The collection of all status bit conditions in the CPU is sometimes called
a program status word or PSW. The PSW is stored in a separate hardware register
and contains the status information that characterizes the state of the CPU.
Typically, it includes the status bits from the last ALU operation and it specifies
the interrupts that are allowed to occur and whether the CPU is operating in
a supervisor or user mode. Many computers have a resident operating system
that controls and supervises all other programs in the computer. When the
CPU is executing a program that is part of the operating system, it is said to
be in the supervisor or system mode. Certain instructions are privileged and
can be executed in this mode only. The CPU is normally in the user mode when
executing user programs. The mode that the CPU is operating at any given time
is determined from special status bits in the PSW.

Some computers store only the program counter when responding to an
interrupt. The service program must then include instructions to store status
and register content before these resources are used. Only a few computers
store both program counter and all status and register content in response to
an interrupt. Most computers just store the program counter and the PSW. In
some cases, there exist two sets of processor registers within the computer, one
for each CPU mode. In this way, when the program switches from the user to
the supervisor mode (or vice versa) in response to an interrupt, it is not
necessary to store the contents of processor registers as each mode uses its own
set of registers.

The hardware procedure for processing an interrupt is very similar to the
execution of a subroutine call instruction. The state of the CPU is pushed into
a memory stack and the beginning address of the service routine is transferred
to the program counter. The beginning address of the service routine is deter-
mined by the hardware rather than the address field of an instruction. Some
computers assign one memory location where interrupts are always trans-
ferred. The service routine must then determine what caused the interrupt and
proceed to service it. Some computers assign a memory location for each
possible interrupt. Sometimes, the hardware interrupt provides its own ad-
dress that directs the CPU to the desired service routine. In any case, the CPU



SECTION 8.7 Program Control 281

must possess some form of hardware procedure for selecting a branch address
for servicing the interrupt.

The CPU does not respond to an interrupt until the end of an instruction
execution. Just before going to the next fetch phase, control checks for any
interrupt signals. If an interrupt is pending, control goes to a hardware inter-
rupt cycle. During this cycle, the contents of PC and PSW are pushed onto the
stack. The branch address for the particular interrupt is then transferred to PC
and a new PSW is loaded into the status register. The service program can now
be executed starting from the branch address and having a CPU mode as
specified in the new PSW.

The last instruction in the service program is a return from interrupt
instruction. When this instruction is executed, the stack is popped to retrieve
the old PSW and the return address. The PSW is transferred to the status
register and the return address to the program counter. Thus the CPU state
is restored and the original program can continue executing.

Types of Interrupts

There are three major types of interrupts that cause a break in the normal
execution of a program. They can be classified as:

1. External interrupts
2. Internal interrupts
3. Software interrupts

External interrupts come from input-output (/O) devices, from a timing
device, from a circuit monitoring the power supply, or from any other external
source. Examples that cause external interrupts are /O device requesting
transfer of data, /O device finished transfer of data, elapsed time of an event,
or power failure. Timeout interrupt may result from a program that is in an
endless loop and thus exceeded its time allocation. Power failure interrupt may
have as its service routine a program that transfers the complete state of the
CPU into a nondestructive memory in the few milliseconds before power
ceases.

Internal interrupts arise from illegal or erroneous use of an instruction or
data. Internal interrupts are also called traps. Examples of interrupts caused by
internal error conditions are register overflow, attempt to divide by zero, an
invalid operation code, stack overflow, and protection violation. These error
conditions usually occur as a result of a premature termination of the instruc-
tion execution. The service program that processes the internal interrupt deter-
mines the corrective measure to be taken.

The difference between internal and external interrupts is that the inter-
nal interrupt is initiated by some exceptional condition caused by the program
itself rather than by an external event. Internal interrupts are synchronous with



282  CHAPTER EIGHT Central Processing Unit

software interrupt

CIsC

RISC

the program while external interrupts are asynchronous. If the program is
rerun, the internal interrupts will occur in the same place each time. External
interrupts depend on external conditions that are independent of the program
being executed at the time.

External and internal interrupts are initiated from signals that occur in the
hardware of the CPU. A software interrupt is initiated by executing an instruc-
tion. Software interrupt is a special call instruction that behaves like an inter-
rupt rather than a subroutine call. It can be used by the programmer to initiate
an interrupt procedure at any desired point in the program. The most common
use of software interrupt is associated with a supervisor call instruction. This
instruction provides means for switching from a CPU user mode to the super-
visor mode. Certain operations in the computer may be assigned to the super-
visor mode only, as for example, a complex input or output transfer procedure.
A program written by a user must run in the user mode. When an input or
output transfer is required, the supervisor mode is requested by means of a
supervisor call instruction. This instruction causes a software interrupt that
stores the old CPU state and brings ina new PSW that belongs to the supervisor
mode. The calling program must pass information to the operating system in
order to specify the particular task requested.

8-8 Reduced Instruction Set
Computer (RISC)

An important aspect of computer architecture is the design of the instruction
set for the processor. The instruction set chosen for a particular computer
determines the way that machine language programs are constructed. Early
computers had small and simple instruction sets, forced mainly by the need
to minimize the hardware used to implement them. As digital hardware
became cheaper with the advent of integrated circuits, computer instructions
tended to increase both in number and complexity. Many computers have
instruction sets that include more than 100 and sometimes even more than 200
instructions. These computers also employ a variety of data types and a large
number of addressing modes. The trend into computer hardware complexity
was influenced by various factors, such as upgrading existing models to
provide more customer applications, adding instructions that facilitate the
translation from high-level language into machine language programs, and
striving to develop machines that move functions from software implementa-
tion into hardware implementation. A computer with a large number of in-
structions is classified as a complex instruction set computer, abbreviated CISC.

In the early 1980s, a number of computer designers recommended that
computers use fewer instructions with simple constructs so they can be exe-
cuted much faster within the CPU without having to use memory as often. This
type of computer is classified as a reduced instruction set computer or RISC. In




SECTION 8-8 Reduced Instruction Set Computer (RISC) 283

this section we introduce the major characteristics of CISC and RISC architec-
tures and then present the instruction set and instruction format of a RISC
processor.

CISC Characteristics

The design of an instruction set for a computer must take into consideration
not only machine language constructs, but also the requirements imposed on
the use of high-level programming languages. The translation from high-level
to machine language programs is done by means of a compiler program. One
reason for the trend to provide a complex instruction set is the desire to simplify
the compilation and improve the overall computer performance. The task of
a compiler is to generate a sequence of machine instructions for each high-level
language statement. The task is simplified if there are machine instructions that
implement the statements directly. The essential goal of a CISC architecture
is to attempt to provide a single machine instruction for each statement that
is written in a high-level language. Examples of CISC architectures are the
Digital Equipment Corporation VAX computer and the IBM 370 computer.

Another characteristic of CISC architecture is the incorporation of vari-
able-length instruction formats. Instructions that require register operands
may be only two bytes in length, but instructions that need two memory
addresses may need five bytes to include the entire instruction code. If the
computer has 32-bit words (four bytes), the first instruction occupies half a
word, while the second instruction needs one word in addition to one byte in
the next word. Packing variable instruction formats in a fixed-length memory
word requires special decoding circuits that count bytes within words and
frame the instructions according to their byte length.

The instructions in a typical CISC processor provide direct manipulation
of operands residing in memory. For example, an ADD instruction may specify
one operand in memory through index addressing and a second operand in
memory through a direct addressing. Another memory location may be in-
cluded in the instruction to store the sum. This requires three memory refer-
ences during execution of the instruction. Although CISC processors have
instructions that use only processor registers, the availability of other modes
of operations tend to simplify high-level language compilation. However, as
more instructions and addressing modes are incorporated into a computer, the
more hardware logic is needed to implement and support them, and this may
cause the computations to slow down. In summary, the major characteristics
of CISC architecture are:

1. A large number of instructions—typically from 100 to 250 instructions

2, Some instructions that perform specialized tasks and are used infre-
quently



284

CHAPTER EIGHT Central Processing Unit

3. A large variety of addressing modes—typically from 5 to 20 different
modes

4. Variable-length instruction formats

5. Instructions that manipulate operands in memory

RISC Characteristics

The concept of RISC architecture involves an attempt to reduce execution time
by simplifying the instruction set of the computer. The major characteristics
of a RISC processor are:

. Relatively few instructions

. Relatively few addressing modes

Memory access limited to load and store instructions
. All operations done within the registers of the CPU
. Fixed-length, easily decoded instruction format

. Single-cycle instruction execution

. Hardwired rather than microprogrammed control

The small set of instructions of a typical RISC processor consists mostly
of register-to-register operations, with only simple load and store operations
for memory access. Thus each operand is brought into a processor register with
aload instruction. All computations are done among the data stored in proces-
sor registers. Results are transferred to memory by means of store instructions.
This architectural feature simplifies the instruction set and encourages the
optimization of register manipulation. The use of only a few addressing modes
results from the fact that almost all instructions have simple register address-
ing. Other addressing modes may be included, such as immediate operands
and relative mode.

By using a relatively simple instruction format, the instruction length can
be fixed and aligned on word boundaries. Animportant aspect of RISC instruc-
tion format is that it is easy to decode. Thus the operation code and register
fields of the instruction code can be accessed simultaneously by the control.
By simplifying the instructions and their format, it is possible to simplify the
control logic. For faster operations, a hardwired control is preferable over a
microprogrammed control. An example of hardwired control is presented in
Chap. 5 in conjunction with the control unit of the basic computer. Examples
of microprogrammed control are presented in Chap. 7.

A characteristic of RISC processors is their ability to execute one instruc-
tion per clock cycle. This is done by overlapping the fetch, decode, and execute
phases of two or three instructions by using a procedure referred to as pipelin-
ing. A load or store instruction may require two clock cycles because access to



pipelining

SECTION 8-8 Reduced Instruction Set Computer (RISC) 285

memory takes more time than register operations. Efficient pipelining, as well
as a few other characteristics, are sometimes attributed to RISC, although they
may exist in non-RISC architectures as well. Other characteristics attributed to
RISC architecture are:

1. A relatively large number of registers in the processor unit

2. Use of overlapped register windows to speed-up procedure call and
return

3. Efficient instruction pipeline
4. Compiler support for efficient translation of high-level language pro-
grams into machine language programs

A large number of registers is useful for storing intermediate results and
for optimizing operand references. The advantage of register storage as op-
posed to memory storage is that registers can transfer information to other
registers much faster than the transfer of information to and from memory.
Thus register-to-memory operations can be minimized by keeping the most
frequent accessed operands in registers. Studies that show improved perform-
ance for RISC architecture do not differentiate between the effects of the
reduced instruction set and the effects of a large register file. For this reason
a large number of registers in the processing unit are sometimes associated
with RISC processors. The use of overlapped register windows when trans-
ferring program control after a procedure call is explained below. Instruction
pipeline in RISC is presented in Sec. 9-5 after we explain the concept of
pipelining.

Overlapped Register Windows
Procedure call and return occurs quite often in high-level programming lan-
guages. When translated into machine language, a procedure call produces a
sequence of instructions that save register values, pass parameters needed for
the procedure, and then calls a subroutine to execute the body of the proce-
dure. After a procedure return, the program restores the old register values,
passes results to the calling program, and returns from the subroutine. Saving
and restoring registers and passing of parameters and results involve time-
consuming operations. Some computers provide multiple-register banks, and
each procedure is allocated its own bank of registers. This eliminates the need
for saving and restoring register values. Some computers use the memory stack
to store the parameters that are needed by the procedure, but this requires a
memory access every time the stack is accessed.

A characteristic of some RISC processors is their use of overlapped register
windows to provide the passing of parameters and avoid the need for saving
and restoring register values. Each procedure call results in the allocation of



286  CHAPTER EIGHT Central Processing Unit

a new window consisting of a set of registers from the register file for use by
the new procedure. Each procedure call activates a new register window by
incrementing a pointer, while the return statement decrements the pointer and
causes the activation of the previous window. Windows for adjacent proce-
dures have overlapping registers that are shared to provide the passing of
parameters and results.

The concept of overlapped register windows is illustrated in Fig. 8-9. The
system has a total of 74 registers. Registers R0 through R9 are global registers
that hold parameters shared by all procedures. The other 64 registers are
divided into four windows to accommodate procedures A, B, C, and D. Each
register window consists of 10 local registers and two sets of six registers
common to adjacent windows. Local registers are used for local variables.
Common registers are used for exchange of parameters and results between
adjacent procedures. The common overlapped registers permit parameters to
be passed without the actual movement of data. Only one register window is
activated at any given time with a pointer indicating the active window. Each
procedure call activates a new register window by incrementing the pointer.
The high registers of the calling procedure overlap the low registers of the
called procedure, and therefore the parameters automatically transfer from
calling to called procedure.

As an example, suppose that procedure A calls procedure B. Registers
R26 through R31 are common to both procedures, and therefore procedure A
stores the parameters for procedure B in these registers. Procedure B uses local
registers R32 through R41 for local variable storage. If procedure B calls pro-
cedure C, it will pass the parameters through registers R42 through R47. When
procedure Bis ready to return at the end of its computation, the program stores
results of the computation in registers R26 through R31 and transfers back to
the register window of procedure A. Note that registers R10 through R15 are
common to procedures A and D because the four windows have a circular
organization with A being adjacent to D.

As mentioned previously, the 10 global registers RO through R9 are
available to all procedures. Each procedure in Fig. 8-9 has available a total of
32registers while itis active. This includes 10 global registers, 10 local registers,
six low overlapping registers, and six high overlapping registers. Other fixed-
size register window schemes are possible, and each may differ in the size of
the register window and the size of the total register file. In general, the
organization of register windows will have the following relationships:

number of global registers = G

number of local registers in each window = L
number of registers common to two windows = C
number of windows = W



SECTION 8-8 Reduced Instruction Set Computer (RISC) 287

R15
Common to D and A
R10
R73
Localto D
R64
R63
Common to C and D
R58
Proc D R57
LocaltoC
R48
R47
Common to B and C
R42
Proc C R41
Local to B
R32
R31
Commonto A and B
R26
Proc B R25
Localto A
R16
R9 R15
Sl%::nemds?e ts° all Common to A and D
RO R10
Global ProcA
registers

Figure 8-9 Overlapped register windows.



288  CHAPTER EIGHT Central Processing Unit
The number of registers available for each window is calculated as follows:
window size =L + 2C + G
The total number of registers needed in the processor is
register file = (L + CO)W + G

In the example of Fig. 8-9 we have G =10, L = 10, C = 6, and W = 4. The
window size is 10 + 12 + 10 = 32 registers, and the register file consists of
(10 + 6) x 4 + 10 = 74 registers.

Berkeley RISC 1

One of the first projects intended to show the advantages of RISC architecture
was conducted at the University of California, Berkeley. The Berkeley RISC I
is a 32-bit integrated circuit CPU. It supports 32-bit addresses and either 8-, 16-,
or 32-bit data. It has a 32-bit instruction format and a total of 31 instructions.
There are three basic addressing modes: register addressing, immediate
operand, and relative to PC addressing for branch instructions. It has a register
file of 138 registers arranged into 10 global registers and 8 windows of 32
registers in each. The 32 registers in each window have an organization similar
to the one shown in Fig. 8-9. Since only one set of 32 registers in a window is

Figure 8-10 Berkeley RISC I instruction formats.

31 24 23 1918 14 13 12 54 0
| Opcode | Rd Rs 0 | Not used | S2 |
8 5 5 1 8 5
(a) Register mode: (S2 specifies a register)

31 24 23 1918 14 13 12 0
| Opcode | Rd | Rs | 1 | S2 |

8 5 5 1 13
(b) Regi i diate mode: (S2 speci an operand)
31 24 23 19 18 0
[ opcose | conp | Y
8 5 19

(c) PC relative mode:



SECTION 8-8 Reduced Instruction Set Computer (RISC) 289

accessed at any given time, the instruction format can specify a processor
register with a register field of five bits.

Figure 8-10 shows the 32-bit instruction formats used for register-to-
register instructions and memory access instructions. Seven of the bits in the
operation code specify an operation, and the eighth bit indicates whether to
update the status bits after an ALU operation. For register-to-register instruc-
tions, the 5-bit Rd field selects one of the 32 registers as a destination for the
result of the operation. The operation is performed with the data specified in
fields Rs and S2. Rs is one of the source registers. If bit 13 of the instruction
is 0, the low-order 5 bits of S2 specify another source register. If bit 13 of the
instruction is 1, S2 specifies a sign-extended 13-bit constant. Thus the instruc-
tion has a three-address format, but the second source may be either a register
or an immediate operand. Memory access instructions use Rs to specify a 32-bit
address in a register and S2 to specify an offset. Register RO contains all 0's,
s0 it can be used in any field to specify a zero quantity. The third instruction
format combines the last three fields to form a 19-bit relative address Y and is
used primarily with the jump and call instructions. The COND field replaces
the Rd field for jump instructions and is used to specify one of 16 possible
branch conditions.

The 31 instructions of RISC I are listed in Table 8-12. They have been
grouped into three categories. Data manipulation instructions perform arith-
metic, logic, and shift operations. The symbols under the opcode and operands
columns are used when writing assembly language programs. The register
transfer and description columns explain the instruction in register transfer
notation and in words. Note that all instructions have three operands. The
second source S2 can be either a register or an immediate operand, symbolized
by the number sign #. Consider, for example, the ADD instruction and how
it can be used to perform a variety of operations.

ADD R22,R21,Re3 R23 < Rec + Rel

ADD R2e,#150,Re3 R23 «Ree + 150

ADD RO,R21,Ree Ré2«R2l (Move)

ADD RO, #150,Ree Reé2d« 150 (Load immediate)
ADD Re2e, #1,Ree Reée«<Ree +1 (Increment)

By using register RO, which always contains 0’s, it is possible to transfer the
contents of one register or a constant into another register. The increment
operation is accomplished by adding a constant 1 to a register.

The data transfer instructions consist of six load instructions, three store
instructions, and two instructions that transfer the program status word PSW.
The register that holds PSW contains the status of the CPU and includes the
program counter, the status bits from the ALU, pointers used in conjunction
with the register windows, and other information that determines the state of
the CPU.



290  CHAPTER EIGHT Central Processing Unit

TABLE 8-12 Instruction Set of Berkeley RISC [

Register Transfer

Description

Opcode Operands
Data manipulation instructions
ADD Rs,S2,Rd
ADDC Rs,S2,Rd
SUB Rs,S2,Rd
SUBC Rs,S2,Rd
SUBR Rs,S2,Rd
SUBCR Rs,S2,Rd
AND Rs,S2,Rd
OR Rs,S2,Rd
XOR Rs,S2,Rd
SLL Rs,S2,Rd
SRL Rs,S2,Rd
SRA Rs,S2,Rd
Data transfer instructions
LDL (Rs)S2,Rd
LDSU (Rs)S2,Rd
LDSS (Rs)S2,Rd
LDBU (Rs)S2,Rd
LDBS (Rs)S2,Rd
LDHI Rd,Y
STL Rd,(Rs)S2
STS Rd,(Rs)S2
STB Rd,(Rs)S2
GETPSW Rd
PUTPSW Rd
Program control instructions
IMP COND,
S2(Rs)
JMPR COND,Y
CALL Rd,S2(Rs)
CALLR Rd,Y
RET Rd,S2
CALLINT Rd
RETINT Rd,S2
GTLPC Rd

Rd «—Rs + 52
Rd < Rs + §2 + carry
Rd<Rs — 852
Rd «Rs — 52 — carry
Rd <S2 - Rs
Rd <52 — Rs — carry
Rd<—Rs N\ S2
Rd<Rs\/ S2
Rd«<Rs®S2
Rd < Rs shifted by §2
Rd < Rs shifted by 2
Rd < Rs shifted by S2

Rd <—M|[Rs + §2]
Rd < M[Rs + 52]
Rd <M|Rs + 2]
Rd < M(Rs + 52]
Rd <M[Rs + §2]
Rd<Y

M[Rs + S2] <Rd
M[Rs + S2] <Rd
M[Rs + S2] <Rd
Rd < PSW

PSW «<Rd

PC<Rs + 52

PC—PC+Y
Rd < PC
PC«Rs + 52
CWP«—CWP -1
Rd < PC
PC—PC+Y
CWP «CWP -1
PC<Rd + 52
CWP - CWP + 1
Rd < PC

CWP «CWP -1
PC<—Rd + §2
CWP«—CWP + 1
Rd < PC

Integer add

Add with carry
Integer subtract
Subtract with carry
Subtract reverse
Subtract with carry
AND

OR

Exclusive-OR
Shift-left
Shift-right logical
Shift-right arithmetic

Load long

Load short unsigned
Load short signed
Load byte unsigned
Load byte signed
Load immediate high
Store long

Store short

Store byte

Load status word
Set status word

Conditional jump

Jump relative
Call subroutine

and

change window
Call relative

and

change window
Return and

change window
Disable interrupts

Enable interrupts

Get last PC




SECTION 88 Reduced Instruction Set Computer (RISC) 291

The load and store instructions move data between a register and mem-
ory. The load instructions accommodate signed or unsigned data of eight bits
(byte) or 16 bits (short word). The long-word instructions operaiae on :ﬂ-bzt
data. Although there appears to be a register plus displac t ad
mode in data transfer instructions, register indirect addmssmg and direct
addressing is also possible. The following are examples of load long instruc-
tions with different addressing modes.

LDL (R22)#150,R5 RS M[R22] + 150
LDL (R22)#0,RS RS —M[R22)
LDL (RO)#500,RS RS < M[500]

The effective address in the first instruction is evaluated from the contents of
register R22 plus a displacement of 150. The second instruction uses a 0
displacement, which reduces it to a register indirect mode. The third instruc-
tion uses all 0's from register RO to produce a direct address type of instruction.

The program control instructions operate with the program counter PC
to control the program sequence. There are two fump and two call instructions.
One uses an index plus displac dd g: the second uses a relative
to PC mode with the 19-bit Y value as the relative address. The call and return
instructions use a 3-bit CWP (current window pointer) register which points
to the currently active register window. Every time the program calls a new
procedure, CWP is decremented by one to point to the next-lower register
window. After a return instruction CWP is incremented by one to return to the
previous register window.

—— {  PROBLEMS | —

81, A bus-organized CPU similar to Fig. 8-2 has 16 registers with 32 bits in each,

an ALU, and a destination decoder.

a. How many multiplexers are there in the A bus, and what is the size of
each multiplexer?

b. How many selection inputs are needed for MUX A and MUX B?

¢. How many inputs and outputs are there in the decoder?

d. How many inputs and outputs are there in the ALU for data, including
input and output carries?

e. Formulate a control word for the system assuming that the ALU has 35

operations.
B-2. The bus system of Fig. B-Zhsmeﬁnﬂawu\gpmplgnﬁundehyhmmmm
for the signals to p the multipl 80 ns to perform the

ADDupenhnumtheAUJ.ZﬂnsddIymﬂwdﬁhmhmm and 10
ns to clock the data into the destination register. What is the minimum cycle
time that can be used for the clock?



292 CHAPTER EIGHT Central Processing Unit

8-3.

8-5.

8-6.

8-7.

8-8.

8-9.

8-10.

Specify the control word that must be applied to the processor of Fig. 8-2 to
implement the following microoperations.

a. R1<~R2+R3

b. R4 R4

¢. R5<R5-1

d. R6é<«shl R1

e. R7 < input

Determine the microoperations that will be executed in the processor of Fig.
8-2 when the following 14-bit control words are applied.

a. 00101001100101

b. 00000000000000

¢. 01001001001100

d. 00000100000010

e. 11110001110000

Let SP = 000000 in the stack of Fig. 8-3. How many items are there in the
stack if:

a. FULL = 1 and EMTY = 0?

b. FULL = 0 and EMTY = 1?

A stack is organized such that SP always points at the next empty location
on the stack. This means that SP can be initialized to 4000 in Fig. 8-4 and the
first item in the stack is stored in location 4000. List the microoperations for
the push and pop operations.
Convert the following arithmetic expressions from infix to reverse Polish
notation.
a. AxB+ CxD + ExF
b. AxB+ A*(B*xD + C*E)
c. A+ B*[C*D + Ex(F + G)]
g A*[B+C*(D +E)

) F*(G + H)
Convert the following arithmetic expressions from reverse Polish notation
to infix notation.
a. ABCDE+x*—/
b.ABCDEx*/-+
¢. ABCx/D-EF/ +
d. ABCDEFG+*+x*+=x

Convert the following numerical arithmetic expression into reverse Polish
notation and show the stack operations for evaluating the numerical result.

(3 + 9102 + 6) + 8]

A first-in, first-out (FIFO) has a memory organization that stores information
in such a manner that the item that is stored first is the first item that is
retrieved. Show how a FIFO memory operates with three counters. A write
counter WC holds the address for writing into memory. A read counter RC
holds the address for reading from memory. An available storage counter
ASC indicates the number of words stored in FIFO. ASC is incremented for
every word stored and decremented for every item that is retrieved.



8-11.

8-12.

8-13.

8-14.

8-15.

8-16.

8-17.

8-18.

SECTION 8-8 Reduced Instruction Set Computer (RISC) 293

A computer has 32-bit instructions and 12-bit addresses. If there are
250 two-address instructions, how many one-address instructions can be
formulated?

Write a program to evaluate the arithmetic statement:

X=A—B+C*(D*E—I-‘)
G + H*K
. Using a general register computer with three address instructions.
. Using a general regnster computer with two address instructions.
. Using an acc or type comp with one address instructions.
. Using a stack organized computer with zero-address operation instruc-
tions.

an T

The memory unit of a computer has 256K words of 32 bits each. The
computer has an instruction format with four fields: an operation code field,
a mode field to specify one of seven addressing modes, a register address
field to specify one of 60 processor registers, and a memory address. Specify
the instruction format and the number of bits in each field if the in instruction
is in one memory word.

A two-word instruction is stored in memory at an address designated by the
symbol W. The address field of the instruction (stored at W + 1) is desig-
nated by the symbol Y. The operand used during the execution of the
instruction is stored at an address symbolized by Z. An index register
contains the value X. State how Z is calculated from the other addresses if
the addressing mode of the instruction is

a. direct

b. indirect

c. relative

d. indexed

A relative mode branch type of instruction is stored in memory at an address

equivalent to decimal 750. The branch is made to an address equivalent to

decimal 500.

a. What should be the value of the relative address field of the instruction
(in decimal)?

b. Determine the relative address value in binary using 12 bits. (Why must
the number be in 2’s complement?)

¢. Determine the binary value in PC after the fetch phase and calculate the
binary value of 500. Then show that the binary value in PC plus the
relative address calculated in part (b) is equal to the binary value of 500.

How many times does the control unit refer to memory when it fetches and

executes an indirect addressing mode instruction if the instruction is (a) a

computational type requiring an operand from memory; (b) a branch type.

What must the address field of an indexed addressing mode instruction be

to make it the same as a register indirect mode instruction?

An instruction is stored at location 300 with its address field at location 301.

The address field has the value 400. A processor register R1 contains the

number 200. Evaluate the effective address if the addressing mode of the



294

CHAPTER EIGHT Central Processing Unit

8-19.

8-20.

8-21.

8-22.

8-23.

8-24.

8-25.

8-26.

8-27.

instruction is (a) direct; (b) immediate; (c) relative; (d) register indirect;
(e) index with R1 as the index register.

Assuming an 8-bit computer, show the multiple precision addition of the
two 32-bit unsigned numbers listed below using the add with carry instruc-
tion. Each byte is expressed as a two-digit hexadecimal number.

(6E C3 56 7A) + (13 55 6B 8F)

Perform the logic AND, OR, and XOR with the two binary strings 10011100
and 10101010.

Given the 16-bit value 1001101011001101. What operation must be per-
formed in order to:

a. clear to 0 the first eight bits?

b. set to 1 the last eight bits?

¢. complement the middle eight bits?

An 8-bit register contains the value 01111011 and the carry bit is equal to 1.

Perform the eight shift operations given by the instructions listed in Ta-

ble 8-9. Each time, start from the initial value given above.

Represent the following signed numbers in binary using eight bits. +83;

—83; +68; —68.

a. Perform the addition (—83) + (+68) in binary and interpret the result
obtained.

b. Perform the subtraction (—68) — (+83) in binary and indicate if there is
an overflow.

c. Shift binary —68 once to the right and give the value of the shifted number
in decimal.

d. Shift binary —83 once to the left and indicate if there is an overflow.

Show that the circuit labeled ““check for zero output” in Fig. 8-8 is an 8-bit
NOR gate.

An 8-bit computer has a register R. Determine the values of status bits C,
S, Z, and V (Fig. 8-8) after each of the following instructions. The initial value
of register R in each case is hexadecimal 72. The numbers below are also in
hexadecimal.

a. Add immediate operand C6 to R.

b. Add immediate operand 1E to R.

¢. Subtract immediate operand 9A from R.

d. AND immediate operand 8D to R.

e. Exclusive-OR R with R.

Two unsigned numbers A and B are compared by subtracting A — B. The
carry status bit is considered as a borrow bit after a compare instruction in
most commercial computers, so that C = 1if A < B. Show that the relative
magnitude of A and B can be determined from inspection of status bits Cand
Z as specified in the table for Problem 8-26. (See also Table 8-11.)

Two signed numbers A and B represented in signed-2’s complement form
are compared by subtracting A — B. Status bits S, Z, and V are set or cleared
depending on the result of the operation. (Note that there is a sign reversal



8-28.

8-29,

8-30.

SECTION 88 Reduced Instruction Set Computer (RISC) 295

Table for Problem 8-26

Relation  Condition of Status Bits

A>B C=0andZ=0
Az=B Cc=0
A<B c=1
A<B C=lorZ=1
A=B zZ=1
A+ B Z=0

if an overflow occurs.) Show that the relative magnitude of A and B can be
determined from inspection of the status bits as specified below. (See also
Table 8-11.)

Table for Problem 8-27

Relation  Condition of Status Bits

A>B (S®V)=0andZ =0
Az=B SdVv)=0

A<B sev)=1

A=<B S®V)y=1lorZ=1
A=B zZ=1

A+B Z=0

It is necessary to design a digital circuit with four inputs C, S, Z, and V and
10 outputs, one for each of the branch conditions listed in Probs. 8-26 and
8-27. (The equal and unequal conditions are common to both tables.) Draw
the logic diagram of the circuit using two OR gates, one XOR gate, and five
inverters.

Consider the two 8-bit numbers A = 01000001 and B = 10000100.

a. Give the decimal equivalent of each number assuming that (1) they are
unsigned, and (2) they are signed.

b. Add the two binary numbers and interpret the sum assuming that the
numbers are (1) unsigned, and (2) signed.

¢. Determine the values of the C, Z, S, and V status bits after the addition.

d. List the conditional branch instructions from Table 8-11 that will have a
true condition.

The program in a computer compares two unsigned numbers A and B by

performing a subtraction A — B and updating the status bits. Let A=

01000001 and B = 10000100.

a. Evaluate the difference and interpret the binary result.

b. Determine the values of status bits C (borrow) and Z.

¢. List the conditional branch instructions from Table 8-11 that will have a
true condition.



296  CHAPTER EIGHT Central Processing Unit

8-31.

8-32.

8-33.

8-34.

8-35.

8-36.

8-37.

8-38.

The program in a computer compares two signed numbers A and B by

performing the subtraction A — B and updating the status bits. Let A=

01000001 and B = 10000100.

a. Evaluate the difference and interpret the binary result.

b. Determine the value of status bits S, Z, and V.

c. List the conditional branch instructions from Table 8-11 that will have a
true condition.

The content of the top of a memory stack is 5320. The content of the stack
pointer SP is 3560. A two-word call subroutine instruction is located in
memory at address 1120 followed by the address field of 6720 at location
1121. What are the content of PC, SP, and the top of the stack:

a. Before the call instruction is fetched from memory?

b. After the call instruction is executed?

¢. After the return from subroutine?

What are the basic differences between a branch instruction, a call subrou-
tine instruction, and program interrupt?

Give five examples of external interrupts and five examples of internal
interrupts. What is the difference between a software interrupt and a sub-
routine call?

A computer responds to an interrupt request signal by pushing onto the

stack the contents of PC and the current PSW (program status word). It then

reads anew PSW from memory from alocation given by an interrupt address

symbolized by IAD. The first address of the service program is taken from

memory at location IAD + 1.

a. List the sequence of microoperations for the interrupt cycle.

b. List the sequence of microoperations for the return from interrupt in-
struction.

Examples of computers with variable instruction formats are IBM 370, VAX

11, and Intel 386. Compare the variable instruction formats of one of these

computers with the fixed-length instruction format used in RISC I.

Three computers use register windows with the following characteris-

tics. Determine the window size and the total number of registers in each

computer.

Computer 1 Computer 2 Computer 3

Global registers 10 8 16
Local registers 10 8 16
Common registers 6 8 16
Number of windows 8 4 16

Give an example of a RISC I instructions that will perform the following
operations.

a. Decrement a register

b. Complement a register

¢. Negate a register



secTion 88 Reduced Instruction Ser Computer (RISC) 297

d. Clear a register to 0
e. Divide a signed number by 4
f. No operation

B-39.  Write the RISC | instructions in assembly language that will cause a jump

to address 3200 if the Z (zero) status bit is equal to 1.
a. Using immediate mode
b. Using a relative address mode (assume that PC = 3400)

— |
| REFERENCES |

. Gear, C. W., Comp Org and Prog ing, 3rd ed. New York: McGraw-
Hill, 1980.

Gorsline, G. W., Computer Organization: Hardware/Software, Ind ed. Englewood
Cliffs, NJ: Prentice Hall, 1986.

. Gray, N. A. B., I fuction to Computer Syst Englewood Cliffs, NJ: Prentice
Hall, 1987.

. Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.

New York: McGraw-Hill, 1990.

. Hays, ). F., Computer Archi eand Organization, 2nd ed. New York: McGraw-Hill,
19!!!!
holz, G., J. Francioni, and A. Kandel, Elements of Computer Organization.
EnglewoodClltfa,N} Prentice Hall, 1989,
. Levy, H. M., and R. H. Eckhouse, Jr., C Programming and Archit, The

VAX-11. Bedford, MA: Digital Press, 1980.

. Lippiatt, A, G., and G. L. Wright, The Architecture of Small Computer Systems, 2Znd

ed. Englewood Cliffs, NJ: Prentice Hall, 1985.

. Mano, M. M., Computer Engineering: Hardware Design. Englewood Cliffs, NJ: Pren-
tice Hall, 1988.

. Murray, W. D., Computer and Digital System Architecture. Englewood Cliffs, NJ:
Prentice Hall, 1990.

. Patterson, D. A.,and]. L. H ,,C mp Architecture: A Quantitative Approach.
San Mateo, CA: Morgan Kauf lisk 1990.

. Patterson, D. A., and C. H. Sequm. *A VLSI RISC.” [EEE Computer, September

1982, pp. 8-22,

. Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice

Hall, 1990.

. Rafiquzzaman, M., and R. Chandra, Modern Computer Architecture. St. Paul, MN:

West Publishers, 1988,

. Siewiorek, D., C. G. Bell, and A. Newell, Computer Structures: Principles and Exam-

ples. New York: McGraw-Hill, 1982.



298

CHAPTER EIGHT Central Processing Unit

16.

17.

18.

19.

20.

. Stallings, W., Computer Organization and Architecture, 2nd ed. New York: Macmillan,
1989.

Tanenbaum, A. S., Structured Computer Organization, 3rd ed. Englewood Cliffs, NJ:
Prentice Hall, 1990.
Tomek, I., Introduction to C
Press, 1981.

Toy, W., and B. Zee, Computer Hardware/Software Architecture. Englewood Cliffs, NJ:
Prentice Hall, 1986.

Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.

puter Organization. Rockville, MD: Computer Science





