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7-1 Control Memory

The function of the control unit in a digital computer is to initiate sequences
of microoperations. The number of different types of microoperations that are
available in a given system is finite. The complexity of the digital system is
derived from the number of sequences of microoperations that are performed.
When the control signals are generated by hardware using conventional logic
design techniques, the control unit is said to be hardwired. Microprogramming
is a second alternative for designing the control unit of a digital computer. The
principle of n'l.icroprognnm‘\.ing is an elegmt and systematic method for con-

trolling the microoperatic ces in a digital computer.

The control function that spm.fws a microoperation is a bmary variable.
When it is in one binary state, the corresponding microoperation is executed.
A control variable in the opposite binary state does not change the state of the
registers in the system. The active state of a control variable may be either the
1 state or the 0 state, depending on the application. In a bus-organized system,
the control signals that specify microoperations are groups of bits that select
the paths in multiplexers, decoders, and arithmetic logic units.

The control unit initiates a series of sequential steps of microoperations.
During any given time, certain microoperations are to be initiated, while others
remain idle. The control variables at any given time can be represented by a
string of 1's and (s called a control word. As such, control words can be
programmed to perform various operations on the components of the system.
A control unit whose binary control variables are stored in memory is called
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microprogram

control memory

a microprogrammed control unit. Each word in control memory contains within
it a microinstruction. The microinstruction specifies one or more microopera-
tions for the system. A sequence of microinstructions constitutes a micropro-
gram. Since alterations of the microprogram are not needed once the control
unit is in operation, the control memory can be a read-only memory (ROM).
The content of the words in ROM are fixed and cannot be altered by simple
programming since no writing capability is available in the ROM. ROM words
are made permanent during the hardware production of the unit. The use of
a microprogram involves placing all control variables in words of ROM for use
by the control unit through successive read operations. The content of the word
in ROM at a given address specifies a microinstruction.

A more advanced development known as dynamic microprogramming
permits a microprogram to be loaded initially from an auxiliary memory such
as a magnetic disk. Control units that use dynamic microprogramming employ
a writable control memory. This type of memory can be used for writing (to
change the microprogram) but is used mostly for reading. A memory that is
part of a control unit is referred to as a control memory.

A computer that employs a microprogrammed control unit will have two
separate memories: a main memory and a control memory. The main memory
is available to the user for storing the programs. The contents of main memory
may alter when the data are manipulated and every time that the program is
changed. The user’s program in main memory consists of machine instructions
and data. In contrast, the control memory holds a fixed microprogram that
cannot be altered by the occasional user. The microprogram consists of mi-
croinstructions that specify various internal control signals for execution of
register microoperations. Each machine instruction initiates a series of microin-
structions in control memory. These microinstructions generate the microop-
erations to fetch the instruction from main memory; to evaluate the effective
address, to execute the operation specified by the instruction, and to return
control to the fetch phase in order to repeat the cycle for the next instruction.

The general configuration of a microprogrammed control unit is demon-
strated in the block diagram of Fig. 7-1. The control memory is assumed to be
a ROM, within which all control information is permanently stored. The

Figure 7-1 Microprogrammed control organization.
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control memory address register specifies the address of the microinstruction,
and the control data register holds the microinstruction read from memory.
The microinstruction contains a control word that specifies one or more micro-
operations for the data processor. Once these operations are executed, the
control must determine the nextaddress. The location of the next microinstruc-
tion may be the one next in sequence, or it may be located somewhere else in
the control memory. For this reason it is necessary to use some bits of the
Ppresent microinstruction to control the generation of the address of the next
microinstruction. The next address may also be a function of external input
conditions. While the microoperations are being executed, the next address is
computed in the next address generator circuit and then transferred into the
control address register to read the next microinstruction. Thus a microinstruc-
tion contains bits for initiating microoperations in the data processor part and
bits that determine the address sequence for the control memory.

The next address generator is sometimes called a microprogram sequencer,
as it determines the address sequence that is read from control memory. The
address of the next microinstruction can be specified in several ways, depend-
ing on the sequencer inputs. Typical functions of a microprogram sequencer
are incrementing the control address register by one, loading into the control
address register an address from control memory, transferring an external
address, or loading an initial address to start the control operations.

The control data register holds the present microinstruction while the
next address is computed and read from memory. The data register is some-
times called a pipeline register. It allows the execution of the microoperations
specified by the control word simultaneously with the generation of the next
microinstruction. This configuration requires a two-phase clock, with one clock
applied to the address register and the other to the data register.

The system can operate without the control data register by applying a
single-phase clock to the address register. The control word and next-address
information are taken directly from the control memory. It must be realized that
a ROM operates as a combinational circuit, with the address value as the input
and the corresponding word as the output. The content of the specified word
in ROM remains in the output wires as long as its address value remains in the
address register. No read signal is needed as in a random-access memory. Each
clock pulse will execute the microoperations specified by the control word and
also transfer a new address to the control address register. In the example that
follows we assume a single-phase clock and therefore we do not use a control
data register. In this way the address register is the only component in the
control system that receives clock pulses. The other two components: the
sequencer and the control memory are combinational circuits and do not need
a clock.

The main advantage of the microprogrammed control is the fact that once
the hardware configuration is established, there should be no need for further
hardware or wiring changes. If we want to establish a different control se-
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quence for the system, all we need to do is specify a different set of microin-
structions for control memory. The hardware configuration should not be
changed for different operations; the only thing that must be changed is the
microprogram residing in control memory.

It should be mentioned that most computers based on the reduced in-
struction set computer (RISC) architecture concept (see Sec. 8-8) use hardwired
control rather than a control memory with a microprogram. An example of a
hardwired control for a simple computer is presented in Sec. 5-4.

7-2  Address Sequencing

Microinstructions are stored in control memory in groups, with each group
specifying a routine. Each computer instruction has its own microprogram
routine in control memory to generate the microoperations that execute the
instruction. The hardware that controls the address sequencing of the control
memory must be capable of sequencing the microinstructions within a routine
and be able to branch from one routine to another. To appreciate the address
sequencing in a microprogram control unit, let us enumerate the steps that the
control must undergo during the execution of a single computer instruction.

An initial address is loaded into the control address register when power
is turned on in the computer. This address is usually the address of the first
microinstruction that activates the instruction fetch routine. The fetch routine
may be sequenced by incrementing the control address register through the
rest of its microinstructions. At the end of the fetch routine, the instruction is
in the instruction register of the computer.

The control memory next must go through the routine that determines
the effective address of the operand. A machine instruction may have bits that
specify various addressing modes, such as indirect address and index regis-
ters. The effective address computation routine in control memory can be
reached through a branch microinstruction, which is conditioned on the status
of the mode bits of the instruction. When the effective address computation
routine is completed, the address of the operand is available in the memory
address register.

The next step is to generate the microoperations that execute the instruc-
tion fetched from memory. The microoperation steps to be generated in proc-
essor registers depend on the operation code part of the instruction. Each
instruction has its own microprogram routine stored in a given location of
control memory. The transformation from the instruction code bits to an
address in control memory where the routine is located is referred to as a
mapping process. A mapping procedure is a rule that transforms the instruction
code into a control memory address. Once the required routine is reached, the
microinstructions that execute the instruction may be sequenced by increment-
ing the control address register, but sometimes the sequence of microopera-
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tions will depend on values of certain status bits in processor registers.
Microprograms that employ subroutines will require an external register for
storing the return address. Return addresses cannot be stored in ROM because
the unit has no writing capability.

When the execution of the instruction is completed, control must return
to the fetch routine. This is accomplished by executing an unconditional branch
microinstruction to the first address of the fetch routine. In summary, the
address sequencing capabilities required in a control memory are:

1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit
conditions.

3. A mapping process from the bits of the instruction to an address for
control memory.

4. A facility for subroutine call and return.

Figure 7-2 shows a block diagram of a control memory and the associated
hardware needed for selecting the next microinstruction address. The microin-
struction in control memory contains a set of bits to initiate microoperations
in computer registers and other bits to specify the method by which the next
address is obtained. The diagram shows four different paths from which the
control address register (CAR) receives the address. The incrementer incre-
ments the content of the control address register by one, to select the next
microinstruction in sequence. Branching is achieved by specifying the branch
address in one of the fields of the microinstruction. Conditional branching is
obtained by using part of the microinstruction to select a specific status bit in
order to determine its condition. An external address is transferred into control
memory via a mapping logic circuit. The return address for a subroutine is
stored in a special register whose value is then used when the microprogram
wishes to return from the subroutine.

Conditional Branching
The branch logic of Fig. 7-2 provides decision-making capabilities in the control
unit. The status conditions are special bits in the system that provide parameter
information such as the carry-out of an adder, the sign bit of a number, the
mode bits of an instruction, and input or output status conditions. Information
in these bits can be tested and actions initiated based on their condition:
whether their value is 1 or 0. The status bits, together with the field in the
microinstruction that specifies a branch address, control the conditional branch
decisions generated in the branch logic.

The branch logic hardware may be implemented in a variety of ways. The
simplest way is to test the specified condition and branch to the indicated
address if the condition is met; otherwise, the address register is incremented.
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Figure 7-2  Selection of address for control memory.

This can be implemented with a multiplexer. Suppose that there are eight
status bit conditions in the system. Three bits in the microinstruction are used
to specify any one of eight status bit conditions. These three bits provide the
selection variables for the multiplexer. If the selected status bit is in the 1 state,
the output of the multiplexer is 1; otherwise, it is 0. A 1 output in the multi-
plexer generates a control signal to transfer the branch address from the
microinstruction into the control address register. A 0 output in the multiplexer
causes the address register to be incremented. In this configuration, the
microprogram follows one of two possible paths, depending on the value of
the selected status bit.
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An unconditional branch microinstruction can be implemented by load-
ing the branch address from control memory into the control address register.
This can be accomplished by fixing the value of one status bit at the input of
the multiplexer, so it is always equal to 1. A reference to this bit by the status
bit select lines from control memory causes the branch address to be loaded
into the control address register unconditionally.

Mapping of Instruction

A special type of branch exists when a microinstruction specifies a branch to
the first word in control memory where a microprogram routine for an instruc-
tionislocated. The status bits for this type of branch are the bits in the operation
code part of the instruction. For example, a computer with a simple instruction
format as shown in Fig. 7-3 has an operation code of four bits which can specify
up to 16 distinct instructions. Assume further that the control memory has 128
words, requiring an address of seven bits. For each operation code there exists
a microprogram routine in control memory that executes the instruction. One
simple mapping process that converts the 4-bit operation code to a 7-bit
address for control memory is shown in Fig. 7-3. This mapping consists of
placing a 0 in the most significant bit of the address, transferring the four
operation code bits, and clearing the two least significant bits of the control
address register. This provides for each computer instruction a microprogram
routine with a capacity of four microinstructions. If the routine needs more
than four microinstructions, it can use addresses 1000000 through 1111111. If
it uses fewer than four microinstructions, the unused memory locations would
be available for other routines.

One can extend this concept to a more general mapping rule by using a
ROM to specify the mapping function. In this configuration, the bits of the
instruction specify the address of a mapping ROM. The contents of the map-
ping ROM give the bits for the control address register. In this way the
microprogram routine that executes the instruction can be placed in any de-
sired location in control memory. The mapping concept provides flexibility for
adding instructions for control memory as the need arises.

Figure 7-3 Mapping from instruction code to microinstruction address.

Opcode
Computer instruction: 1011 address ]

Mapping bits: 0|x x x x|0 0

Microinstruction address: 010110 OI
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subroutine register

The mapping function is sometimes implemented by means of an inte-
grated circuit called programmable logic device or PLD. A PLD is similar to
ROM in concept except that it uses AND and OR gates with internal electronic
fuses. The interconnection between inputs, AND gates, OR gates, and outputs
can be programmed as in ROM. A mapping function that can be expressed in
terms of Boolean expressions can be implemented conveniently with a PLD.

Subroutines

Subroutines are programs that are used by other routines to accomplish a
particular task. A subroutine can be called from any point within the main body
of the microprogram. Frequently, many microprograms contain identical sec-
tions of code. Microinstructions can be saved by employing subroutines that
use common sections of microcode. For example, the sequence of microoper-
ations needed to generate the effective address of the operand for an instruc-
tion is common to all memory reference instructions. This sequence could be
a subroutine that is called from within many other routines to execute the
effective address computation.

Microprograms that use subroutines must have a provision for storing the
return address during a subroutine call and restoring the address during a
subroutine return. This may be accomplished by placing the incremented
output from the control address register into a subroutine register and branch-
ing to the beginning of the subroutine. The subroutine register can then
become the source for transferring the address for the return to the main
routine. The best way to structure a register file that stores addresses for
subroutines is to organize the registers in a last-in, first-out (LIFO) stack. The
use of a stack in subroutine calls and returns is explained in more detail in
Sec. 8-7.

7-3 Microprogram Example

Once the configuration of a computer and its microprogrammed control unit
is established, the designer’s task is to generate the microcode for the control
memory. This code generation is called microprogramming and is a process
similar to conventional machine language programming. To appreciate this
process, we present here a simple digital computer and show how it is mi-
croprogrammed. The computer used here is similar but not identical to the
basic computer introduced in Chap. 5.

Computer Configuration

The block diagram of the computer is shown in Fig. 7-4. It consists of two
memory units: a main memory for storing instructions and data, and a control
memory for storing the microprogram. Four registers are associated with the
processor unit and two with the control unit. The processor registers are
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Control unit
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program counter PC, address register AR, data register DR, and accumulator
register AC. The function of these registers is similar to the basic computer
introduced in Chap. 5 (see Fig. 5-3). The control unit has a control address
register CAR and a subroutine register SBR. The control memory and its
registers are organized as a microprogrammed control unit, as shown in
Fig. 7-2.

The transfer of information among the registers in the processor is done
through multiplexers rather than a commeon bus. DR can receive information
from AC, PC, or memory. AR can receive information from PC or DR. PC can
remiwinﬁmmaﬁonordy&omﬂ.ﬂmarﬂhmeﬁc,hgic.mdsﬁitmﬂtpeb
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format

forms microoperations with data from AC and DR and places the result in AC.
Note that memory receives its address from AR. Input data written to memory
come from DR, and data read from memory can go only to DR.

The computer instruction format is depicted in Fig. 7-5(a). It consists of
three fields: a 1-bit field for indirect addressing symbolized by I, a 4-bit oper-
ation code (opcode), and an 11-bit address field. Figure 7-5(b) lists four of the
16 possible memory-reference instructions. The ADD instruction adds the
content of the operand found in the effective address to the content of AC. The
BRANCH instruction causes a branch to the effective address if the operand
in AC is negative. The program proceeds with the next consecutive instruction
if AC is not negative. The AC is negative if its sign bit (the bit in the leftmost
position of the register) is a 1. The STORE instruction transfers the content of
AC into the memory word specified by the effective address. The EXCHANGE
instruction swaps the data between AC and the memory word specified by the
effective address.

It will be shown subsequently that each computer instruction must be
microprogrammed. In order not to complicate the microprogramming exam-
ple, only four instructions are considered here. It should be realized that 12
other instructions can be included and each instruction must be micropro-
grammed by the procedure outlined below.

Microinstruction Format

The microinstruction format for the control memory is shown in Fig. 7-6. The
20 bits of the microiristruction are divided into four functional parts. The three
fields F1, F2, and F3 specify microoperations for the computer. The CD field

Figure 7-5 Computer instructions.
15 14 11 10 0
| I I Opcode Address J

(@) Instruction format

Symbol Opcode Description
ADD 0000 AC « AC + M [EA)]
BRANCH 0001 If (AC < 0) then (PC « EA)
STORE 0010 M [EA} < AC
EXCHANGE 0011 AC « M[EA}, M[EA] « AC

EA is the effective address

(b) Four computer instructions
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3 3 3 2 2 7
|FIIF21F3|CDIBR]7AD ]

F1, F2, F3: Microoperation fields

CD: Condition for branching
BR: Branch field
AD: Address field

Figure 7-6 Microinstruction code format (20 bits).

selects status bit conditions. The BR field specifies the type of branch to be
used. The AD field contains a branch address. The address field is seven bits
wide, since the control memory has 128 = 27 words.

The microoperations are subdivided into three fields of three bits each.
The three bits in each field are encoded to specify seven distinct microopera-
tions as listed in Table 7-1. This gives a total of 21 microoperations. No more
than three microoperations can be chosen for a microinstruction, one from each
field. If fewer than three microoperations are used, one or more of the fields
will use the binary code 000 for no operation. As an illustration, a microinstruc-
tion can specify two simultaneous microoperations from F2 and F3 and none
from F1.

DR<M[AR]  with F2 = 100
and PC—PC+1 with F3 =101

The nine bits of the microoperation fields will then be 000 100 101. It is
important to realize that two or more conflicting microoperations cannot be
specified simultaneously. For example, a microoperation field 010 001 000 has
no meaning because it specifies the operations to clear AC to 0 and subtract DR
from AC at the same time.

Each microoperation in Table 7-1 is defined with a register transfer state-
ment and is assigned a symbol for use in a symbolic microprogram. All
transfer-type microoperations symbols use five letters. The first two letters
designate the source register, the third letter is always a T, and the last two
letters designate the destination register. For example, the microoperation that
specifies the transfer AC <—~DR (F1 = 100) has the symbol DRTAC, which
stands for a transfer from DR to AC.

The CD (condition) field consists of two bits which are encoded to specify
four status bit conditions as listed in Table 7-1. The first condition is always a
1, so that a reference to CD = 00 (or the symbol U) will always find the
condition to be true. When this condition is used in conjunction with the BR
(branch) field, it provides an unconditional branch operation. The indirect bit
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TABLE 7-1 Symbols and Binary Code for Microinstruction Fields

F1 Microoperation Symbol
000  None NOP
001 AC«AC+ DR ADD
010 AC<«0 CLRAC
011 AC<AC+1 INCAC
100 AC<DR DRTAC
101 AR<DR(0-10) DRTAR
110 AR<PC PCTAR
111  M[AR]<DR WRITE

F2 Microoperation Symbol

000  None NOP
001 AC«<AC-DR SUB
010 AC<ACVDR OR

011 AC<ACADR AND
100 DR <MI[AR] READ
101 DR<«AC ACTDR
110 DR<DR +1 INCDR
111 DR(0-10) «<PC PCTDR

F3 Microoperation Symbol

000 None NOP
001 AC<—AC®DR XOR
010 AC<AC COM
011  ACe<shl AC SHL
100 AC<«shr AC SHR

1 101 PC«<PC+1 INCPC
110 PC<AR ARTPC

111 Reserved

CD Condition Symbol Comments

00 Always = 1 8] Unconditional branch

01 DR(15) I Indirect address bit
10 AC(15) N Sign bit of AC

11 AC=0 z Zero value in AC
Symbol Function

JMP CAR «AD if condition = 1
CAR «CAR + 1 if condition = 0

CALL CAR «<AD, SBR < CAR + 1 if condition = 1
CAR «CAR + 1 if condition = 0

RET CAR «<SBR (Return from subroutine)

MAP CAR(2-5) < DR(11-14), CAR(0,1,6) <0

224
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I is available from bit 15 of DR after an instruction is read from memory. The
sign bit of AC provides the next status bit. The zero value, symbolized by Z,
is a binary variable whose value is equal to 1 if all the bits in AC are equal to
zero. We will use the symbols U, I, S, and Z for the four status bits when we
write microprograms in symbolic form.

The BR (branch) field consists of two bits. It is used, in conjunction with
the address field AD, to choose the address of the next microinstruction. As
shown in Table 7-1, when BR = 00, the control performs a jump (JMP) opera-
tion (which is similar to a branch), and when BR = 01, it performs a call to
subroutine (CALL) operation. The two operations are identical except that a
call microinstruction stores the return address in the subroutine register SBR.
The jump and call operations depend on the value of the CD field. If the status
bit condition specified in the CD field is equal to 1, the next address in the AD
field is transferred to the control address register CAR. Otherwise, CAR is
incremented by 1.

The return from subroutine is accomplished with a BR field equal to 10.
This causes the transfer of the return address from SBR to CAR. The mapping
from the operation code bits of the instruction to an address for CAR is
accomplished when the BR field is equal to 11. This mapping is as depicted in
Fig. 7-3. The bits of the operation code are in DR(11-14) after an instruction
is read from memory. Note that the last two conditions in the BR field are
independent of the values in the CD and AD fields.

Symbolic Microinstructions

The symbols defined in Table 7-1 can be used to specify microinstructions in
symbolic form. A symbolic microprogram can be translated into its binary
equivalent by means of an assembler. A microprogram assembler is similar in
concept to a conventional computer assembler as defined in Sec. 6-3. The
simplest and most straightforward way to formulate an assembly language for
a microprogram is to define symbols for each field of the microinstruction and
to give users the capability for defining their own symbolic addresses.

Each line of the assembly language microprogram defines a symbolic
microinstruction. Each symbolic microinstruction is divided into five fields:
label, microoperations, CD, BR, and AD. The fields specify the following
information.

1. The label field may be empty or it may specify a symbolic address. A
label is terminated with a colon (:).

2. The microoperations field consists of one, two, or three symbols, sep-
arated by commas, from those defined in Table 7-1. There may be no
more than one symbol from each F field. The NOP symbol is used when
the microinstruction has no microoperations. This will be translated by
the assembler to nine zeros.
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3. The CD field has one of the letters U, I, S, or Z.
4. The BR field contains one of the four symbols defined in Table 7-1.

5. The AD field specifies a value for the address field of the microinstruc-
tion in one of three possible ways:
a. With a symbolic address, which must also appear as a label.
b. With the symbol NEXT to designate the next address in sequence.
c. When the BR field contains a RET or MAP symbol, the AD field is
left empty and is converted to seven zeros by the assembler.

We will use also the pseudoinstruction ORG to define the origin, or first
address, of a microprogram routine. Thus the symbol ORG 64 informs the
assembler to place the next microinstruction in control memory at decimal
address 64, which is equivalent to the binary address 1000000.

The Fetch Routine

The control memory has 128 words, and each word contains 20 bits. To
microprogram the control memory, it is necessary to determine the bit values
of each of the 128 words. The first 64 words (addresses 0 to 63) are to be
occupied by the routines for the 16 instructions. The last 64 words may be used
for any other purpose. A convenient starting location for the fetch routine is
address 64. The microinstructions needed for the fetch routine are

AR «<PC
DR «<MI[AR], PC«PC +1
AR «DR(0-10), CAR(2-5)«DR(11-14), CAR(0,1,6)«<0

The address of the instruction is transferred from PC to AR and the instruction
is then read from memory into DR. Since no instruction register is available,
the instruction code remains in DR. The address part is transferred to AR and
then control is transferred to one of 16 routines by mapping the operation code
part of the instruction from DR into CAR.

The fetch routine needs three microinstructions, which are placed in
control memory at addresses 64, 65, and 66. Using the assembly language
conventions defined previously, we can write the symbolic microprogram for
the fetch routine as follows:

ORG B4

FETCH: PCTAR U JMp NEXT
READ, INCPC U JMp NEXT
DRTAR U MAP

The translation of the symbolic microprogram to binary produces the
following binary microprogram. The bit values are obtained from Table 7-1.
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Binary
Address  F1 F2 F3 CD BR AD

1000000 110 000 000 00 00 1000001
1000001 000 100 101 00 00 1000010
1000010 101 000 000 00 11 0000000

The three microinstructions that constitute the fetch routine have been
listed in three different representations. The register transfer representation
shows the internal register transfer operations that each microinstruction im-
plements. The symbolic representation is useful for writing microprograms in
an assembly language format. The binary representation is the actual internal
content that must be stored in control memory. It is customary to write
microprograms in symbolic form and then use an assembler program to obtain
a translation to binary.

Symbolic Microprogram

The execution of the third (MAP) microinstruction in the fetch routine results
in a branch to address 0xox00, where xxxx are the four bits of the operation
code. For example, if the instruction is an ADD instruction whose operation
code is 0000, the MAP microinstruction will transfer to CAR the address
0000000, which is the start address for the ADD routine in control memory. The
first address for the BRANCH and STORE routines are 0 0001 00 (decimal 4)
and 0 0010 00 (decimal 8), respectively. The first address for the other 13
routines are at address values 12, 16, 20, ..., 60. This gives four words in
control memory for each routine.

In each routine we must provide microinstructions for evaluating the
effective address and for executing the instruction. The indirect address mode
is associated with all memory-reference instructions. A saving in the number
of control memory words may be achieved if the microinstructions for the
indirect address are stored as a subroutine. This subroutine, symbolized by
INDRCT, is located right after the fetch routine, as shown in Table 7-2. The table
also shows the symbolic microprogram for the fetch routine and the microin-
struction routines that execute four computer instructions.

To see how the transfer and return from the indirect subroutine occurs,
assume that the MAP microinstruction at the end of the fetch routine caused
a branch to address 0, where the ADD routine is stored. The first microinstruc-
tion in the ADD routine calls subroutine INDRCT, conditioned on status bit
I.IfI = 1, a branch to INDRCT occurs and the return address (address 1 in this
case) is stored in the subroutine register SBR. The INDRCT subroutine has two
microinstructions:

INDRCT: READ U JMP NEXT
DRTAR U RET
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TABLE 7-2 Symbolic Microprogram (Partial)

Label Microoperations CD BR AD

ORG 0

ADD: NOP I CALL INDRCT
READ U JMP NEXT
ADD 1) JMP FETCH
ORG 4

BRANCH: NOP N JMP OVER
NOP §) JMP FETCH

OVER: NOP I CALL  INDRCT
ARTPC 8) JMP FETCH
ORG 8

STORE: NOP I CALL  INDRCT
ACTDR 8) IMP NEXT
WRITE §) IMP FETCH
ORG 12

EXCHANGE: NOP 1 CALL  INDRCT
READ §) JMP NEXT
ACTDR, DRTAC §) IMP NEXT
WRITE §) JMP FETCH
ORG 64

FETCH: PCTAR §) JMP NEXT
READ, INCPC §) IMP NEXT
DRTAR §) MAP

INDRCT: READ §) JMP NEXT
DRTAR §) RET

Remember that an indirect address considers the address part of the
instruction as the address where the effective address is stored rather than the
address of the operand. Therefore, the memory has to be accessed to get the
effective address, which is then transferred to AR. The return from subroutine
(RET) transfers the address from SBR to CAR, thus returning to the second
microinstruction of the ADD routine.

The execution of the ADD instruction is carried out by the microinstruc-
tions at addresses 1 and 2. The first microinstruction reads the operand from
memory into DR. The second microinstruction performs an add microopera-
tion with the content of DR and AC and then jumps back to the beginning of
the fetch routine.

The BRANCH instruction should cause a branch to the effective address
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if AC < 0. The AC will be less than zero if its sign is negative, which is detected
from status bit S being a 1. The BRANCH routine in Table 7-2 starts by checking
the value of S. If S is equal to 0, no branch occurs and the next microinstruction
causes a jump back to the fetch routine without altering the content of PC. If
S is equal to 1, the first JMP microinstruction transfers control to location
OVER. The microinstruction at this location calls the INDRCT subroutine if
I = 1. The effective address is then transferred from AR to PC and the mi-
croprogram jumps back to the fetch routine.

The STORE routine again uses the INDRCT subroutine if I = 1. The
content of AC is transferred into DR. A memory write operation is initiated to
store the content of DR in a location specified by the effective address in AR.

The EXCHANGE routine reads the operand from the effective address
and places it in DR. The contents of DR and AC are interchanged in the third
microinstruction. This interchange is possible when the registers are of the
edge-triggered type (see Fig. 1-23). The original content of AC that is now in
DR is stored back in memory.

Note that Table 7-2 contains a partial list of the microprogram. Only four
out of 16 possible computer instructions have been microprogrammed. Also,
control memory words at locations 69 to 127 have not been used. Instructions
such as multiply, divide, and others that require a long sequence of micro-
operations will need more than four microinstructions for their execution.
Control memory words 69 to 127 can be used for this purpose.

Binary Microprogram

The symbolic microprogram is a convenient form for writing microprograms
in a way that people can read and understand. But this is not the way that the
microprogram is stored in memory. The symbolic microprogram must be
translated to binary either by means of an assembler program or by the user
if the microprogram is simple enough as in this example.

The equivalent binary form of the microprogram is listed in Table 7-3. The
addresses for control memory are given in both decimal and binary. The binary
content of each microinstruction is derived from the symbols and their equiv-
alent binary values as defined in Table 7-1.

Note thataddress 3 has no equivalent in the symbolic microprogram since
the ADD routine has only three microinstructions at addresses 0, 1, and 2. The
next routine starts at address 4. Even though address 3 is not used, some binary
value must be specified for each word in control memory. We could have
specified all 0’s in the word since this location will never be used. However,
if some unforeseen error occurs, or if a noise signal sets CAR to the value of
3, it will be wise to jump to address 64, which is the beginning of the fetch
routine.

The binary microprogram listed in Table 7-3 specifies the word content
of the control memory. When a ROM is used for the control memory, the
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TABLE 7-3 Binary Microprogram for Control Memory (Partial)

Address Binary Microinstruction

Micro
Routine Decimal Binary F1 F2 F3 CD BR AD

ADD 0 0000000 000 000 000 01 01 1000011
1 0000001 000 100 000 00 00 0000010

2 0000010 001 000 000 00 00 1000000

3 0000011 000 000 000 00O 00 1000000

BRANCH 4 0000100 000 000 000 10 00 (0000110
5 0000101 000 000 000 00 00 1000000

6 0000110 000 000 00O 01 01 1000011

7 0000111 000 000 110 00 00 1000000

STORE 8 0001000 000 000 000 O1 01 1000011
9 0001001 000 101 000 00 00 0001010

10 0001010 111 000 000 00 00 1000000

11 0001011 000 000 000 00 0O 1000000

EXCHANGE 12 0001100 000 000 000 01 01 1000011
13 0001101 001 000 000 00 00 0001110

14 0001110 100 101 000 00 00 0001111

15 0001111 111 000 000 00 00 1000000

FETCH 64 1000000 110 000 000 00 00 1000001
65 1000001 000 100 101 00 00 1000010

66 1000010 101 000 000 00 11 0000000

INDRCT 67 1000011 000 100 000 00 00 1000100
68 1000100 101 000 000 00 10 0000000

microprogram binary list provides the truth table for fabricating the unit. This
fabrication is a hardware process and consists of creating a mask for the ROM
so as to produce the 1’s and 0's for each word. The bits of ROM are fixed once
the internal links are fused during the hardware production. The ROM is made
of IC packages that can be removed if necessary and replaced by other pack-
ages. To modify the instruction set of the computer, it is necessary to generate
a new microprogram and mask a new ROM. The old one can be removed and
the new one inserted in its place.

If a writable control memory is employed, the ROM is replaced by a RAM.
The advantage of employing a RAM for the control memory is that the mi-
croprogram can be altered simply by writing a new pattern of 1’s and 0's
without resorting to hardware procedures. A writable control memory pos-
sesses the flexibility of choosing the instruction set of a computer dynamically
by changing the microprogram under processor control. However, most mi-
croprogrammed systems use a ROM for the control memory because it is
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cheaper and faster than a RAM and also to prevent the occasional user from
changing the architecture of the system.

7-4 Design of Control Unit

The bits of the microinstruction are usually divided into fields, with each field
defining a distinct, separate function. The various fields encountered in in-
struction formats provide control bits to initiate microoperations in the system,
special bits to specify the way that the next address is to be evaluated, and an
address field for branching. The number of control bits that initiate microop-
erations can be reduced by grouping mutually exclusive variables into fields
and encoding the k bits in each field to provide 2* microoperations. Each field
requires a decoder to produce the corresponding control signals. This method
reduces the size of the microinstruction bits but requires additional hardware
external to the control memory. It also increases the delay time of the control
signals because they must propagate through the decoding circuits.

The encoding of control bits was demonstrated in the programming
example of the preceding section. The nine bits of the microoperation field are
divided into three subfields of three bits each. The control memory output
of each subfield must be decoded to provide the distinct microoperations. The
outputs of the decoders are connected to the appropriate inputs in the proces-
SOT unit.

Figure 7-7 shows the three decoders and some of the connections that
must be made from their outputs. Each of the three fields of the microinstruc-
tion presently available in the output of control memory are decoded with a
3 x 8 decoder to provide eight outputs. Each of these outputs must be con-
nected to the proper circuit to initiate the corresponding microoperation as
specified in Table 7-1. For example, when F1 = 101 (binary 5), the next clock
pulse transition transfers the content of DR(0-10) to AR (symbolized by DRTAR
in Table 7-1). Similarly, when F1 = 110 (binary 6) there is a transfer from PC
to AR (symbolized by PCTAR). As shown in Fig. 7-7, outputs 5 and 6 of decoder
F1 are connected to the load input of AR so that when either one of these
outputs is active, information from the multiplexers is transferred to AR. The
multiplexers select the information from DR when output 5 is active and from
PC when output 5 is inactive. The transfer into AR occurs with a clock pulse
transition only when output 5 or output 6 of the decoder are active. The other
outputs of the decoders that initiate transfers between registers must be con-
nected in a similar fashion.

The arithmetic logic shift unit can be designed as in Figs. 5-19 and 5-20.
Instead of using gates to generate the control signals marked by the symbols
AND, ADD, and DR in Fig. 5-19, these inputs will now come from the outputs
of the decoders associated with the symbols AND, ADD, and DRTAC, respec-
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Figure 7-7 Decoding of microoperation fields.

tively, as shown in Fig. 7-7. The other outputs of the decoders that are asso-
ciated with an AC operation must also be connected to the arithmetic logic shift
unit in a similar fashion.

Microprogram Sequencer

The basic components of a microprogrammed control unit are the control
memory and the circuits that select the next address. The address selection part
is called a microprogram sequencer. A microprogram sequencer can be con-
structed with digital functions to suit a particular application. However, just
as there are large ROM units available in integrated circuit packages, so are
general-purpose sequencers suited for the construction of microprogram con-
trol units. To guarantee a wide range of acceptability, an integrated circuit
sequencer must provide an internal organization that can be adapted to a wide
range of applications.
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The purpose of a microprogram sequencer is to present an address to the
control memory so that a microinstruction may be read and executed. The
next-address logic of the sequencer determines the specific address source to
be loaded into the control address register. The choice of the address source
is guided by the next-address information bits that the sequencer receives from
the present microinstruction. Commercial sequencers include within the unit
an internal register stack used for temporary storage of addresses during
microprogram looping and subroutine calls. Some sequencers provide an
output register which can function as the address register for the control
memory.

To illustrate the internal structure of a typical microprogram sequencer
we will show a particular unit that is suitable for use in the microprogram
computer example developed in the preceding section. The block diagram of
the microprogram sequencer is shown in Fig. 7-8. The control memory is
included in the diagram to show the interaction between the sequencer and the
memory attached to it. There are two multiplexers in the circuit. The first
multiplexer selects an address from one of four sources and routes it into a
control address register CAR. The second multiplexer tests the value of a
selected status bit and the result of the test is applied to an input logic circuit.
The output from CAR provides the address for the control memory. The
content of CAR is incremented and applied to one of the multiplexer inputs and
to the subroutine register SBR. The other three inputs to multiplexer number
1 come from the address field of the present microinstruction, from the output
of SBR, and from an external source that maps the instruction. Although the
diagram shows a single subroutine register, a typical sequencer will have a
register stack about four to eight levels deep. In this way, a number of subrou-
tines can be active at the same time. A push and pop operation, in conjunction
with a stack pointer, stores and retrieves the return address during the call and
return microinstructions.

The CD (condition) field of the microinstruction selectgs one of the status
bits in the second multiplexer. If the bit selected is equal to 1, the T (test)
variable is equal to 1; otherwise, it is equal to 0. The T value together with the
two bits from the BR (branch) field go to an input logic circuit. The input logic
ina particular sequencer will determine the type of operations that are available
in the unit. Typical sequencer operations are: increment, branch or jump, call
and return from subroutine, load an external address, push or pop the stack,
and other address sequencing operations. With three inputs, the sequencer
can provide up to eight address sequencing operations. Some commercial
sequencers have three or four inputs in addition to the T inputand thus provide
a wider range of operations.

The input logic circuit in Fig. 7-8 has three inputs, I, I}, and T, and three
outputs, Sy, Sy, and L. Variables S, and S, select one of the source addresses
for CAR. Variable L enables the load input in SBR. The binary values of the two
selection variables determine the path in the multiplexer. For example, with
S, S0 = 10, multiplexer input number 2 is selected and establishes a transfer
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Figure 7-8 Microprogram sequencer for a control memory.

path from SBR to CAR. Note that each of the four inputs as well as the output
of MUX 1 contains a 7-bit address.

The truth table for the input logic circuit is shown in Table 7-4. Inputs I,
and I, are identical to the bit values in the BR field. The function listed in each
entry was defined in Table 7-1. The bit values for S, and 5, are determined from
the stated function and the path in the multiplexer that establishes the required
transfer. The subroutine register is loaded with the inc ted value of CAR
during a call microinstruction (BR = 01) provided that the status bit condition
is satisfied (T = 1). The truth table can be used to obtain the simplified Boolean
functions for the input logic circuit:

Si=1
So=hlp+ KT
L = LT



SECTION 74 Design of Control Uit~ 235

TABLE 7-4 Inpur Logic Truth Table for Microprogram Sequencer

BR Input MUX 1 Load SBR
Field LI, T 5, 5 L
00 000 0o 0
00 001 01 0
01 010 o0 0
Ll | 011 01 1
10 1 0 x 10 o
11 1 1. X 11 0

The circuit can be constructed with three AND gates, an OR gate, and an

inverter.
Note that the incrementer circuit in the sequencer of Fig. 7-8 is not a

counter constructed with flip-flops but rather a combinational circuit con-
structed with gates. A combinational circuit incrementer can be designed by
cascading a series of half-adder circuits (see Fig. 4-8). The output carry from
one stage must be applied to the input of the next stage. One input in the first
least significant stage must be equal to 1 to provide the increment-by-one

operation.
I ]
= {  PROBLEMS =
71 What is the difference L a microg and a microprogram? Is it
possible to design a microf ithout a microprogram? Are all mi-
Cr 12 d F ll-iD i F 87
72 Explnn the difference b ired control and

7-3.

7-4.

7-5.

control. 1s it possible to have a hardwired control associated with a control
memory?

Define the following: (a) microoperation; (b) microinstruction; (c) micro-
pmgmm; (d) microcode.
The d control ization shown in Fig. 7-1 has the fol-

lowing propugahon delay times. Wthenmu&wmtldd:us 10ns
to transfer the address into the control address register, 40 ns to access the
control memory ROM, 10 ns to fer the microi tion into the

data register, and 40 ns to perform the required microoperations specified
by the control word. What is the maximum clock frequency that the control
can use? What would the clock frequency be if the | data register is
not used?

The system shown in Fig. 7-2 uses a control memory of 1024 words of 32 bits
each. The microinstruction has three fields as shown in the diagram. The
microoperations field has 16 bits.

a. How many bits are there in the branch address field and the select field?
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7-6.

7-7.

7-8.

7-9.

7-10.

7-11.

7-12.

7-13.

7-14.

b. If there are 16 status bits in the system, how many bits of the branch logic
are used to select a status bit?
¢. How many bits are left to select an input for the multiplexers?

The control memory in Fig. 7-2 has 4096 words of 24 bits each.

a. How many bits are there in the control address register?

b. How many bits are there in each of the four inputs shown going into the
multiplexers?

¢. What are the number of inputs in each multiplexer and how many
multiplexers are needed?

Using the mapping procedure described in Fig. 7-3, give the first microin-
struction address for the following operation code: (a) 0010; (b) 1011; (c) 1111.

Formulate a mapping procedure that provides eight consecutive microin-
structions for each routine. The operation code has six bits and the control
memory has 2048 words.

Explain how the mapping from an instruction code to a microinstruction
address can be done by means of a read-only memory. What s the advantage
of this method compared to the one in Fig. 7-3?

Why do we need the two multiplexers in the computer hardware configura-
tion shown in Fig. 7-4? Is there another way that information from multiple
sources can be transferred to a common destination?

Using Table 7-1, give the 9-bit microoperation field for the following micro-
operations:

a. AC—AC+1, DR«DR +1

b. PC«<PC +1, DR<«MI[AR]

¢. DR<-AC, AC<DR

Using Table 7-1, convert the following symbolic microoperations to register
transfer statements and to binary.

a. READ, INCPC

b. ACTDR, DRTAC

¢. ARTPC, DRTAC, WRITE

Suppose that we change the ADD routine listed in Table 7-2 to the following
two microinstructions.

ADD: READ I CALL INDRE
ADD U JMP FETCH

What should be subroutine INDR2?

The following is a symbolic microprogram for an instruction in the computer
defined in Sec. 7-3.

ORG 40

NOP S JMp FETCH
NOP 2 JMP FETCH
NOP I CALL INDRCT
ARTPC 0) JMp FETCH

a. Specify the operation performed when the instruction is executed.
b. Convert the four microinstructions into their equivalent binary form.
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7-15.  The computer of Sec. 7-3 has the following binary microprogram:
Address Binary Microprogram
60 01 000O0O0O1O0O0O0OO0OO0OT1UO0O0OO0OTO0TI11
61 11110000001 011000000O0
62 001001000101 00111111
63 101110000111 10111100
a. Translate it to a symbolic microprogram as in Table 7-2. (FETCH is in
address 64 and INDRCT in address 67.)
b. Listall the things that will be wrong when this microprogram is executed
in the computer.

7-16.  Add the following instructions to the computer of Sec 7-3 (EA is the effective
address). Write the symbolic microprogram for each routine as in Table 7-2.
(Note that AC must not change in value unless the instruction specifies a
change in AC.)

Symbol Opcode Symbolic Function Description

AND 0100 AC<AC A M[EA] AND

SUB 0101 AC «AC - M[EA] Subtract

ADM 0110 M[EA]<—M[EA] + AC Add to memory

BTCL 0111  AC<AC N\ M[EA] Bit clear

BZ 1000 If (AC = 0) then (PC < EA) Branch if AC zero

SEQ 1001 If (AC = M[EA)) then (PC <« PC + 1)  Skip if equal

BPNZ 1010 If (AC > 0) then (PC «<— EA) Branch if positive
and nonzero

7-17.  Write a symbolic microprogram routine for the ISZ (increment and skip if
zero) instruction defined in Chap. 5 (Table 5-4). Use the microinstruction
format of Sec. 7-3. Note that DR = 0 status condition is not available in the
CD field of the computer defined in Sec. 7-3. However, you can exchange
AC and DR and check if AC = 0 with the Z bit.

7-18.  Write the symbolic microprogram routines for the BSA (branch and save
address) instructions defined in Chap. 5 (Table 5-4). Use the microinstruction
format of Sec. 7-3. Minimize the number of microinstructions.

7-19.  Show how outputs 5 and 6 of decoder F3 in Fig. 7-7 are to be connected to
the program counter PC.

7-20.  Show how a 9-bit microoperation field in a microinstruction can be divided

into subfields to specify 46 microoperations. How many microoperations can
be specified in one microinstruction?
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7-21. A computer has 16 registers, an ALU (arithmetic logic unit) with 32 opera-
tions, and a shifter with eight operations, all connected to a common bus
system.,

a. Formulate a control word for a microoperation.

b. Specify the number of bits in each field of the control word and give a
general encoding scheme.

¢. Show the bits of the control word that specify the microoperation
R4+R5 + R6.

7-22.  Assume that the input logic of the microprogram sequencer of Fig. 7-8 has
four inputs, I, I, I, T (test), and three outputs, 5,, 5o and L. The operations
that are performed in the unit are listed in the following table. Design the
input logic circuit using a minimum number of gates.

L L &L Operation

0 0 0 Increment CARMT =1, jumpto ADfT=0
x 0 1 JmpmADmmndmonﬂIy

1 0 0 CAR di 11}

0 1 0 JumptoADiT=1, increment CAR if T =0
1 1 0  Callsubroutine if T = 1, increment CARIf T = 0
0 1 1 Return from subroutine unconditionally

1 1 1 Map external address unconditionally

7-23. Design a 7-bit combinational circuit inc ter for the microprog se-

quencer of Fig. 7-8 (see Fig. 4-8). Modify the incrementer by induding a
control input D, When D = 0, the circuit increments by one, but when
D = 1, the circuit increments by two.

7-24.  Insert an exclusive-OR gate between MUX 2 and the input logic of Fig. 7-8.
One input to the gate comes from the test output of the multiplexer. The
other input to the gate comes from a bit labeled P (for polarity) in the
microinstruction from | Theoutpmumupugouwuu
input T of the input logic. Wh-!dnes&w ity lish?
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