Programming
the Basic Computer

IN THIS CHAPTER

6-1 Intoduction

6-2 Machine Language

6-3 Assembly Language

64 The Assembler

6-5 Program Loops

66 Programming Arithmetic and Logic Operations
6-7 Subroutines

6-8 Input-Output Programming

6-1 Introduction

A total computer system includes both hardware and software. Hardware con-
sists of the physical components and all associated equipment. Software refers
to the programs that are written for the computer. It is possible to be familiar
with various aspects of computer software without being concerned with
details of how the computer hardware operates. It is also possible to design
parts of the hardware without a knowledge of its software capabilities. How-
ever, those concerned with computer architecture should have a knowledge of
both hardware and software because the two branches influence each other.

Writing a program for a computer consists of specifying, directly or
indirectly, a sequence of machine instructions. Machine instructions inside the
computer form a binary pattern which is difficult, if not impossible, for people
to work with and understand. It is preferable to write programs with the more
familiar symbols of the alphanumeric character set. As a consequence, there
is a need for translating user-oriented symbolic programs into binary programs
recognized by the hardware.

A program written by a user may be either dependent or independent of

173

174 cHAPTER sIX Pre ing the Basic Cc

instruction set

P

the physical computer that runs his program. For example, a program written
in standard Fortran is machine independent because most computers provide
a translator program that converts the standard Fortran program to the binary
code of the computer available in the particular installation. But the translator
program itself is machine dependent because it must translate the Fortran
program to the binary code recognized by the hardware of the particular
computer used.

This chapter introduces some elementary programming concepts and
shows their relation to the hardware representation of instructions. The first
part presents the basic operation and structure of a program that translates a
user’s symbolic program into an equivalent binary program. The discussion
emphasizes the important concepts of the translator rather than the details of
actually producing the program itself. The usefulness of various machine
instructions is then demonstrated by means of several basic programming
examples.

The instruction set of the basic computer, whose hardware organization
was explored in Chap. 5, is used in this chapter to illustrate many of the
techniques commonly used to program a computer. In this way it is possible
to explore the relationship between a program and the hardware operations
that execute the instructions.

The 25 instructions of the basic computer are repeated in Table 6-1 to
provide an easy reference for the programming examples that follow. Each
instruction is assigned a three-letter symbol to facilitate writing symbolic pro-
grams. The first seven instructions are memory-reference instructions and the
other 18 are register-reference and input-output instructions. A memory-
reference instruction has three parts: a mode bit, an operation code of three
bits, and a 12-bit address. The first hexadecimal digit of a memory-reference
instruction includes the mode bit and the operation code. The other three digits
specify the address. In an indirect address instruction the mode bit is 1 and the
first hexadecimal digit ranges in value from 8 to E. In a direct mode, the range
is from 0 to 6. The other 18 instructions have a 16-bit operation code. The code
for each instruction is listed as a four-digit hexadecimal number. The first digit
of a register-reference instruction is always 7. The first digit of an input-output
instruction is always F. The symbol m used in the description column denotes
the effective address. The letter M refers to the memory word (operand) found
at the effective address.

6-2 Machine Language

A program is a list of instructions or statements for directing the computer to
perform a required data-processing task. There are various types of program-
ming languages that one may write for a computer, but the computer can execute
programs only when they are represented internally in binary form. Programs

SECTION 6.2 Machine Language 175

TABLE 6-1 Computer Instructions

Hexadecimal
Symbol code Description
AND Oor8 AND M to AC
ADD lor9 Add M to AC, carry to E
LDA 20rA Load AC from M
STA 3JorB Store ACin M
BUN 4o0rC Branch unconditionally to m
BSA 5orD Save return address in m and branch to m + 1
1SZ 6orE Increment M and skip if zero
CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right E and AC
CIL 7040 Circulate left E and AC
INC 7020 Increment AC,
SPA 7010 Skip if AC is positive
SNA 7008 Skip if AC is negative
SZA 7004 Skip if AC is zero
SZE 7002 Skip if E is zero
HLT 7001 Halt computer
INP F800 Input information and clear flag
ouT F400 Output information and clear flag
SKI F200 Skip if input flag is on
SKO F100 Skip if output flag is on
ION F080, Turn interrupt on
IOF F04Q Turn interrupt off

written in any other language must be translated to the binary representation
of instructions before they can be executed by the computer. Programs written
for a computer may be in one of the following categories:

1. Binary code. This is a sequence of instructions and operands in binary
that list the exact representation of instructions as they appear in com-
puter memory.

2. Octal or hexadecimal code. This is an equivalent translation of the binary
code to octal or hexadecimal representation.

Symbolic code. The user employs symbols (letters, numerals, or special
characters) for the operation part, the address part, and other parts of
the instruction code. Each symbolic instruction can be translated into
one binary coded instruction. This translation is done by a special
program called an assembler. Because an assembler translates the sym-

bt

176 CHAPTER SIX Programming the Basic Computer

assembly language

machine language

bols, this type of symbolic program is referred to as an assembly language
program.

4. High-level programming languages. These are special languages developed
to reflect the procedures used in the solution of a problem rather than
be concerned with the computer hardware behavior. An example of a
high-level programming language is Fortran. It employs problem-
oriented symbols and formats. The program is written in a sequence of
statements in a form that people prefer to think in when solving a
problem. However, each statement must be translated into a sequence
of binary instructions before the program can be executed in a com-
puter. The program that translates a high-level language program to
binary is called a compiler.

Strictly speaking, a machine language program is a binary program of
category 1. Because of the simple equivalency between binary and octal or
hexadecimal representation, it is customary to refer to category 2 as machine
language. Because of the one-to-one relationship between a symbolic instruc-
tion and its binary equivalent, an assembly language is considered to be a
machine-level language.

We now use the basic computer to illustrate the relation between binary
and assembly languages. Consider the binary program listed in Table 6-2. The
first column gives the memory location (in binary) of each instruction or
operand. The second column lists the binary content of these memory loca-
tions. (The location is the address of the memory word where the instruction
is stored. It is important to differentiate it from the address part of the instruc-
tion itself.) The program can be stored in the indicated portion of memory, and
then executed by the computer starting from address 0. The hardware of the
computer will execute these instructions and perform the intended task. How-
ever, a person looking at this program will have a difficult time understanding
what is to be achieved when this program is executed. Nevertheless, the
computer hardware recognizes only this type of instruction code.

TABLE 6-2 Binary Program to Add Two Numbers

Location Instruction code

0 0010 0000 0000 0100

1 0001 0000 0000 0101
10 0011 0000 0000 0110
11 0111 0000 0000 0001
100 0000 0000 0101 0011
101 1111 1111 1110 1001
110 0000 0000 0000 0000

hexadecimal code

SECTION 6.2 Machine Language 177

TABLE 6-3 Hexadecimal Program to Add Two Numbers

Location Instruction

000 2004
001 1005
002 3006
003 7001
004 0053
005 FFE9
006 0000

Writing 16 bits for each instruction is tedious because there are too many
digits. We can reduce the number of digits per instruction if we write the octal
equivalent of the binary code. This will require six digits per instruction. On
the other hand, we can reduce each instruction to four digits if we write the
equivalent hexadecimal code as shown in Table 6-3. The hexadecimal represen-

tation is convenient to use; however, one must realize that cach hexadecimal
Uit MDY VT LUNIVEINET LU 1D SYulvalent vt IuInver wnen e prugram 15

entered into the computer. The advantage of writing binary programs in
equivalent octal or hexadecimal form should be evident from this example.

The program in Table 6-4 uses the symbolic names of instructions (listed
in Table 6-1) instead of their binary or hexadecimal equivalent. The address
parts of memory-reference instructions, as well as operands, remain in their
hexadecimal value. Note that location 005 has a negative operand because the
sign bit in the leftmost position is 1. The inclusion of a column for comments
provides some means for explaining the function of each instruction. Symbolic
programs are easier to handle, and as a consequence, it is preferable to write
programs with symbols. These symbols can be converted to their binary code
equivalent to produce the binary program.

We can go one step further and replace each hexadecimal address by a

TABLE 6-4 Program with Symbolic Operation Codes

Location Instruction Comments
000 LDA 004 Load first operand into AC
001 ADD 005 Add second operand to AC
002 STA 006 Store sum in location 006
003 HLT Halt computer
004 0053 First operand
005 FFE9 Second operand (negative)

006 0000 Store sum here

178

CHAPTER SIX Programming the Basic Computer

TABLE 6-5 Assembly Language Program to Add Two Numbers

ORG 0 /Origin of program is location 0
LDA A /Load operand from location A
ADD B /Add operand from location B
STAC /Store sum in location C
HLT /Halt computer

A, DECS83 /Decimal operand

B, DEC-23 /Decimal operand

C, DECO /Sum stored in location C
END /End of symbolic program

symbolic address and each hexadecimal operand by a decimal operand. This
is convenient because one usually does not know exactly the numeric memory
location of operands while writing a program. If the operands are placed in
memory following the instructions, and if the length of the program is not
known in advance, the numerical location of operands is not known until the
end of the program is reached. In addition, decimal numbers are more familiar
than their hexadecimal equivalents.

The program in Table 6-5 is the assembly-language program for adding
two numbers. The symbol ORG followed by a number is not a machine
instruction. Its purpose is to specify an origin, that is, the memory location of
the next instruction below it. The next three lines have symbolic addresses.
Their value is specified by their being present as a label in the first column.
Decimal operands are specified following the symbol DEC. The numbers may
be positive or negative, but if negative, they must be converted to binary in the
signed-2’s complement representation. The last line has the symbol END
indicating the end of the program. The symbols ORG, DEC, and END, called
pseudoinstructions, are defined in the next section. Note that all comments are
preceded by a slash.

The equivalent Fortran program for adding two integer numbers is listed
in Table 6-6. The two values for A and B may be specified by an input statement
or by a data statement. The arithmetic operation for the two numbers is
specified by one simple statement. The translation of this Fortran program into
a binary program consists of assigning three memory locations, one each for
the augend, addend, and sum, and then deriving the sequence of binary

TABLE 6-6 Fortran Program to Add Two Numbers

INTEGER A, B, C
DATARA,83 B,-23
C=A+B

END

symbolic address

SECTION 6-3 Assembly Language 179
instructions that form the sum. Thus a compiler program translates the sym-

bols of the Fortran program into the binary values listed in the program of
Table 6-2.

6-3 Assembly Language

A programming language is defined by a set of rules. Users must conform with
all format rules of the language if they want their programs to be translated
correctly. Almost every commercial computer has its own particular assembly
language. The rules for writing assembly language programs are documented
and published in manuals which are usually available from the computer
manufacturer.

The basic unit of an assembly language program is a line of code. The
specific language is defined by a set of rules that specify the symbols that can
be used and how they may be combined to form a line of code. We will now
formulate the rules of an assembly language for writing symbolic programs for
the basic computer.

Rules of the Language
Each line of an assembly language program is arranged in three columns called
fields. The fields specify the following information.

1. The label field may be empty or it may specify a symbolic address.

2. The instruction field specifies a machine instruction or a pseudoin-
struction. .

3. The comment field may be empty or it may include a comment.

A symbolic address consists of one, two, or three, but not more than three
alphanumeric characters. The first character must be a letter; the next two may
be letters or numerals. The symbol can be chosen arbitrarily by the pro-
grammer. A symbolic address in the label field is terminated by a comma so
that it will be recognized as a label by the assembler.

The instruction field in an assembly language program may specify one
of the following items:

1. A memory-reference instruction (MRI)
2. A register-reference or input—output instruction (non-MRI)
3. A pseudoinstruction with or without an operand

A memory-reference instruction occupies two or three symbols separated
by spaces. The first must be a three-letter symbol defining an MRI operation

180 CHAPTER SIX Programming the Basic Computer

pseudoinstruction

code from Table 6-1. The second is a symbolic address. The third symbol, which
may or may not be present, is the letter . If I is missing, the line denotes a direct
address instruction. The presence of the symbol I denotes an indirect address
instruction.

A non-MRI is defined as an instruction that does not have an address
part. A non-MRI is recognized in the instruction field of a program by any one
of the three-letter symbols listed in Table 6-1 for the register-reference and
input-output instructions.

The following is an illustration of the symbols that may be placed in the
instruction field of a program.

CLA non—-MRI
ADD OPR direct address MRI
ADD PTR I indirect address MRI

The first three-letter symbol in each line must be one of the instruction symbols
of the computer and must be listed in Table 6-1. A memory-reference instruc-
tion, such as ADD, must be followed by a symbolic address. The letter I may
or may not be present.

A symbolic address in the instruction field specifies the memory location
of an operand. This location must be defined somewhere in the program by
appearing again as a label in the first column. To be able to translate an
assembly language program to a binary program, it is absolutely necessary that
each symbolic address that is mentioned in the instruction field must occur
again in the label field.

A pseudoinstruction is not a machine instruction but rather an instruction
to the assembler giving information about some phase of the translation. Four
pseudoinstructions that are recognized by the assembler are listed in Table 6-7.
(Other assembly language programs recognize many more pseudoinstruc-
tions.) The ORG (origin) pseudoinstruction informs the assembler that the
instruction or operand in the following line is to be placed in a memory location
specified by the number next to ORG. It is possible to use ORG more than once
in a program to specify more than one segment of memory. The END symbol

TABLE 6-7 Definition of Pseudoinstructions

Symbol Information for the Assembler

ORG N Hexadecimal number N is the memory location for the instruction or
operand listed in the following line

END Denotes the end of symbolic program

DECN Signed decimal number N to be converted to binary

HEX N Hexadecimal number N to be converted to binary

SECTION 6-3 Assembly Language 181

is placed at the end of the program to inform the assembler that the program
is terminated. The other two pseudoinstructions specify the radix of the
operand and tell the assembler how to convert the listed number to a binary
number.

The third field in a program is reserved for comments. A line of code may
or may not have a comment, but if it has, it must be preceded by a slash for
the assembler to recognize the beginning of a comment field. Comments are
useful for explaining the program and are helpful in understanding the step-
by-step procedure taken by the program. Comments are inserted for explana-
tion purposes only and are neglected during the binary translation process.

An Example

The program of Table 6-8 is an example of an assembly language program. The
first line has the pseudoinstruction ORG to define the origin of the program
at memory location (100),s. The next six lines define machine instructions, and
the last four have pseudoinstructions. Three symbolic addresses have been
used and each is listed in column 1 as a label and in column 2 as an address
of a memory-reference instruction. Three of the pseudoinstructions specify
operands, and the last one signifies the END of the program.

When the program is translated into binary code and executed by the
computer it will perform a subtraction between two numbers. The subtraction
is performed by adding the minuend to the 2's complement of the subtrahend.
The subtrahend is a negative number. It is converted into a binary number in
signed-2’s complement representation because we dictate that all negative
numbers be in their 2's complement form. When the 2’s complement of the
subtrahend is taken (by complementing and incrementing the AC), —23 con-
verts to +23 and the difference is 83 + (2's complement of —23) = 83+
23 = 106.

TABLE 6-8 Assembly Language Program to Subtract Two Numbers

ORG 100 [Origin of program is location 100
LDA SUB /Load subtrahend to AC

CMA /Complement AC

INC /Increment AC

ADD MIN /Add minuend to AC

STA DIF [Store difference

HLT /Halt computer
MIN, DEC 83 Minuend
SUB, DEC -23 /Subtrahend
DIF, HEX 0 /Difference stored here

END /End of symbolic program

182 CHAPTER SIX Programming the Basic Computer

assembler

Translation to Binary

The translation of the symbolic program into binary is done by a special
program called an assembler. The tasks performed by the assembler will be
better understood if we first perform the translation on paper. The translation
of the symbolic program of Table 6-8 into an equivalent binary code may be
done by scanning the program and replacing the symbols by their machine
code binary equivalent. Starting from the first line, we encounter an ORG
pseudoinstruction. This tells us to start the binary program from hexadecimal
location 100. The second line has two symbols. It must be a memory-reference
instruction to be placed in location 100. Since the letter I is missing, the first
bit of the instruction code must be 0. The symbolic name of the operation is
LDA. Checking Table 6-1 we find that the first hexadecimal digit of the instruc-
tion should be 2. The binary value of the address part must be obtained from
the address symbol SUB. We scan the label column and find this symbol in line
9. To determine its hexadecimal value we note that line 2 contains an instruc-
tion for location 100 and every other line specifies a machine instruction or an
operand for sequential memory locations. Counting lines, we find that label
SUB in line 9 corresponds to memory location 107. So the hexadecimal address
of the instruction LDA must be 107. When the two parts of the instruction are
assembled, we obtain the hexadecimal code 2107. The other lines representing
machine instructions are translated in a similar fashion and their hexadecimal
code is listed in Table 6-9.

Two lines in the symbolic program specify decimal operands with the
pseudoinstruction DEC. A third specifies a zero by means of a HEX pseudo-
instruction (DEC could be used as well). Decimal 83 is converted to binary and
placed in location 106 in its hexadecimal equivalent. Decimal —23 is a negative
number and must be converted into binary in signed-2’s complement form.

TABLE 6-9 Listing of Translated Program of Table 6-8

Hexadecimal code

Location Content Symbolic program

ORG 100
100 2107 LDA SUB
101 7200 CMA
102 7020 INC
103 1106 ADD MIN
104 3108 STA DIF
105 7001 HLT
106 0053 MIN, DECS83
107 FFE9 SUB, DEC-23
108 0000 DIF, HEX 0

END

address symbol table

SECTION 6.4 The Assembler 183

The hexadecimal equivalent of the binary number is placed in location 107. The
END symbol signals the end of the symbolic program telling us that there are
no more lines to translate.

The translation process can be simplified if we scan the entire symbolic
program twice. No translation is done during the first scan. We merely assign
a memory location to each machine instruction and operand. The location
assignment will define the address value of labels and facilitate the translation
process during the second scan. Thus in Table 6-9, we assign location 100 to
the first instruction after ORG. We then assign sequential locations for each line
of code that has a machine instruction or operand up to the end of the program.
(ORG and END are not assigned a numerical location because they do not
represent an instruction or an operand.) When the first scan is completed, we
associate with each label its location number and form a table that defines the
hexadecimal value of each symbolic address. For this program, the address
symbol table is as follows:

Address symbol Hexadecimal address
MIN 106
SUB 107
DIF 108

During the second scan of the symbolic program we refer to the address
symbol table to determine the address value of a memory-reference instruc-
tion. For example, the line of code LDA SUB is translated during the second
scan by getting the hexadecimal value of LDA from Table 6-1 and the hexadec-
imal value of SUB from the address-symbol table listed above. We then assem-
ble the two parts into a four-digit hexadecimal instruction. The hexadecimal
code can be easily converted to binary if we wish to know exactly how this
program resides in computer memory.

When the translation from symbols to binary is done by an assembler
program, the first scan is called the first pass, and the second is called the second
pass.

6-4 The Assembler

An assembler is a program that accepts a symbolic language program and
produces its binary machine language equivalent. The input symbolic program
is called the source program and the resulting binary program is called the object
program. The assembler is a program that operates on character strings and
produces an equivalent binary interpretation.

184 cHAPTER sIX Prc ing the Basic Cc

line of code

Representation of Symbolic Program in Memory

Prior to starting the assembly process, the symbolic program must be stored
in memory. The user types the symbolic program on a terminal. A loader
program is used to input the characters of the symbolic program into memory.
Since the program consists of symbols, its representation in memory must use
an alphanumeric character code. In the basic computer, each character is
represented by an 8-bit code. The high-order bit is always 0 and the other seven
bits are as specified by ASCIL The hexadecimal equivalent of the character set
is listed in Table 6-10. Each character is assigned two hexadecimal digits which
can be easily converted to their equivalent 8-bit code. The last entry in the table
does not print a character but is associated with the physical movement of the
cursor in the terminal. The code for CR is produced when the return key
is depressed. This causes the “‘carriage’” to return to its initial position to start
typing a new line. The assembler recognizes a CR code as the end of a line of
code.

A line of code is stored in consecutive memory locations with two char-
acters in each location. Two characters can be stored in each word since a
memory word has a capacity of 16 bits. A label symbol is terminated with a
comma. Operation and address symbols are terminated with a space and the
end of the line is recognized by the CR code. For example, the following line
of code:

PL3, LDASUBI

TABLE 6-10 Hexadecimal Character Code

Character Code Character Code Character Code

A 41 Q 51 6 36

B 42 R 52 7 37

C 43 S 53 8 38

D 44 T 54 9 39

E 45 8] 55 space 20

F 46 v 56 (28

G 47 w 57) 29

H 48 X 58 * 2A

I 49 Y 59 + 2B

J 4A z SA , 2C

K 4B 0 30 - 2D

L 4C 1 31 . 2E

M 4D 2 32 / 2F

N 4E 3 33 = 3D

o 4F 4 34 CR 0D (carriage
P 50 5 35 return)

location counter (LC)

SECTION 6.4 The Assembler 185

TABLE 6-11 Computer Representation of the Line of Code: PL3, LDA SUB I

Memory Hexadecimal
word Symbol code Binary representation
1 PL 50 4C 0101 0000 0100 1100
2 3, 33 2C 0011 0011 0010 1100
3 LD 4C 4 0100 1100 0100 0100
4 A 41 20 0100 0001 0010 0000
5 S U 53 55 0101 0011 0101 0101
6 B 42 20 0100 0010 0010 0000
7 1 CR 49 0D 0100 1001 0000 1101

is stored in seven consecutive memory locations, as shown in Table 6-11. The
label PL3 occupies two words and is terminated by the code for comma (2C).
The instruction field in the line of code may have one or more symbols. Each
symbol is terminated by the code for space (20) except for the last symbol,
which is terminated by the code of carriage return (0D). If the line of code has
a comment, the assembler recognizes it by the code for a slash (2F). The
assembler neglects all characters in the comment field and keeps checking for
a CR code. When this code is encountered, it replaces the space code after the
last symbol in the line of code.

The input for the assembler program is the user’s symbolic language
program in ASCII. This input is scanned by the assembler twice to produce the
equivalent binary program. The binary program constitutes the output gener-
ated by the assembler. We will now describe briefly the major tasks that must
be performed by the assembler during the translation process.

First Pass
A two-pass assembler scans the entire symbolic program twice. During the first
pass, it generates a table that correlates all user-defined address symbols with
their binary equivalent value. The binary translation is done during the second
pass. To keep track of the location of instructions, the assembler uses a memory
word called a location counter (abbreviated LC). The content of LC stores the
value of the memory location assigned to the instruction or operand presently
being processed. The ORG pseudoinstruction initializes the location counter
to the value of the first location. Since instructions are stored in sequential
locations, the content of LC is incremented by 1 after processing each line of
code. To avoid ambiguity in case ORG is missing, the assembler sets the
location counter to 0 initially.

The tasks performed by the assembler during the first pass are described
in the flowchart of Fig. 6-1. LC is initially set to 0. A line of symbolic code is
analyzed to determine if it has a label (by the presence of a comma). If the line

186

CHAPTER SIX Programming the Basic Computer

First pass

LC+0

[

Store symbol

in address- no Go to
symbol table second
together with pass
value of LC

Figure 6-1 Flowchart for first pass of assembler.

of code has no label, the assembler checks the symbol in the instruction field.
If it contains an ORG pseudoinstruction, the assembler sets LC to the number
that follows ORG and goes back to process the next line. If the line has an END
pseudoinstruction, the assembler terminates the first pass and goes to the
second pass. (Note that a line with ORG or END should not have a label.) If
the line of code contains a label, itis stored in the address symbol table together
with its binary equivalent number specified by the content of LC. Nothing is
stored in the table if no label is encountered. LC is then incremented by 1 and
a new line of code is processed.

For the program of Table 6-8, the assembler generates the address symbol
table listed in Table 6-12. Each label symbol is stored in two memory locations
and is terminated by a comma. If the label contains less than three characters,
the memory locations are filled with the code for space. The value found in LC
while the line was processed is stored in the next sequential memory location.
The program has three symbolic addresses: MIN, SUB, and DIF. These sym-
bols represent 12-bit addresses equivalent to hexadecimal 106, 107, and 108,

table-lookup

SECTION 6-4 The Assembler 187

TABLE 6-12 Address Symbol Table for Program in Table 6-8

Memory Symbol Hexadecimal

word or (LC)* code Binary representation
1 MI 4D 49 0100 1101 0100 1001
2 N, 4E 2C 0100 1110 0010 1100
3 (LC) 01 06 0000 0001 0000 0110
4 S U 53 55 0101 0011 0101 0101
5 B, 42 2C 0100 0010 0010 1100
6 (LC) 01 07 0000 0001 0000 0111
7 DI 4 49 0100 0100 0100 1001
8 F, 46 2C 0100 0110 0010 1100
9 (LC) 01 08 0000 0001 0000 1000

* (LC) designates content of location counter.

respectively. The address symbol table occupies three words for each label
symbol encountered and constitutes the output data that the assembler gener-
ates during the first pass.

Second Pass

Machine instructions are translated during the second pass by means of table-
lookup procedures. A table-lookup procedure is a search of table entries to
determine whether a specific item matches one of the items stored in the table.
The assembler uses four tables. Any symbol that is encountered in the program
must be available as an entry in one of these tables; otherwise, the symbol
cannot be interpreted. We assign the following names to the four tables:

1. Pseudoinstruction table.
2. MRI table.

3. Non-MRI table.

4. Address symbol table.

The entries of the pseudoinstruction table are the four symbols ORG,
END, DEC, and HEX. Each entry refers the assembler to a subroutine that
processes the pseudoinstruction when encountered in the program. The MRI
table contains the seven symbols of the memory-reference instructions and
their 3-bit operation code equivalent. The non-MRI table contains the symbols
for the 18 register-reference and input-output instructions and their 16-bit
binary code equivalent. The address symbol table is generated during the first
pass of the assembly process. The assembler searches these tables to find the
symbol that it is currently processing in order to determine its binary value.

The tasks performed by the assembler during the second pass are de-

188 CHAPTER SIX Programming the Basic Computer

error diagnostics

scribed in the flowchart of Fig. 6-2. LC is initially set to 0. Lines of code are then
analyzed one at a time. Labels are neglected during the second pass, so the
assembler goes immediately to the instruction field and proceeds to check the
first symbol encountered. It first checks the pseudoinstruction table. A match
with ORG sends the assembler to a subroutine that sets LC to an initial value.
A match with END terminates the translation process. An operand pseudo-
instruction causes a conversion of the operand into binary. This operand is
placed in the memory location specified by the content of LC. The location
counter is then incremented by 1 and the assembler continues to analyze the
next line of code.

If the symbol encountered is not a pseudoinstruction, the assembler
refers to the MRI table. If the symbol is not found in this table, the assembler
refers to the non-MRI table. A symbol found in the non-MRI table corresponds
to a register reference or input-output instruction. The assembler stores the
16-bit instruction code into the memory word specified by LC. The location
counter is incremented and a new line analyzed.

When a symbol is found in the MRI table, the assembler extracts its
equivalent 3-bit code and inserts it in bits 2 through 4 of a word. A memory
reference instruction is specified by two or three symbols. The second symbol
is a symbolic address and the third, which may or may not be present, is the
letter I. The symbolic address is converted to binary by searching the address
symbol table. The first bit of the instruction is set to 0 or 1, depending on
whether the letter I is absent or present. The three parts of the binary instruc-
tion code are assembled and then stored in the memory location specified by
the content of LC. The location counter is incremented and the assembler
continues to process the next line.

One important task of an assembler is to check for possible errors in the
symbolic program. This is called error diagnostics. One such error may be an
invalid machine code symbol which is detected by its being absent in the MRI
and non-MRI tables. The assembler cannot translate such a symbol because it
does not know its binary equivalent value. In such a case, the assembler prints
an error message to inform the programmer that his symbolic program has an
error at a specific line of code. Another possible error may occur if the program
has a symbolic address that did not appear also as alabel. The assembler cannot
translate the line of code properly because the binary equivalent of the symbol
will not be found in the address symbol table generated during the first pass.
Other errors may occur and a practical assembler should detect all such errors
and print an error message for each.

It should be emphasized that a practical assembler is much more compli-
cated than the one explained here. Most computers give the programmer more
flexibility in writing assembly language programs. For example, the user may
be allowed to use either a number or a symbol to specify an address. Many
assemblers allow the user to specify an address by an arithmetic expression.
Many more pseudoinstructions may be specified to facilitate the programming

_SECTION 64 The Assembler 189

Figure 6-2 Flowchart for second pass of assembler.

190

compiler

CHAPTER SIX Programming the Basic Computer

task. As the assembly language becomes more sophisticated, the assembler
becomes more complicated.

6-5 Program Loops

A program loop is a sequence of instructions that are executed many times,
each time with a different set of data. Program loops are specified in Fortran
by a DO statement. The following is an example of a Fortran program that
forms the sum of 100 integer numbers.

DIMENSION A(100)
INTEGER SUM, A
SUM=0
DO 3 J=1, 100

3 SUM=SUM+A(J)

Statement number 3 is executed 100 times, each time with a different operand
A()for]=1,2,...,100.

A system program that translates a program written in a high-level
programming language such as the above to a machine language program is
called a compiler. A compiler is a more complicated program than an assembler
and requires knowledge of systems programming to fully understand its
operation. Nevertheless, we can demonstrate the basic functions of a compiler
by going through the process of translating the program above to an assembly
language program. A compiler may use an assembly language as an interme-
diate step in the translation or may translate the program directly to binary.

The first statement in the Fortran program is a DIMENSION statement.
This statement instructs the compiler to reserve 100 words of memory for 100
operands. The value of the operands is determined from an input statement
(not listed in the program). The second statement informs the compiler that the
numbers are integers. If they were of the real type, the compiler would have
to reserve locations for floating-point numbers and generate instructions that
perform the subsequent arithmetic with floating-point data. These two state-
ments are nonexecutable and are similar to the pseudoinstructions in an
assembly language. Suppose that the compiler reserves locations (150);¢ to
(1B3)y4 for the 100 operands. These reserved memory words are listed in lines
19 to 118 in the translated program of Table 6-13. This is done by the ORG
pseudoinstruction in line 18, which specifies the origin of the operands. The
first and last operands are listed with a specific decimal number, although
these values are not known during compilation. The compiler just reserves the
data space in memory and the values are inserted later when an input data
statement is executed. The line numbers in the symbolic program are for
reference only and are not part of the translated symbolic program.

The indexing of the DO statement is translated into the instructions in

SECTION 6.5 Program Loops 191

TABLE 6-13 Symbolic Program to Add 100 Numbers

Line
1 ORG 100 /Origin of program is HEX 100
2 LDA ADS /Load first address of operands
3 STA PTR /Store in pointer
4 LDA NBR /Load minus 100
5 STA CTR /Store in counter
6 CLA /Clear accumulator
7 LOP, ADD PTRI /Add an operand to AC
8 ISZ PTR /Increment pointer
9 ISZ CTR /Increment counter
10 BUN LOP /Repeat loop again
11 STA SUM /Store sum
12 HLT /Halt
13 ADS, HEX 150 [First address of operands
14 PTR, HEX 0 /This location reserved for a pointer
15 NBR, DEC -100 /Constant to initialized counter
16 CTR, HEX 0 /This location reserved for a counter
17 SUM, HEX 0 /Sum is stored here
18 ORG 150 /Origin of operands is HEX 150
19 DEC 75 [First operand
118 DEC 23 /Last operand
119 END /End of symbolic program

lines 2 through 5 and the constants in lines 13 through 16. The address of the
first operand (150) is stored in location ADS in line 13. The number of times
that Fortran statement number 3 must be executed is 100. So —100 is stored in
location NBR. The compiler then generates the instructions in lines 2 through
5 to initialize the program loop. The address of the first operand is transferred
to location PTR. This corresponds to setting A(J) to A(1). The number —100 is
then transferred to location CTR. This location acts as a counter with its content
incremented by one every time the program loop is executed. When the value
of the counter reaches zero, the 100 operations will be completed and the
program will exit from the loop.

Some compilers will translate the statement SUM = 0 into a machine
instruction that initializes location SUM to zero. A reference to this location is
then made every time Fortran statement number 3 is executed. A more intel-
ligent compiler will realize that the sum can be formed in the accumulator and
only the final result stored in location SUM. This compiler will produce an
instruction in line 6 to clear the AC. It will also reserve a memory location

192

pointer
counter

CHAPTER SIX Programming the Basic Computer

symbolized by SUM (in line 17) for storing the value of this variable at the
termination of the loop.

The program loop specified by the DO statement is translated to the
sequence of instructions listed in lines 7 through 10. Line 7 specifies an indirect
ADD instruction because it has the symbol I.'The address of the current
operand is stored in location PTR. When this location is addressed indirectly
the computer takes the content of PTR to be the address of the operand. As
aresult, the operand in location 150 is added to the accumulator. Location PTR
is then incremented with the ISZ instruction in line 8, so its value changes to
the value of the address of the next sequential operand. Location CTR is
incremented in line 9, and if it is not zero, the computer does not skip the next
instruction. The next instruction is a branch (BUN) instruction to the beginning
of the loop, so the computer returns to repeat the loop once again. When
location CTR reaches zero (after the loop is executed 100 times), the next
instruction is skipped and the computer executes the instructions in lines 11
and 12. The sum formed in the accumulator is stored in SUM and the computer
halts. The halt instruction is inserted here for clarity; actually, the program will
branch to a location where it will continue to execute the rest of the program
or branch to the beginning of another program. Note that ISZ in line 8 is used
merely to add 1 to the address pointer PTR. Since the address is a positive
number, a skip will never occur.

The program of Table 6-13 introduces the idea of a pointer and a counter
which can be used, together with the indirect address operation, to form a
program loop. The pointer points to the address of the current operand and
the counter counts the number of times that the program loop is executed. In
this example we use two memory locations for these functions. In computers
with more than one processor register, it is possible to use one processor
register as a pointer, another as a counter, and a third as an accumulator. When
processor registers are used as pointers and counters they are called index
registers. Index registers are discussed in Sec. 8-5.

6-6 Programming Arithmetic
and Logic Operations

The number of instructions available in a computer may be a few hundred in
a large system or a few dozen in a small one. Some computers perform a given
operation with one machine instruction; others may require a large number of
machine instructions to perform the same operation. As an illustration, con-
sider the four basic arithmetic operations. Some computers have machine
instructions to add, subtract, multiply, and divide. Others, such as the basic
computer, have only one arithmetic instruction, such as ADD. Operations not
included in the set of machine instructions must be implemented by a program.

SECTION 6-6 Programming Arithmetic and Logic Operations 193

We have shown in Table 6-8 a program for subtracting two numbers. Programs
for the other arithmetic operations can be developed in a similar fashion.

Operations that are implemented in a computer with one machine in-
struction are said to be implemented by hardware. Operations implemented
by a set of instructions that constitute a program are said to be implemented
by software. Some computers provide an extensive set of hardware instruc-
tions designed to speed up common tasks. Others contain a smaller set of
hardware instructions and depend more heavily on the software implementa-
tion of many operations. Hardware implementation is more costly because of
the additional circuits needed to implement the operation. Software imple-
mentation results in long programs both in number of instructions and in
execution time.

This section demonstrates the software implementation of a few arith-
metic and logic operations. Programs can be developed for any arithmetic
operation and not only for fixed-point binary data but for decimal and floating-
point data as well. The hardware implementation of arithmetic operations is
carried out in Chap. 10.

Multiplication Program

We now develop a program for multiplying two numbers. To simplify the
program, we neglect the sign bit and assume positive numbers. We also
assume that the two binary numbers have no more than eight significant bits
so their product cannot exceed the word capacity of 16 bits. It is possible to
modify the program to take care of the signs or use 16-bit numbers. However,
the product may be up to 31 bits in length and will occupy two words of
memory.

The program for multiplying two numbers is based on the procedure we
use to multiply numbers with paper and pencil. As shown in the numerical
example of Fig. 6-3, the multiplication process consists of checking the bits of
the multiplier Y and adding the multiplicand X as many times as there are 1's
inY, provided that the value of X is shifted left from one line to the next. Since
the computer can add only two numbers at a time, we reserve a memory
location, denoted by P, to store intermediate sums. The intermediate sums are
called partial products since they hold a partial product until all numbers are
added. As shown in the numerical example under P, the partial product starts
with zero. The multiplicand X is added to the content of P for each bit of the
multiplier Y that is 1. The value of X is shifted left after checking each bit of
the multiplier. The final value in P forms the product. The numerical example
has numbers with four significant bits. When multiplied, the product contains
eight significant bits. The computer can use numbers with eight significant bits
to produce a product of up to 16 bits.

The flowchart of Fig. 6-3 shows the step-by-step procedure for program-

194 CHAPTER SIX Programming the Basic Computer

RSB X holds the multiplicand
Y holds the multiplier
P forms the product

Example with four significant digits

X=00001111 P

Y =0000 1011 0000 0000
0000 1111 0000 1111
0001 1110 ool0 1101
00000000 0010 1101
ol111000 10100101
10100101

+0 =0
CTR Stop

Figure 6-3 Flowchart for multiplication program.

SECTION 6.6 Programming Arithmetic and Logic Operations 195

ming the multiplication operation. The program has a loop that is traversed
eight times, once for each significant bit of the multiplier. Initially, location X
holds the multiplicand and location Y holds the multiplier. A counter CTR is
set to —8 and location P is cleared to zero.

The multiplier bit can be checked if it is transferred to the E register. This
is done by clearing E, loading the value of Y into the AC, circulating right E
and AC and storing the shifted number back into location Y. This bit stored in
E is the low-order bit of the multiplier. We now check the value of E. If it is
1, the multiplicand X is added to the partial product P. If it is 0, the partial
product does not change. We then shift the value of X once to the left by loading
it into the AC and circulating left E and AC. The loop is repeated eight times
by incrementing location CTR and checking when it reaches zero. When the
counter reaches zero, the program exits from the loop with the product stored
in location P.

The program in Table 6-14 lists the instructions for multiplying two
unsigned numbers. The initialization is not listed but should be included when
the program is loaded into the computer. The initialization consists of bringing
the multiplicand and multiplier into locations X and Y, respectively; initializing
the counter to —8; and initializing location P to zero. If these locations are not

TABLE 6-14 Program to Multiply Two Positive Numbers

ORG 100

LOP, CLE [Clear E
LDA'Y /Load multiplier
CIR /Transfer multiplier bit to E
STAY /Store shifted multiplier
SZE /Check if bit is zero

BUN ONE /Bit is one; go to ONE
BUN ZRO /Bit is zero; go to ZRO

ONE, LDA X /Load multiplicand
ADD P /Add to partial product
STA P /Store partial product
CLE /Clear E
ZRO, LDA X /Load multiplicand
CIL /Shift left
STA X /Store shifted multiplicand
ISZ CTR MIncrement counter
BUN LOP /Counter not zero; repeat loop
HLT /Counter is zero; halt
CTR, DEC -8 /This location serves as a counter
X, HEX 000F /Multiplicand stored here
Y, HEX 000B /Multiplier stored here
P, HEX 0 /Product formed here

END

196 CHAPTER SIX Programming the Basic Computer

initialized, the program may run with incorrect data. The program itself is
straightforward and follows the steps listed in the flowchart. The comments
may help in following the step-by-step procedure.

This example has shown that if a computer does not have a machine
instruction for a required operation, the operation can be programmed by a
sequence of machine instructions. Thus we have demonstrated the software
implementation of the multiplication operation. The corresponding hardware
implementation is presented in Sec. 10-3.

Double-Precision Addition

When two 16-bit unsigned numbers are multiplied, the result is a 32-bit
product that must be stored in two memory words. A number stored in two
memory words is said to have double precision. When a partial product is
computed, it is necessary that a double-precision number be added to the
shifted multiplicand, which is also a double-precision number. For greater
accuracy, the programmer may wish to employ double-precision numbers and
perform arithmetic with operands that occupy two memory words. We now
develop a program that adds two double-precision numbers.

One of the double-precision numbers is placed in two consecutive mem-
ory locations, AL and AH, with AL holding the 16 low-order bits. The other
number is placed in BL and BH. The program is listed in Table 6-15. The two
low-order portions are added and the carry transferred into E. The AC is
cleared and the bit in E is circulated into the least significant position of the AC.
The two high-order portions are then added to the carry and the double-
precision sum is stored in CL and CH.

TABLE 6-15 Program to Add Two Double-Precision Numbers

LDA AL /Load A low
ADD BL /Add B low, carry in E
STA CL /Store in C low
CLA /Clear AC
CIL [Circulate to bring carry into AC(16)
ADD AH /Add A high and carry
ADD BH /Add B high
STA CH (Store in C high
HLT
AL, — /Location of operands
AH, —
BL, —
BH, —

CH, —

SECTION 6.6 Programming Arithmetic and Logic Operations 197

Logic Operations

The basic computer has three machine instructions that perform logic opera-
tions: AND, CMA, and CLA. The LDA instruction may be considered as a logic
operation that transfers a logic operand into the AC. In Sec. 4-5 we listed 16
different logic operations. All 16 logic operations can be implemented by
software means because any logic function can be implemented using the AND
and complement operations. For example, the OR operation is not available as
a machine instruction in the basic computer. From DeMorgan’s theorem we
recognize the relation x + y = (x'y’)’. The second expression contains only
AND and complement operations. A program that forms the OR operation of
two logic operands A and B is as follows:

LDA A Load firstoperand A

CMA Complement toget?

STA TMP Store in a temporary location
LDA B Load second operand B

CMA Complement to getB
AND TMP AND withZAtogetdAB
CMA Complement again toget AV B

The other logic operations can be implemented by software in a similar
fashion.

Shift Operations
The circular-shift operations are machine instructions in the basic computer.
The other shifts of interest are the logical shifts and arithmetic shifts. These two
shifts can be programmed with a small number of instructions.

The logical shift requires that zeros be added to the extreme positions.
This is easily accomplished by clearing E and circulating the AC and E. Thus
for a logical shift-right operation we need the two instructions

CLE
CIR

For a logical shift-left operation we need the two instructions

CLE
CIL

The arithmetic shifts depend on the type of representation of negative
numbers. For the basic computer we have adopted the signed-2’s complement
representation. The rules for arithmetic shifts are listed in Sec. 4-6. For an
arithmetic right-shift it is necessary that the sign bit in the leftmost position
remain unchanged. But the sign bit itself is shifted into the high-order bit

198

CHAPTER SIX Programming the Basic Computer

position of the number. The program for the arithmetic right-shift requires that
we set E to the same value as the sign bit and circulate right, thus:

CLE /Clear Eto 0

SPA /Skip if AC is positive; Eremains O
CME /AC is negative; setEtol

CIR /Circulate Eand AC

For arithmetic shift-left it is necessary that the added bit in the least significant
position be 0. This is easily done by clearing E prior to the circulate-left
operation. The sign bit must not change during this shift. With a circulate
instruction, the sign bit moves into E. It is then necessary to compare the sign
bit with the value of E after the operation. If the two values are equal, the
arithmetic shift has been correctly implemented. If they are not equal, an
overflow occurs. An overflow indicates that the unshifted number was too
large. When multiplied by 2 (by means of the shift), the number so obtained
exceeds the capacity of the AC.

6-7 Subroutines

Frequently, the same piece of code must be written over again in many different
parts of a program. Instead of repeating the code every time it is needed, there
is an obvious advantage if the common instructions are written only once. A
set of common instructions that can be used in a program many times is called
a subroutine. Each time that a subroutine is used in the main part of the
program, a branch is executed to the beginning of the subroutine. After the
subroutine has been executed, a branch is made back to the main program.

A subroutine consists of a self-contained sequence of instructions that
carries out a given task. A branch can be made to the subroutine from any part
of the main program. This poses the problem of how the subroutine knows
which location to return to, since many different locations in the main program
may make branches to the same subroutine. It is therefore necessary to store
the return address somewhere in the computer for the subroutine to know
where to return. Because branching to a subroutine and returning to the main
program is such a common operation, all computers provide special instruc-
tions to facilitate subroutine entry and return.

In the basic computer, the link between the main program and a sub-
routine is the BSA instruction (branch and save return address). To explain how
this instruction is used, let us write a subroutine that shifts the content of the
accumulator four times to the left. Shifting a word four times is a useful
operation for processing binary-coded decimal numbers or alphanumeric char-
acters. Such an operation could have been included as a machine instruction
in the computer. Since it is not included, a subroutine is formed to accomplish
this task. The program of Table 6-16 starts by loading the value of X into the

SECTION 6.7 Subroutines 199

TABLE 6-16 Program to Demonstrate the Use of Subroutines

Location
ORG 100 /Main program
100 LDA X /Load X
101 BSA SH4 /Branch to subroutine
102 STA X /Store shifted number
103 LDAY /Load Y
104 BSA SH4 /Branch to subroutine again
105 STAY /Store shifted number
106 HLT
107 X, HEX 1234
108 Y, HEX 4321
/Subroutine to shift left 4 times
109 SH4, HEX 0 /Store return address here
10A CIL [Circulate left once
10B CIL
10C CIL
10D CIL [Circulate left fourth time
10E AND MSK /Set AC(13-16) to zero
10F BUN SH41 /Return to main program
110 MSK, HEX FFF0 /Mask operand

END

AC. The next instruction encountered is BSA SH4. The BSA instruction is in
location 101. Subroutine SH4 must return to location 102 after it finishes its
task. When the BSA instruction is executed, the control unit stores the return
address 102 into the location defined by the symbolic address SH4 (which is
109). It also transfers the value of SH4 + 1into the program counter. After this
instruction is executed, memory location 109 contains the binary equivalent of
hexadecimal 102 and the program counter contains the binary equivalent of
hexadecimal 10A. This action has saved the return address and the subroutine
is now executed starting from location 10A (since this is the content of PC in
the next fetch cycle).

The computation in the subroutine circulates the content of AC four times
to the left. In order to accomplish a logical shift operation, the four low-order
bits must be set to zero. This is done by masking FFF0 with the content of AC.
A mask operation is a logic AND operation that clears the bits of the AC where
the mask operand is zero and leaves the bits of the AC unchanged where the
mask operand bits are 1's.

The last instruction in the subroutine returns the computer to the main
program. This is accomplished by the indirect branch instruction with an
address symbol identical to the symbol used for the subroutine name. The
address to which the computer branches is not SH4 but the value found in

200

CHAPTER SIX Programming the Basic Computer

location SH4 because this is an indirect address instruction. What is found in
location SH4 is the return address 102 which was previously stored there by
the BSA instruction. The computer returns to execute the instruction in loca-
tion 102. The main program continues by storing the shifted number into
location X. A new number is then loaded into the AC from location Y, and
another branch is made to the subroutine. This time location SH4 will contain
the return address 105 since this is now the location of the next instruction after
BSA. The new operand is shifted and the subroutine returns to the main
program at location 105.

From this example we see that the first memory location of each sub-
routine serves as a link between the main program and the subroutine. The
procedure for branching to a subroutine and returning to the main program
is referred to as a subroutine linkage. The BSA instruction performs an opera-
tion commonly called subroutine call. The last instruction of the subroutine
performs an operation commonly called subroutine return.

The procedure used in the basic computer for subroutine linkage is
commonly found in computers with only one processor register. Many com-
puters have multiple processor registers and some of them are assigned the
name index registers. In such computers, an index register is usually employed
to implement the subroutine linkage. A branch-to-subroutine instruction
stores the return address in an index register. A return-from-subroutine in-
struction is effected by branching to the address presently stored in the index
register.

Subroutine Parameters and Data Linkage
When a subroutine is called, the main program must transfer the data it wishes
the subroutine to work with. In the previous example, the data were trans-
ferred through the accumulator. The operand was loaded into the AC prior to
the branch. The subroutine shifted the number and left it there to be accepted
by the main program. In general, it is necessary for the subroutine to have
access to data from the calling program and to return results to that program.
The accumulator can be used for a single input parameter and a single output
parameter. In computers with multiple processor registers, more parameters
can be transferred this way. Another way to transfer data to a subroutine is
through the memory. Data are often placed in memory locations following the
call. They can also be placed in a block of storage. The first address of the block
is then placed in the memory location following the call. In any case, the return
address always gives the link information for transferring data between the
main program and the subroutine.

As an illustration, consider a subroutine that performs the logic OR
operation. Two operands must be transferred to the subroutine and the sub-
routine must return the result of the operation. The accumulator can be used

SECTION 6-7 Subroutines 201

to transfer one operand and to receive the result. The other operand is inserted
in the location following the BSA instruction. This is demonstrated in the
program of Table 6-17. The first operand in location X is loaded into the AC.
The second operand is stored in location 202 following the BSA instruction.
After the branch, the first location in the subroutine holds the number 202.
Note that in this case, 202 is not the return address but the address of the
second operand. The subroutine starts performing the OR operation by com-
plementing the first operand in the AC and storing it in a temporary location
TMP. The second operand is loaded into the AC by an indirect instruction at
location OR. Remember that location OR contains the number 202. When the
instruction refers to it indirectly, the operand at location 202 is loaded into the
AC. This operand is complemented and then ANDed with the operand stored
in TMP. Complementing the result forms the OR operation.

The return from the subroutine must be manipulated so that the main
program continues from location 203 where the next instruction is located. This
is accomplished by incrementing location OR with the ISZ instruction. Now
location OR holds the number 203 and an indirect BUN instruction causes a
return to the proper place.

It is possible to have more than one operand following the BSA instruc-

TABLE 6-17 Program to Demonstrate Parameter Linkage

Location

ORG 200
200 LDA X /Load first operand into AC
201 BSA OR /Branch to subroutine OR
202 HEX 3AF6 /Second operand stored here
203 STAY /Subroutine returns here
204 HLT
205 X, HEX 7B95 [First operand stored here
206 Y, HEX 0 /Result stored here
207 OR, HEX 0 /Subroutine OR
208 CMA /Complement first operand
209 STA TMP /Store in temporary location
20A LDA ORI /Load second operand
20B CMA /Complement second operand
20C AND TMP /AND complemented first operand
20D CMA /Complement again to get OR
20E ISZ OR /Increment return address
20F BUN ORI /Return to main program
210 TMP, HEXO0 [Temporary storage

END

202

CHAPTER SIX Programming the Basic Computer

tion. The subroutine must increment the return address stored in its first
location for each operand that it extracts from the calling program. Moreover,
the calling program can reserve one or more locations for the subroutine to
return results that are computed. The first location in the subroutine must be
incremented for these locations as well, before the return. If there is a large
amount of data to be transferred, the data can be placed in a block of storage
and the address of the first item in the block is then used as the linking
parameter.

A subroutine that moves ablock of data starting at address 100 into a block
starting with address 200 is listed in Table 6-18. The length of the block is 16
words. The first introduction is a branch to subroutine MVE. The first part of
the subroutine transfers the three parameters 100, 200 and —16 from the main
program and places them in its own storage location. The items are retrieved
from their blocks by the use of two pointers. The counter ensures that only 16
items are moved. When the subroutine completes its operation, the data
required is in the block starting from the location 200. The return to the main
program is to the HLT instruction.

TABLE 6-18 Subroutine to Move a Block of Data

/Main program
BSA MVE /Branch to subroutine
HEX 100 [First address of source data
HEX 200 [First address of destination data
DEC -16 /Number of items to move
HLT
MVE, HEXO0 /Subroutine MVE
LDA MVEI1 /Bring address of source
STA PT1 /Store in first pointer
ISZ MVE /Increment return address
LDA MVE1 /Bring address of destination
STA PT2 /Store in second pointer
ISZ MVE /Increment return address
LDA MVE 1 /Bring number of items
STA CTR /Store in counter
ISZ MVE /Increment return address
Lop, LDA PT11 /Load source item
STAPT21 /Store in destination
ISZ PT1 /Increment source pointer
ISZ PT2 /Increment destination pointer
ISZ CTR /Increment counter

BUN LOP /Repeat 16 times
BUNMVEI /Return to main program
PT1, —
PT2, —
CIR, —

SECTION 6.8 Input-Output Programming 203

6-8 Input—Output Programming

Users of the computer write programs with symbols that are defined by the
programming language employed. The symbols are strings of characters and
each character is assigned an 8-bit code so that it can be stored in computer
memory. A binary-coded character enters the computer when an INP (input)
instruction is executed. A binary-coded character is transferred to the output
device when an OUT (output) instruction is executed. The output device
detects the binary code and types the corresponding character.

Table 6-19(a) lists the instructions needed to input a character and store
it in memory. The SKI instruction checks the input flag to see if a character is
available for transfer. The next instruction is skipped if the input flag bit is 1.
The INP instruction transfers the binary-coded character into AC(0-7). The
character is then printed by means of the OUT instruction. A terminal unit that
communicates directly with a computer does not print the character when a
key is depressed. To type it, it is necessary to send an OUT instruction for the
printer. In this way, the user is ensured that the correct transfer has occurred.
If the SKI instruction finds the flag bit at 0, the next instruction in sequence
is executed. This instruction is a branch to return and check the flag bit again.
Because the input device is much slower than the computer, the two instruc-
tions in the loop will be executed many times before a character is transferred
into the accumulator.

Table 6-19(b) lists the instructions needed to print a character initially
stored in memory. The character is first loaded into the AC. The output flag
is then checked. If it is 0, the computer remains in a two-instruction loop
checking the flag bit. When the flag changes to 1, the character is transferred
from the accumulator to the printer.

TABLE 6-19 Programs to Input and Output One Character

(a) Input a character:

CIF, SKI /Check input flag
BUN CIF /Flag=0, branch to check again
INP /Flag=1, input character
ouT /Print character
STA CHR /Store character
HLT
CHR, — /Store character here

(b) Output one character:
LDA CHR /Load character into AC

COF, SKO /Check output flag
BUN COF /Flag=0, branch to check again
ouT /Flag=1, output character
HLT

CHR, HEX 0057 [/Character is “"W"

204

CHAPTER SIX Programming the Basic Computer

Character Manipulation

A computer is not just a calculator but also a symbol manipulator. The binary-
coded characters that represent symbols can be manipulated by computer
instructions to achieve various data-processing tasks. One such task may be
to pack two characters in one word. This is convenient because each character
occupies 8 bits and a memory word contains 16 bits. The program in Table 6-20
lists a subroutine named IN2 that inputs two characters and packs them into
one 16-bit word. The packed word remains in the accumulator. Note that
subroutine SH4 (Table 6-16) is called twice to shift the accumulator left eight
times.)

In the discussion of the assembler it was assumed that the symbolic
program is stored in a section of memory which is sometimes called a buffer.
The symbolic program being typed enters through the input device and is
stored in consecutive memory locations in the buffer. The program listed in
Table 6-21 can be used to input a symbolic program from the keyboard, pack
two characters in one word, and store them in the buffer. The first address of
the buffer is 500. The first double character is stored in location 500 and all
characters are stored in sequential locations. The program uses a pointer for
keeping track of the current empty location in the buffer. No counter is used
in the program, so characters will be read as long as they are available or until
the buffer reaches location 0 (after location FFFF). In a practical situation it may
be necessary to limit the size of the buffer and a counter may be used for this
purpose. Note that subroutine IN2 of Table 6-20 is called to input and pack the
two characters.

In discussing the second pass of the assembler in Sec. 6-4 it was men-
tioned that one of the most common operations of an assembler is table lookup.
This is an operation that searches a table to find out if it contains a given
symbol. The search may be done by comparing the given symbol with each of
the symbols stored in the table. The search terminates when a match occurs

TABLE 6-20 Subroutine to Input and Pack Two Characters

IN2, —_ /Subroutine entry
FST, SKI
BUN FST
INP /nput first character
ouT

BSA SH4 /Shift left four times

BSA SH4 /Shift left four more times
SCD, SKI

BUN SCD

INP /Input second character

ouT

BUNIN2I /Return

SECTION 6.8 Input-Output Programming 205

TABLE 6-21 Program to Store Input Characters in a Buffer

LDA ADS /Load first address of buffer
STA PTR [Mnitialize pointer

LOP, BSA IN2 /Go to subroutine IN2 (Table 6-20)
STAPTRI /Store double character word in buffer
ISZ PTR /Increment pointer
BUN LOP /Branch to input more characters

HLT
ADS, HEX 500 [First address of buffer
PTR, HEX 0 /Location for pointer

or if none of the symbols match. When a match occurs, the assembler retrieves
the equivalent binary value. A program for comparing two words is listed in
Table 6-22. The comparison is accomplished by forming the 2's complement of
aword (as if it were a number) and arithmetically adding it to the second word.
If the result is zero, the two words are equal and a match occurs. If the result
is not zero, the words are not the same. This program can serve as a subroutine
in a table-lookup program.

Program Interrupt

The running time of input and output programs is made up primarily of the
time spent by the computer in waiting for the external device to set its flag. The
waiting loop that checks the flag keeps the computer occupied with a task that
wastes a large amount of time. This waiting time can be eliminated if the
interrupt facility is used to notify the computer when a flag is set. The advan-
tage of using the interrupt is that the information transfer is initiated upon
request from the external device. In the meantime, the computer can be busy
performing other useful tasks. Obviously, if no other program resides in
memory, there is nothing for the computer to do, so it might as well check for

TABLE 6-22 Program to Compare Two Words

LDA WD1 /Load first word

CMA

INC /Form 2's complement
ADD WD2 /Add second word
SZA /Skip if AC is zero

BUN UEQ /Branch to “unequal” routine
BUN EQL /Branch to “equal” routine
wD1, —
wD2, —

206 CHAPTER SIX Programming the Basic Computer

the flags. The interrupt facility is useful in a multiprogram environment when
two or more programs reside in memory at the same time.

Only one program can be executed at any given time even though two
or more programs may reside in memory. The program currently being exe-
cuted is referred to as the running program. The other programs are usually
waiting for input or output data. The function of the interrupt facility is to take
care of the data transfer of one (or more) program while another program is
currently being executed. The running program must include an ION instruc-
tion to turn the interrupt on. If the interrupt facility is not used, the program
must include an IOF instruction to turn it off. (The start switch of the computer
should also turn the interrupt off.)

The interrupt facility allows the running program to proceed until the
input or output device sets its ready flag. Whenever a flag is set to 1, the
computer completes the execution of the instruction in progress and then
acknowledges the interrupt. The result of this action is that the return address
is stored in location 0. The instruction in location 1 is then performed; this
initiates a service routine for the input or output transfer. The service routine
can be stored anywhere in memory provided a branch to the start of the routine
is stored in location 1. The service routine must have instructions to perform
the following tasks:

. Save contents of processor registers.

. Check which flag is set.

. Service the device whose flag is set.

. Restore contents of processor registers.
. Turn the interrupt facility on.

N U WN

. Return to the running program.

The contents of processor registers before the interrupt and after the
return to the running program must be the same; otherwise, the running
program may be in error. Since the service routine may use these registers, it
is necessary to save their contents at the beginning of the routine and restore
them at the end. The sequence by which the flags are checked dictates the
priority assigned to each device. Even though two or more flags may be set at
the same time, the devices nevertheless are serviced one at a time. The device
with higher priority is serviced first followed by the one with lower priority.

The occurrence of an interrupt disables the facility from further inter-
rupts. The service routine must turn the interrupt on before the return to the
running program. This will enable further interrupts while the computer is
executing the running program. The interrupt facility should not be turned on
until after the return address is inserted into the program counter.

An example of a program that services an interrupt is listed in Table 6-23.

SECTION 6.8 Input-Output Programming 207

TABLE 6-23 Program to Service an Interrupt

Location
0 ZRO, — /Return address stored here
1 BUN SRV /Branch to service routine
100 CLA /Portion of running program
101 ION [Turn on interrupt facility
102 LDA X
103 ADD Y /Interrupt occurs here
104 STAZ /Program returns here after interrupt
. /Interrupt service routine
200 SRV, STA SAC /Store content of AC
CIR /Move E into AC(1)
STA SE /Store content of E
SKI /Check input flag
BUN NXT [Flag is off, check next flag
INP [Flag is on, input character
ouT [Print character
STA PT11 /Store it in input buffer
ISZ PT1 /Increment input pointer
NXT, SKO /Check output flag

BUN EXT [Flag is off, exit
LDA PT21 /Load character from output buffer

ouT /Output character
ISZ PT2 /Increment output pointer
EXT, LDA SE /Restore value of AC(1)
CIL /Shift it to E
LDA SAC /Restore content of AC
ION Turn interrupt on
BUN ZROI /Return to running program
SAC, — /AC is stored here
SE, — /E is stored here
PT1, — [Pointer of input buffer
PT2, — /Pointer of output buffer

Location 0 is reserved for the return address. Location 1 has a branch instruc-
tion to the beginning of the service routine SRV. The portion of the running
program listed has an ION instruction that turns the interrupt on. Suppose that
an interrupt occurs while the computer is executing the instruction in location
103. The interrupt cycle stores the binary equivalent of hexadecimal 104 in
location 0 and branches to location 1. The branch instruction in location 1 sends
the computer to the service routine SRV.

208 cHAPTER SIX

Prog ing the Basic Comp

The service routine performs the six tasks mentioned above. The contents
of AC and E are stored in special locations. (These are the only processor
registers in the basic computer.) The flags are checked sequentially, the input
flag first and the output flag second. If any or both flags are set, an item of data
is transferred to or from the corresponding memory buffer. Before returning
to the running program the previous contents of E and AC are restored and
the interrupt facility is turned on. The last instruction causes a branch to the
address stored in location 0. This is the return address stored there previously
during the interrupt cycle. Hence the running program will continue from
location 104, where it was interrupted.

A typical computer may have many more input and output devices
connected to the interrupt facility. Furthermore, interrupt sources are not
limited to input and output transfers. Interrupts can be used for other pur-
poses, such as internal processing errors or special alarm conditions. Further
discussion of interrupts and some advanced concepts concerning this impor-
tant subject can be found in Sec. 11-5.

#1. The following program is stored in the memory unit of the basic computer.
Show the contents of the AC, PC, and IR (in hexadecimal), at the end, after
each instruction is executed. All numbers listed below are in hexadecimal.

Location Instruction

010 CLA
on ADD 016
02 BUN 014
013 HLT
014 AND 017
0is. BUN 013
016 CIAS

07 93C6

/2. The following program is a list of instructions in hexadecimal code. The
computer executes the instructions starting from address 100. What are the
mmdncm&emmmqwmd&admmawhn the computer
halts?

6-7.

6-8.

SECTION 68 Input-Output Programming 209

Location Instruction

100 5103
101 7200
102 7001
103 0000
104 7800
105 7020
106 C103

List the assembly language program (of the equfvalent binary instructions)
generated by a compiler from the following Fortran program. Assume in-
teger variables.

SUM =10

SUM =SUM+ A +B
DIF =DIF - C
SUM = SUM + DIF

Can the letter'I be used as a symbolic address in the assembly language
program defined for the basic computer? Justify the answer.

What happens during the first pass of the assembler (Fig. 6-1) if the line of
code that has a pseudoinstruction ORG or END also has a label? Modify the
flowchart to include an error message if this occurs.

A line of code in an assembly language program is as follows:
" DEC -35

. Show that four memory words are required to store the line of code and
give their binary content.

" b: Show that one memory word stores the binary translated code and gwe

its binary content.

a. Obtain the address symbol table generated for the program of Table 6-13
during the first pass of the assembler.

b. List the translated program in hexadecimal.

The pseudoinstruction BSS N (block started by symbol) is sometimes em-

ployed to reserve N memory words for a group of operands. For example,
the line of code

A, BSS 10

'meI:rns the assembler.that a block of 10 (decimal) locations is to be left free,
starting from location A. This is similar to the Fortran statement DIMEN-
SION A(10). Modify the flowchart of Fig. 6-1 to process this pseudoinstruc-
tion. - '

210 CHAPTER SIX Programming the Basic Computer

6-9.

6-10.
6-11.

6-12.

6-13.

6-14.

6-15.

Modify the flowchart of Fig. 6-2 to include an error message when a symbolic
address is not defined by a label.

Show how the MRI and non-MRI tables can be stored in memory.

List the assembly language program (of the equivalent binary instructions)
generated by a compiler for the following IF statement:

IF(A-B) 10, 20, 30

The program branches to statement 10 if A — B <0; to statement 20 if
A — B = 0; and to statement 30 if A — B > 0.

a. Explain in words what the following program accomplishes when it is
executed. What is the value of location CTR when the computer halts?

b. List the address symbol table obtained during the first pass of the
assembler.

c. List the hexadecimal code of the translated program.

ORG 100
CLE
CLA
STA CTR
LDA WRD
SZA
BUN ROT
BUN STP
ROT, CIL
SZE
BUN AGN
BUN ROT
AGN, CLE
ISZ CTR
SZA
BUN ROT
STP, HLT
CTR, HEX O
WRD, HEX 62C1
END

Write a program loop, using a pointer and a counter, that clears fo 0 the
contents of hexadecimal locations 500 through 5FF.

Write a program to multiply two positive numbers by a repeated addition
method. For example, to multiply 5 X 4, the program evaluates the product
by adding 5 four times, or5+5 + 5 + 5.

The multiplication program of Table 6-14 is not initialized. After the pro-
gram is executed once, location CTR will be left with zero. Show that if
the program is executed again starting from location 100, the loop will
be traversed 65536 times. Add the needed instructions to initialize the
program.

SECTION 6.8 Input-Output Programming 211

6-16. Write a program to multiply two unsigned positive numbers, each with 16
significant bits, to produce an unsigned double-precision product.

6-17. Write a program to multiply two signed numbers with negative numbers
being initially in signed-2's compl t rep ion. The product should
be single-precision and signed-2’s complement representation if negative.

~6-18. Write a program to subtract two double-precision numbers.
_ 619. Write a program that evaluates the logic exclusive-OR of two logic operands.

6-20. Write a program for the arithmetic shift-left operation. Branch to OVF if an
overflow occurs.

6-21. Write a subroutine to subtract two numbers. In the calling program, the
BSA instruction is followed by the subtrahend and minuend. The difference
is returned to the main program in the third location following the BSA
instruction.

6-22. Write a subroutine to complement each word in a block of data. In the calling
program, the BSA instruction is followed by two parameters: the starting
address of the block and the number of words in the block.

6-23. Write a subroutine to circulate E and AC four times to the right. If AC contains
hexadecimal 079C and E = 1, what are the contents of AC and E after the
subroutine is executed?

6-24. Write a program to accept input characters, pack two characters in one word
and store them in consecutive locations in a memory buffer. The first address
of the buffer is (400),6. The size of the buffer is (512),, words. If the buffer
overflows, the computer should halt.

6-25. Write a program to unpack two characters from location WRD and store
them in bits 0 through 7 of locations CH1 and CH2. Bits 9 through 15 should
contain zeros.

6-26. Obtain a flowchart for a program to check for a CR code (hexadecimal 0D)
in a memory buffer. The buffer contains two characters per word. When the
code for CR is encountered, the program transfers it to bits 0 through 7 of- . _
location LNE without disturbing bits 8 through 15.

6-27. Translate the service routine SRV from Table 6-23 to its equivalent hexadec-
imal code. Assume that the routine is stored starting from location 200.

6-28. Write an interrupt service routine that performs all the required functions
but the input device is serviced only if a special location, MOD, contains all
1’s. The output device is serviced only if location MOD contains all 0's.

[

| REFERENGES |

1. Booth, T. L., Introduction to Computer Engineering, 3rd ed. New York: John Wiley,
1984.

2. Gear, C. W., Computer Or
Hill, 1980.

ion and Prog ing, 3rd ed. New York: McGraw-

&

212

CHAPTER SIX Programming the Basic Computer

3.

10.

Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice
Hall, 1991.

. Gray, N. A. B., Introduction to Comp Syst Englewood Cliffs, NJ: Prentice

&)

Hall, 1987.

. Levy, H. M., and R. H. Eckhouse, Jr., Computer Programming and Architecture: The

VAX-11. Bedford, MA: Digital Press, 1980.

. Lewin, M. H., Logic Design and Computer Organization. Reading, MA: Addison-

Wesley, 1983.

. Prosser, F. P., and D. E. Winkel, The Art of Digital Design, 2nd ed. Englewood Cliffs,

NJ: Prentice Hall, 1987.

. Shiva, S. G., Computer Design and Architecture, 2nd ed. New York: HarperCollins

Publishers, 1991.

. Tanenbaum, A. S., Structured Computer Organization, 3rd ed. Englewood Cliffs, NJ:

Prentice Hall, 1990.

Wakerly, J. F., Microcomputer Architecture and Programming. New York: John Wiley,
1981.

