—— CHAPTER FIVE
Basic Computer
Organization
and Design

IN THIS CHAPTER

5-1 Instruction Codes

5-2 Computer Registers

5.3 Computer Instructions

5-4 Timing and Control

5.5 Instruction Cycle

56 Memory-Reference Instructions
5-7 Input-Output and Interrupt

58 Complete Computer Description
59 Design of Basic Computer

5-10 Design of Accumulator Logic

5-1 Instruction Codes

In this chapter we introduce a basic computer and show how its operation can
be specified with register transfer statements. The organization of the com-
puter is defined by its internal registers, the timing and control structure,
and the set of instructions that it uses. The design of the computer is then
carried out in detail. Although the basic computer presented in this chapter is
very small compared to commercial computers, it has the advantage of being
simple enough so we can demonstrate the design process without too many
complications.

The internal organization of a digital system is defined by the sequence
of microoperations it performs on data stored in its registers. The general-
purpose digital computer is capable of executing various microoperations and,
in addition, can be instructed as to what specific sequence of operations it must
perform. The user of a computer can control the process by means of a
program. A program is a set of instructions that specify the operations,

123

124 CHAPTER FIVE Basic Computer Organization and Design

instruction code

operation code

operands, and the sequence by which processing has to occur. The data-
processing task may be altered by specifying a new program with different
instructions or specifying the same instructions with different data.

A computer instruction is a binary code that specifies a sequence of
microoperations for the computer. Instruction codes together with data are
stored in memory. The computer reads each instruction from memory and
places it in a control register. The control then interprets the binary code of the
instruction and proceeds to execute it by issuing a sequence of microopera-
tions. Every computer has its own unique instruction set. The ability to store
and execute instructions, the stored program concept, is the most important
property of a general-purpose computer.

An instruction code is a group of bits that instruct the computer to
perform a specific operation. It is usually divided into parts, each having its
own particular interpretation. The most basic part of an instruction code is its
operation part. The operation code of an instruction is a group of bits that
define such operations as add, subtract, multiply, shift, and complement. The
number of bits required for the operation code of an instruction depends on
the total number of operations available in the computer. The operation code
must consist of at least n bits for a given 2" (or less) distinct operations. As an
illustration, consider a computer with 64 distinct operations, one of them being
an ADD operation. The operation code consists of six bits, with a bit configu-
ration 110010 assigned to the ADD operation. When this operation code is
decoded in the control unit, the computer issues control signals to read an
operand from memory and add the operand to a processor register.

At this point we must recognize the relationship between a computer
operation and a microoperation. An operation is part of an instruction stored
in computer memory. It is a binary code that tells the computer to perform a
specific operation. The control unit receives the instruction from memory and
interprets the operation code bits. It then issues a sequence of control signals
to initiate microoperations in internal computer registers. For every operation
code, the control issues a sequence of microoperations needed for the hard-
ware implementation of the specified operation. For this reason, an operation
code is sometimes called a macrooperation because it specifies a set of micro-
operations.

The operation part of an instruction code specifies the operation to be
performed. This operation must be performed on some data stored in proces-
sor registers or in memory. An instruction code must therefore specify not only
the operation but also the registers or the memory words where the operands
are to be found, as well as the register or memory word where the result is to
be stored. Memory words can be specified in instruction codes by their ad-
dress. Processor registers can be specified by assigning to the instruction
another binary code of k bits that specifies one of 2* registers. There are many
variations for arranging the binary code of instructions, and each computer has
its own particular instruction code format. Instruction code formats are con-

opcode

SECTION 5-1 Instruction Codes 125

ceived by computer designers who specify the architecture of the computer.
In this chapter we choose a particular instruction code to explain the basic
organization and design of digital computers.

Stored Program Organization

The simplest way to organize a computer is to have one processor register and
an instruction code format with two parts. The first part specifies the operation
to be performed and the second specifies an address. The memory address tells
the control where to find an operand in memory. This operand is read from
memory and used as the data to be operated on together with the data stored
in the processor register.

Figure 5-1 depicts this type of organization. Instructions are stored in one
section of memory and data in another. For a memory unit with 4096 words
we need 12 bits to specify an address since 2'2 = 4096. If we store each instruc-
tion code in one 16-bit memory word, we have available four bits for the
operation code (abbreviated opcode) to specify one out of 16 possible opera-
tions, and 12 bits to specify the address of an operand. The control reads a
16-bit instruction from the program portion of memory. It uses the 12-bit
address part of the instruction to read a 16-bit operand from the data portion
of memory. It then executes the operation specified by the operation code.

Figure 5-1 Stored program organization.

Memory

4096 x 16
—/__/‘
15 12 11 0

I Opcode l Address Instructions
(program)

Instruction format

—c

Operands
| (data)

/\/J

Binary operand

Processor register
(accumulator or AC)

126 cHAPTER FIVE Basic Computer Organization and Design

accumulator (AC)

immediate
instruction

effective address

Computers that have a single-processor register usually assign to it the name
accumulator and label it AC. The operation is performed with the memory
operand and the content of AC.

If an operation in an instruction code does not need an operand from
memory, the rest of the bits in the instruction can be used for other purposes.
For example, operations such as clear AC, complement AC, and increment AC
operate on data stored in the AC register. They do not need an operand from
memory. For these types of operations, the second part of the instruction code
(bits 0 through 11) is not needed for specifying a memory address and can be
used to specify other operations for the computer.

Indirect Address

It is sometimes convenient to use the address bits of an instruction code not
as an address but as the actual operand. When the second part of an instruction
code specifies an operand, the instruction is said to have an immediate
operand. When the second part specifies the address of an operand, the
instruction is said to have a direct address. This is in contrast to a third
possibility called indirect address, where the bits in the second part of the
instruction designate an address of a memory word in which the address of

. the operand is found. One bit of the instruction code can be used to distinguish

between a direct and an indirect address.

As an illustration of this configuration, consider the instruction code
format shown in Fig. 5-2(a). It consists of a 3-bit operation code, a 12-bit
address, and an indirect address mode bit designated by I. The mode bit is 0
for a direct address and 1 for an indirect address. A direct address instruction
is shown in Fig. 5-2(b). It is placed in address 22 in memory. The I bit is 0, so
the instruction is recognized as a direct address instruction. The opcode speci-
fies an ADD instruction, and the address part is the binary equivalent of 457.
The control finds the operand in memory at address 457 and adds it to the
content of AC. The instruction in address 35 shown in Fig. 5-2(c) has a mode
bit I = 1. Therefore, it is recognized as an indirect address instruction. The
address part is the binary equivalent of 300. The control goes to address 300
to find the address of the operand. The address of the operand in this case is
1350. The operand found in address 1350 is then added to the content of AC.
The indirect address instruction needs two references to memory to fetch an
operand. The first reference is needed to read the address of the operand; the
second is for the operand itself. We define the effective address to be the address
of the operand in a computation-type instruction or the target address in a
branch-type instruction. Thus the effective address in the instruction of Fig.
5-2(b) is 457 and in the instruction of Fig 5-2(c) is 1350.

The direct and indirect addressing modes are used in the computer
presented in this chapter. The memory word that holds the address of the
operand in an indirect address instruction is used as a pointer to an array of

2

IN)

457

SECTION 5.2 Computer Registers

15 14 0
[1] opeode Address
(a) Instruction format
Memory Memory
0 | ADDI 457 3511 | ADDl 300

300 1350

Operand
1350 Operand

(b) Direct address

®

(c) Indirect address

Figure 5-2 Demonstration of direct and indirect address.

127

data. The pointer could be placed in a processor register instead of memory

as done in commercial computers.

5.2 Computer Registers

Computer instructions are normally stored in consecutive memory locations
and are executed sequentially one at a time. The control reads an instruction
from a specific address in memory and executes it. It then continues by reading
the next instruction in sequence and executes it, and so on. This type of
instruction sequencing needs a counter to calculate the address of the next
instruction after execution of the current instruction is completed. It is also
necessary to provide a register in the control unit for storing the instruction

128 cHAPTER AVE Basic Computer Organization and Design

program
counter (PC)

code after it is read from memory. The computer needs processor registers for
manipulating data and a register for holding a memory address. These require-
ments dictate the register configuration shown in Fig. 5-3. The registers are also
listed in Table 5-1 together with a brief description of their function and the
number of bits that they contain.

The memory unit has a capacity of 4096 words and each word contains
16 bits. Twelve bits of an instruction word are needed to specify the address
of an operand. This leaves three bits for the operation part of the instruction
and a bit to specify a direct or indirect address. The data register (DR) holds
the operand read from memory. The accumulator (AC) register is a general-
purpose processing register. The instruction read from memory is placed in the
instruction register (IR). The temporary register (TR) is used for holding tem-
porary data during the processing.

TABLE 5-1 List of Registers for the Basic Computer

Register Number

symbol of bits Register name Function

DR 16 Data register Holds memory operand

AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction register Holds instruction code

PC 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data
INPR 8 Input register Holds input character
OUTR 8 Output register Holds output character

The memory address register (AR) has 12 bits since this is the width of
a memory address. The program counter (PC) also has 12 bits and it holds the
address of the next instruction to be read from memory after the current
instruction is executed. The PC goes through a counting sequence and causes
the computer to read sequential instructions previously stored in memory.
Instruction words are read and executed in sequence unless a branch instruc-
tion is encountered. A branch instruction calls for a transfer to a nonconsecu-
tive instruction in the program. The address part of a branch instruction is
transferred to PC to become the address of the next instruction. To read an
instruction, the content of PCis taken as the address for memory and a memory
read cycle is initiated. PC is then incremented by one, so it holds the address
of the next instruction in sequence.

Two registers are used for input and output. The input register (INPR)
receives an 8-bit character from an input device. The output register (OUTR)
holds an 8-bit character for an output device.

load (LD)

SECTION 5-2 Computer Registers 129

11 0

11 0

[«]

Memory
4096 words

15 0 16 bits per word
I |
15 0 15 0

[TR | I DR |

7 0 7 0 15 0
[ourr [mee] [4AC |

Figure 5-3 Basic computer registers and memory.

Common Bus System

The basic computer has eight registers, a memory unit, and a control unit (to
be presented in Sec. 5-4). Paths must be provided to transfer information from
one register to another and between memory and registers. The number of
wires will be excessive if connections are made between the outputs of each
register and the inputs of the other registers. A more efficient scheme for
transferring information in a system with many registers is to use a common
bus. We have shown in Sec. 4-3 how to construct a bus system using multiplex-
ers or three-state buffer gates. The connection of the registers and memory of
the basic computer to a common bus system is shown in Fig. 5-4.

The outputs of seven registers and memory are connected to the common
bus. The specific output that is selected for the bus lines at any given time is
determined from the binary value of the selection variables S,, S;, and S,. The
number along each output shows the decimal equivalent of the required binary
selection. For example, the number along the output of DR is 3. The 16-bit
outputs of DR are placed on the bus lines when S,5,5, = 011 since this is the
binary value of decimal 3. The lines from the common bus are connected to the
inputs of each register and the data inputs of the memory. The particular
register whose LD (load) input is enabled receives the data from the bus during
the next clock pulse transition. The memory receives the contents of the bus
when its write input is activated. The memory places its 16-bit output onto the
bus when the read input is activated and 5,5,5, = 111.

Four registers, DR, AC, IR, and TR, have 16 bits each. Two registers, AR

Figure 5-44 Basic computer registers connected to a common bus.

130

memory address

SECTION 5-2 Computer Registers 131

and PC, have 12 bits each since they hold a memory address. When the
contents of AR or PC are applied to the 16-bit common bus, the four most
significant bits are set to 0’s. When AR or PC receive information from the bus,
only the 12 least significant bits are transferred into the register.

The input register INPR and the output register OUTR have 8 bits each
and communicate with the eight least significant bits in the bus. INPR is
connected to provide information to the bus but OUTR can only receive infor-
mation from the bus. This is because INPR receives a character from an input
device which is then transferred to AC. OUTR receives a character from AC and
delivers it to an output device. There is no transfer from OUTR to any of the
other registers.

The 16 lines of the common bus receive information from six registers and
the memory unit. The bus lines are connected to the inputs of six registers and
the memory. Five registers have three control inputs: LD (load), INR (incre-
ment), and CLR (clear). This type of register is equivalent to a binary counter
with parallel load and synchronous clear similar to the one shown in Fig. 2-11.
The increment operation is achieved by enabling the count input of the coun-
ter. Two registers have only a LD input. This type of register is shown in
Fig. 2-7.

The input data and output data of the memory are connected to the
common bus, but the memory address is connected to AR. Therefore, AR must
always be used to specify a memory address. By using a single register for the
address, we eliminate the need for an address bus that would have been
needed otherwise. The content of any register can be specified for the memory
data input during a write operation. Similarly, any register can receive the data
from memory after a read operation except AC.

The 16 inputs of AC come from an adder and logic circuit. This circuit has
three sets of inputs. One set of 16-bit inputs come from the outputs of AC. They
are used to implement register microoperations such as complement AC and
shift AC. Another set of 16-bit inputs come from the data register DR. The
inputs from DR and AC are used for arithmetic and logic microoperations, such
as add DR to AC or AND DR to AC. The result of an addition is transferred
to AC and the end carry-out of the addition is transferred to flip-flop E (ex-
tended AC bit). A third set of 8-bit inputs come from the input register INPR.
The operation of INPR and OUTR is explained in Sec. 5-7.

Note that the content of any register can be applied onto the bus and an
operation can be performed in the adder and logic circuit during the same clock
cycle. The clock transition at the end of the cycle transfers the content of the
bus into the designated destination register and the output of the adder and
logic circuit into AC. For example, the two microoperations

DR « AC and AC « DR

can be executed at the same time. This can be done by placing the content of
AC on the bus (with $,5,5, = 100), enabling the LD (load) input of DR, trans-

132 cHAPTER FIVE Basic Computer Organization and Design

Instruction format

ferring the content of DR through the adder and logic circuit into AC, and
enabling the LD (load) input of AC, all during the same clock cycle. The two
transfers occur upon the arrival of the clock pulse transition at the end of the
clock cycle.

5-3 Computer Instructions

The basic computer has three instruction code formats, as shown in Fig. 5-5.
Each format has 16 bits. The operation code (opcode) part of the instruction
contains three bits and the meaning of the remaining 13 bits depends on the
operation code encountered. A memory-reference instruction uses 12 bits to
specify an address and one bit to specify the addressing mode I. I is equal to
0 for direct address and to 1 for indirect address (see Fig. 5-2). The register-
reference instructions are recognized by the operation code 111 with a 0 in the
leftmost bit (bit 15) of the instruction. A register-reference instruction specifies
an operation on or a test of the AC register. An operand from memory is not
needed; therefore, the other 12 bits are used to specify the operation or test to
be executed. Similarly, an input-output instruction does not need a reference
to memory and is recognized by the operation code 111 with a 1 in the leftmost
bit of the instruction. The remaining 12 bits are used to specify the type of
input—output operation or test performed.

The type of instruction is recognized by the computer control from the four
bits in positions 12 through 15 of the instruction. If the three opcode bits in
positions 12 though 14 are not equal to 111, the instruction is a memory-reference
type and the bit in position 15 is taken as the addressing mode I. If the 3-bit opcode
is equal to 111, control then inspects the bit in position 15. If this bit is 0, the

Figure 5-5 Basic computer instruction formats.

15 14 12 11 0
Il I Opcode I Address l (Opcode = 000 through 110)

(a) Memory - reference instruction
15 12 11 0
I 01 1 1 | Register operation —I (Opcode =111, [=0)

(b) Register - reference instruction

15 12 11 0
[v 1 1 1 [uooperation | (Opcode=111, 1=1)

(c) Input - output instruction

SECTION 5-3 Computer Instructions 133

instruction is a register-reference type. If the bit is 1, the instruction is an
input-output type. Note that the bit in position 15 of the instruction code is
designated by the symbol I but is not used as a mode bit when the operation
code is equal to 111.

Only three bits of the instruction are used for the operation code. It may
seem that the computer is restricted to a maximum of eight distinct operations.
However, since register-reference and input-output instructions use the remain-
ing 12 bits as part of the operation code, the total number of instructions can
exceed eight. In fact, the total number of instructions chosen for the basic
computer 15 equal 10 25.

The instructions for the computer are listed in Table 5-2. The symbol
designation is a three-letter word and represents an abbreviation intended for

TABLE 5-2 Basic Computer Instructions

Hexadecimal code

Symbol I=0 I=1 Description

AND Oxxx 8Bxxx AND memory word to AC
ADD 1xxx 9xxx Add memory word to AC
LDA 2xxx Axxx Load memory word to AC

STA 3oxx Bxxx Store content of AC in memory
BUN 4xxx Cxxx Branch unconditionally

BSA Sxoxx Dxxx Branch and save return address
1SZ 6xxx Exxx Increment and skip if zero
CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer

INP F800 Input character to AC

ouT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt on

IOF F040 Interrupt off

134 cHAPTER FIVE Basic Computer Organization and Design

hexadecimal code

programmers and users. The hexadecimal code is equal to the equivalent hexa-
decimal number of the binary code used for the instruction. By using the
hexadecimal equivalent we reduced the 16 bits of an instruction code to four digits
with each hexadecimal digit being equivalent to four bits. A memory-reference
instruction has an address part of 12 bits. The address part is denoted by three
x’s and stand for the three hexadecimal digits corresponding to the 12-bit address.
The last bit of the instruction is designated by the symbol I. When I = 0, the last
four bits of an instruction have a hexadecimal digit equivalent from 0 to 6 since
the last bit is 0. When I = 1, the hexadecimal digit equivalent of the last four
bits of the instruction ranges from 8 to E since the last bit is 1.

Register-reference instructions use 16 bits to specify an operation. The
leftmost four bits are always 0111, which is equivalent to hexadecimal 7. The
other three hexadecimal digits give the binary equivalent of the remaining 12
bits. The input—output instructions also use all 16 bits to specify an operation.
The last four bits are always 1111, equivalent to hexadecimal F.

Instruction Set Completeness

Before investigating the operations performed by the instructions, let us dis-
cuss the type of instructions that must be included in a computer. A computer
should have a set of instructions so that the user can construct machine
language programs to evaluate any function that is known to be computable.
The set of instructions are said to be complete if the computer includes a
sufficient number of instructions in each of the following categories:

1. Arithmetic, logical, and shift instructions

2. Instructions for moving information to and from memory and processor
registers

3. Program control instructions together with instructions that check
status conditions

4. Input and output instructions

Arithmetic, logical, and shift instructions provide computational capabil-
ities for processing the type of data that the user may wish to employ. The bulk
of the binary information in a digital computer is stored in memory, but all
computations are done in processor registers. Therefore, the user must have
the capability of moving information between these two units. Decision-
making capabilities are an important aspect of digital computers. For example,
two numbers can be compared, and if the first is greater than the second, it
may be necessary to proceed differently than if the second is greater than the
first. Program control instructions such as branch instructions are used to
change the sequence in which the program is executed. Input and output
instructions are needed for communication between the computer and the

clock pulses

SECTION 5-4 Timing and Control 135

user. Programs and data must be transferred into memory and results of
computations must be transferred back to the user.

The instructions listed in Table 5-2 constitute a minimum set that provides
all the capabilities mentioned above. There is one arithmetic instruction, ADD,
and two related instructions, complement AC(CMA) and increment AC(INC).
With these three instructions we can add and subtract binary numbers when
negative numbers are in signed-2’s complement representation. The circulate
instructions, CIR and CIL, can be used for arithmetic shifts as well as any other
type of shifts desired. Multiplication and division can be performed using
addition, subtraction, and shifting. There are three logic operations: AND,
complement AC(CMA), and clear AC(CLA). The AND and complement
provide a NAND operation. It can be shown that with the NAND operation
it is possible to implement all the other logic operations with two variables
(listed in Table 4-6). Moving information from memory to AC is accomplished
with the load AC(LDA) instruction. Storing information from AC into memory
is done with the store AC(STA) instruction. The branch instructions BUN, BSA,
and ISZ, together with the four skip instructions, provide capabilities for
program control and checking of status conditions. The input (INP) and output
(OUT) instructions cause information to be transferred between the computer
and external devices.

Although the set of instructions for the basic computer is complete, it is
not efficient because frequently used operations are not performed rapidly. An
efficient set of instructions will include such instructions as subtract, multiply,
OR, and exclusive-OR. These operations must be programmed in the basic
computer. The programs are presented in Chap. 6 together with other pro-
gramming examples for the basic computer. By using a limited number of
instructions it is possible to show the detailed logic design of the computer.
A more complete set of instructions would have made the design too complex.
In this way we can demonstrate the basic principles of computer organization
and design without going into excessive complex details. In Chap. 8 we present
a complete list of computer instructions that are included in most commercial
computers.

The function of each instruction listed in Table 5-2 and the microopera-
tions needed for their execution are presented in Secs. 5-5 through 5-7. We
delay this discussion because we must first consider the control unit and
understand its internal organization.

5-4 Timing and Control

The timing for all registers in the basic computer is controlled by a master clock
generator. The clock pulses are applied to all flip-flops and registers in the
system, including the flip-flops and registers in the control unit. The clock
pulses do not change the state of a register unless the register is enabled by

136 CHAPTER FIVE Basic Computer Organization and Design

hardwired control

microprogrammed
control

control unit

timing signals

a control signal. The control signals are generated in the control unit and
provide control inputs for the multiplexers in the common bus, control inputs
in processor registers, and microoperations for the accumulator.

There are two major types of control organization: hardwired control and
microprogrammed control. In the hardwired organization, the control logic is
implemented with gates, flip-flops, decoders, and other digital circuits. It has
the advantage that it can be optimized to produce a fast mode of operation.
In the microprogrammed organization, the control information is stored in a
control memory. The control memory is programmed to initiate the required
sequence of microoperations. A hardwired control, as the name implies, re-
quires changes in the wiring among the various components if the design has
to be modified or changed. In the microprogrammed control, any required
changes or modifications can be done by updating the microprogram in control
memory. A hardwired control for the basic computer is presented in this
section. A microprogrammed control unit for a similar computer is presented
in Chap. 7.

The block diagram of the control unit is shown in Fig. 5-6. It consists of
two decoders, a sequence counter, and a number of control logic gates. An
instruction read from memory is placed in the instruction register (IR). The
position of this register in the common bus system is indicated in Fig. 5-4. The
instruction register is shown again in Fig. 5-6, where it is divided into three
parts: the I bit, the operation code, and bits 0 through 11. The operation code
in bits 12 through 14 are decoded with a 3 x 8 decoder. The eight outputs of
the decoder are designated by the symbols D, through D,. The subscripted
decimal number is equivalent to the binary value of the corresponding opera-
tion code. Bit 15 of the instruction is transferred to a flip-flop designated by the
symbol 1. Bits 0 through 11 are applied to the control logic gates. The 4-bit
sequence counter can count in binary from 0 through 15. The outputs of the
counter are decoded into 16 timing signals T, through Tis. The internal logic
of the control gates will be derived later when we consider the design of the
computer in detail.

The sequence counter SC can be incremented or cleared synchronously
(see the counter of Fig. 2-11). Most of the time, the counter is incremented to
provide the sequence of timing signals out of the 4 X 16 decoder. Once in
awhile, the counter is cleared to 0, causing the next active timing signal to be
To. As an example, consider the case where SCis incremented to provide timing
signals To, Ty, T, T, and T, in sequence. At time T, SCis cleared to 0 if decoder
output D is active. This is expressed symbolically by the statement

DTy SC « 0
The timing diagram of Fig. 5-7 shows the time relationship of the control

signals. The sequence counter SC responds to the positive transition of the
clock. Initially, the CLR input of SC is active. The first positive transition of the

SECTION 54 Timing and Contol 137

.. Figure 56 Control unit of basic computer.

clock clears SC to 0, which in turn activates the timing signal T, out of the
decoder. T, is active during one clock cycle. The positive clock transition labeled
Tp in the diagram will trigger only those registers whose control inputs are
connected to timing signal T;. SC is incremented with every positive clock
transition, unless its CLR input is active. This produces the sequence of timing
signals To, Ty, T3, Ts, Ti, and so on, as shown in the diagram. (Note the

between the timing signal and its corresponding positive clock
transition.) If SC is not cleared, the timing signals will continue with Ts, Ty, up
to Tys and back to T;.

138

CHAPTER FIVE Basic Computer Organization and Design

To Ty T, T3 T, Ty

Clock Jﬂ
i

T

T,

T

T,

Dy

CLR —\
sC

Figure 5-7 Example of control timing signals.

The last three waveforms in Fig. 5-7 show how SC is cleared when
DsT, = 1. Output D; from the operation decoder becomes active at the end of
timing signal T,. When timing signal T, becomes active, the output of the AND
gate that implements the control function D;T, becomes active. This signal is
applied to the CLR input of SC. On the next positive clock transition (the one
marked T, in the diagram) the counter is cleared to 0. This causes the timing
signal T, to become active instead of Ts that would have been active if SC were
incremented instead of cleared.

A memory read or write cycle will be initiated with the rising edge of a
timing signal. It will be assumed that a memory cycle time is less than the clock
cycle time. According to this assumption, a memory read or write cycle ini-
tiated by a timing signal will be completed by the time the next clock goes
through its positive transition. The clock transition will then be used to load
the memory word into a register. This timing relationship is not valid in many
computers because the memory cycle time is usually longer than the processor
clock cycle. Insuch a case it is necessary to provide wait cycles in the processor

SECTION 5.5 Instruction Cycle 139

until the memory word is available. To facilitate the presentation, we will
assume that a wait period is not necessary in the basic computer.

To fully comprehend the operation of the computer, it is crucial that one
understands the timing relationship between the clock transition and the
timing signals. For example, the register transfer statement

Te: AR « PC

specifies a transfer of the content of PC into AR if timing signal T, is active. T,
is active during an entire clock cycle interval. During this time the content of
PC is placed onto the bus (with 5,5,S, = 010) and the LD (load) input of AR
is enabled. The actual transfer does not occur until the end of the clock cycle
when the clock goes through a positive transition. This same positive clock
transition increments the sequence counter SC from 0000 to 0001. The next
clock cycle has T, active and T, inactive.

5.5 Instruction Cycle

A program residing in the memory unit of the computer consists of a sequence
of instructions. The program is executed in the computer by going through a
cycle for each instruction. Each instruction cycle in turn is subdivided into a
sequence of subcycles or phases. In the basic computer each instruction cycle
consists of the following phases:

1. Fetch an instruction from memory.

2. Decode the instruction.

3. Read the effective address from memory if the instruction has an indi-
rect address.

4. Execute the instruction.

Upon the completion of step 4, the control goes back to step 1 to fetch, decode,
and execute the next instruction. This process continues indefinitely unless a
HALT instruction is encountered.

Fetch and Decode

Initially, the program counter PC is loaded with the address of the first instruc-
tion in the program. The sequence counter SC is cleared to 0, providing a
decoded timing signal T,. After each clock pulse, SC is incremented by one,
so that the timing signals go through a sequence T,, Ty, T, and so on. The
microoperations for the fetch and decode phases can be specified by the
following register transfer statements.

140 cHAPTER FIVE Basic Computer Organization and Design

Tp: AR «PC
Ti: IR<M[AR], PC<PC +1
T;: D, ..., D;<Decode IR(12-14), AR «IR(0-11), I« IR(15)

Since only AR is connected to the address inputs of memory, it is neces-
sary to transfer the address from PC to AR during the clock transition associ-
ated with timing signal To. The instruction read from memory is then placed
in the instruction register IR with the clock transition associated with timing

T

To] Si Bus

Fﬂ Memory unit 7

E Read

Address

Clock

Common bus

Figure 5-8 Register transfers for the fetch phase.

SECTION 5-5 Instruction Cycle 141

signal T;. At the same time, PC is incremented by one to prepare it for the
address of the next instruction in the program. At time T, the operation code
in IR is decoded, the indirect bit is transferred to flip-flop I, and the address
part of the instruction is transferred to AR. Note that SC is incremented after
each clock pulse to produce the sequence To, Ty, and Te.

Figure 5-8 shows how the first two register transfer statements are imple-
mented in the bus system. To provide the data path for the transfer of PC to
AR we must apply timing signal T, to achieve the following connection:

1. Place the content of PC onto the bus by making the bus selection inputs
5,550 equal to 010.

2. Transfer the content of the bus to AR by enabling the LD input of AR.

The next clock transition initiates the transfer from PC to AR since T, = 1. In
DG b7 Lrpntameny e secona stdment

T IR<M[AR], PC«PC +1

it is necessary to use timing signal T, to provide the following connections in
the bus system.

1. Enable the read input of memory.

2. Place the content of memory onto the bus by making 5,5,5, = 111.
3. Transfer the content of the bus to IR by enabling the LD input of IR.
4. Increment PC by enabling the INR input of PC.

The next clock transition initiates the read and increment operations since
T,=1.

Figure 5-8 duplicates a portion of the bus system and shows how Ty and
T are connected to the control inputs of the registers, the memory, and the
bus selection inputs. Multiple input OR gates are included in the diagram
because there are other control functions that will initiate similar operations.

Determine the Type of Instruction
The timing signal that is active after the decoding is Ts. During time T, the
control unit determines the type of instruction that was just read from memory.
The flowchart of Fig. 5-9 presents an initial configuration for the instruction
cycle and shows how the control determines the instruction type after the
decoding. The three possible instruction types available in the basic computer
are specified in Fig. 5-5.

Decoder output D, is equal to 1 if the operation code is equal to binary
111. From Fig. 5-5 we determine that if D, = 1, the instruction must be a

142 CHAPTER FIVE Basic Computer Organization and Design

Start
SC«0
' To
AR« PC
T,
| IR~ MI[AR)], PC~PC+1 I
T;
Decode operation code in /R (12 - 14)
AR « IR (0-11), I « IR (15)
(Registeror I/0) =1 b =0 (Memory-reference)
' 7 '
oy =1 =0 (register) (indirect) =1 =0 (direct)
I I
Ty Ty Ty Ty
Execute Execute IAR - M[AR]l | Nothing
input-output register-refe
instruction instruction
SC«0 SC«0
Execute
memory-reference
instruction
SC«0

Figure 5-9 Flowchart for instruction cycle (initial configuration).

register-reference or input—output type. If D, = 0, the operation code must be
one of the other seven values 000 through 110, specifying a memory-reference
instruction. Control then inspects the value of the first bit of the instruction,
which is now available in flip-flop I. If D, = 0 and I = 1, we have a memory-
reference instruction with an indirect address. It is then necessary to read the

indirect address

SECTION 5-5 Instruction Cycle 143

effective address from memory. The microoperation for the indirect address
condition can be symbolized by the register transfer statement

AR < MIAR]

Initially, AR holds the address part of the instruction. This address is used
during the memory read operation. The word at the address given by AR is
read from memory and placed on the common bus. The LD input of AR is then
enabled to receive the indirect address that resided in the 12 least significant
bits of the memory word.

The three instruction types are subdivided into four separate paths. The
selected operation is activated with the clock transition associated with timing
signal T;. This can be symbolized as follows:

D;IT;: AR «<—MIAR]
D;I'T;: Nothing
D;I'T;: Execute a register-reference instruction
D,ITs: Execute an input-output instruction

When a memory-reference instruction with I = 0 is encountered, it is not
necessary to do anything since the effective address is already in AR. However,
the sequence counter SC must be incremented when D;T; = 1, so that the
execution of the memory-reference instruction can be continued with timing
variable T,. A register-reference or input-output instruction can be executed
with the clock associated with timing signal T;. After the instruction is executed,
SC is cleared to 0 and control returns to the fetch phase with T, = 1.

Note that the sequence counter SC is either incremented or cleared to 0
with every positive clock transition. We will adopt the convention that if SC
is incremented, we will not write the statement SC « SC + 1, but it will be
implied that the control goes to the next timing signal in sequence. When SC
is to be cleared, we will include the statement SC «0.

The register transfers needed for the execution of the register-reference
instructions are presented in this section. The memory-reference instructions
are explained in the next section. The input-output instructions are included in
Sec. 5-7.

Register-Reference Instructions
Register-reference instructions are recognized by the control when D; = 1 and
I = 0. These instructions use bits 0 through 11 of the instruction code to specify
one of 12 instructions. These 12 bits are available in IR(0-11). They were also
transferred to AR during time Ta.

The control functions and microoperations for the register-reference in-

144 cHAPTER FIVE Basic Computer Organization and Design

structions are listed in Table 5-3. These instructions are executed with the clock
transition associated with timing variable Ts. Each control function needs the
Boolean relation D,I'T;, which we designate for convenience by the symbol 7.
The control function is distinguished by one of the bits in IR(0-11). By assigning
the symbol B; to bit i of IR, all control functions can be simply denoted by rB;.
For example, the instruction CLA has the hexadecimal code 7800 (see Table 5-2),
which gives the binary equivalent 0111 1000 0000 0000. The first bit is a zero
and is equivalent to I’. The next three bits constitute the operation code and
are recognized from decoder output D;. Bit 11in IR is 1 and is recognized from
By;. The control function that initiates the microoperation for this instruction
is D,I'T3By, = rBy. The execution of a register-reference instruction is com-
pleted at time T. The sequence counter SC is cleared to 0 and the control goes
back to fetch the next instruction with timing signal To.

The first seven register-reference instructions perform clear, comple-
ment, circular shift, and increment microoperations on the AC or E registers.
The next four instructions cause a skip of the next instruction in sequence when
a stated condition is satisfied. The skipping of the instruction is achieved by
incrementing PC once again (in addition, it is being incremented during the
fetch phase at time T;). The condition control statements must be recognized
as part of the control conditions. The AC is positive when the sign bit in
AC(15) = 0; itis negative when AC(15) = 1. The content of AC is zero (AC = 0)
if all the flip-flops of the register are zero. The HLT instruction clears a
start-stop flip-flop S and stops the sequence counter from counting. To restore
the operation of the computer, the start-stop flip-flop must be set manually.

TABLE 5-3 Execution of Register-Reference Instructions

D;I'T; = r (common to all register-reference instructions)
IR(i) = B, [bit in IR(0-11) that specifies the operation]

r. SC«0 Clear SC
CLA rBy: AC«0 Clear AC
CLE 1By E<0___ Clear E
CMA rB;: AC<«AC Complement AC
CME rBy: E<«FE Complement E

CIR rB;: AC<shr AC, AC(15)«E, E<«—AC(0) Circulate right
CIL rBs: AC<«shl AC, AC(0)«<E, E«AC(15) Circulate left
INC 7rB;: AC<AC+1 Increment AC
SPA rB,: If (AC(15) = 0) then (PC«PC + 1) Skip if positive
SNA rBy: If (AC(15) = 1) then (PC«PC + 1) Skip if negative
SZA rB,: If (AC = 0) then PC«—PC + 1) Skip if AC zero
SZE rBy: If (E =0) then (PC«—PC + 1) Skip if E zero
HLT rB,: S§<«0(Sis a start-stop flip-flop) Halt computer

effective address

SECTION 5-6 Memory-Reference Instructions 145

5.6 Memory-Reference Instructions

In order to specify the microoperations needed for the execution of each
instruction, it is necessary that the function that they are intended to perform
be defined precisely. Looking back to Table 5-2, where the instructions are
listed, we find that some instructions have an ambiguous description. This is
because the explanation of an instruction in words is usually lengthy, and not
enough space is available in the table for such a lengthy explanation. We will
now show that the function of the memory-reference instructions can be
defined precisely by means of register transfer notation.

Table 5-4 lists the seven memory-reference instructions. The decoded
output D;fori = 0, 1, 2, 3, 4, 5, and 6 from the operation decoder that belongs
to each instruction is included in the table. The effective address of the instruc-
tion is in the address register AR and was placed there during timing signal
T, when I = 0, or during timing signal Ty when I = 1. The execution of the
memory-reference instructions starts with timing signal T,. The symbolic de-
scription of each instruction is specified in the table in terms of register transfer
notation. The actual execution of the instruction in the bus system will require
a sequence of microoperations. This is because data stored in memory cannot
be processed directly. The data must be read from memory to a register where
they can be operated on with logic circuits. We now explain the operation of
each instruction and list the control functions and microoperations needed for
their execution. A flowchart that summarizes all the microoperations is pre-
sented at the end of this section.

TABLE 5-4 Memory-Reference Instructions

Operation
Symbol decoder Symbolic description
AND Do AC«—AC N M[AR]
ADD D, AC«AC + M[AR], E«Cou
LDA D, AC «—MI[AR]
STA D, M[AR]) < AC
BUN D, PC+—AR
BSA Ds M[AR]«<PC, PC+«AR +1
ISZ D¢ M[AR) < MI[AR] + 1,

If M[AR] + 1 = 0 then PC«PC + 1

AND to AC

This is an instruction that performs the AND logic operation on pairs of bits
in AC and the memory word specified by the effective address. The result of

146 CHAPTER FIVE Basic Computer Organization and Design

the operation is transferred to AC. The microoperations that execute this
instruction are:

DTs DR<MIAR]
DJs AC<—ACADR, SC<«0

The control function for this instruction uses the operation decoder D, since
this output of the decoder is active when the instruction has an AND operation
whose binary code value is 000. Two timing signals are needed to execute the
instruction. The clock transition associated with timing signal T, transfers the
operand from memory into DR. The clock transition associated with the next
timing signal Ts transfers to AC the result of the AND logic operation between
the contents of DR and AC. The same clock transition clears SC to 0, transfer-
ring control to timing signal T, to start a new instruction cycle.

ADD to AC

This instruction adds the content of the memory word specified by the effective
address to the value of AC. The sum is transferred into AC and the output carry
Cou is transferred to the E (extended accumulator) flip-flop. The microopera-
tions needed to execute this instruction are

DiT¢ DR « MI[AR]
D\Ts: AC « AC+ DR, E « Cyy, SC « 0

The same two timing signals, T, and Ts, are used again but with operation
decoder D, instead of D,, which was used for the AND instruction. After the
instruction is fetched from memory and decoded, only one output of the
operation decoder will be active, and that output determines the sequence of
microoperations that the control follows during the execution of a memory-ref-
erence instruction.

LDA: Load to AC

This instruction transfers the memory word specified by the effective address
to AC. The microoperations needed to execute this instruction are

D;T¢ DR « M[AR]
D;Ts. AC « DR, SC « 0

Looking back at the bus system shown in Fig. 5-4 we note that there is no direct
path from the bus into AC. The adder and logic circuit receive information from
DR which can be transferred into AC. Therefore, it is necessary to read the

SECTION 5.6 Memory-Reference Instructions 147

memory word into DR first and then transfer the content of DR into AC. The
reason for not connecting the bus to the inputs of AC is the delay encountered
in the adder and logic circuit. It is assumed that the time it takes to read from
memory and transfer the word through the bus as well as the adder and logic
circuit is more than the time of one clock cycle. By not connecting the bus to
the inputs of AC we can maintain one clock cycle per microoperation.

STA: Store AC

This instruction stores the content of AC into the memory word specified by
the effective address. Since the output of AC is applied to the bus and the data
input of memory is connected to the bus, we can execute this instruction with
one microoperation:

D;T¢ MIAR] « AC, SC « 0

BUN: Branch Unconditionally

This instruction transfers the program to the instruction specified by the
effective address. Remember that PC holds the address of the instruction to be
read from memory in the next instruction cycle. PC is incremented at time T,
to prepare it for the address of the next instruction in the program sequence.
The BUN instruction allows the programmer to specify an instruction out of
sequence and we say that the program branches (or jumps) unconditionally.
The instruction is executed with one microoperation:

DTy: PC < AR, SC <0

The effective address from AR is transferred through the common bus to PC.
Resetting SC to 0 transfers control to T,. The next instruction is then fetched
and executed from the memory address given by the new value in PC.

BSA: Branch and Save Return Address

This instruction is useful for branching to a portion of the program called a
subroutine or procedure. When executed, the BSA instruction stores the ad-
dress of the next instruction in sequence (which is available in PC) into a
memory location specified by the effective address. The effective address plus
one is then transferred to PC to serve as the address of the first instruction in
the subroutine. This operation was specified in Table 5-4 with the following
register transfer:

MIAR] « PC, PC « AR +1

148 cHAPTER FIVE Basic Computer Organization and Design

return address

subroutine call

A numerical example that demonstrates how this instruction is used with
a subroutine is shown in Fig. 5-10. The BSA instruction is assumed to be in
memory at address 20. The I bitis 0 and the address part of the instruction has
the binary equivalent of 135. After the fetch and decode phases, PC contains
21, which is the address of the next instruction in the program (referred to as
the return address). AR holds the effective address 135. This is shown in part
(a) of the figure. The BSA instruction performs the following numerical oper-
ation:

M[135] « 21, PC « 135+ 1 =136

The result of this operation is shown in part (b) of the figure. The return address
21 is stored in memory location 135 and control continues with the subroutine
program starting from address 136. The return to the original program (at
address 21) is accomplished by means of an indirect BUN instruction placed
at the end of the subroutine. When this instruction is executed, control goes
to the indirect phase to read the effective address at location 135, where it finds
the previously saved address 21. When the BUN instruction is executed, the
effective address 21 is transferred to PC. The next instruction cycle finds PC
with the value 21, so control continues to execute the instruction at the return
address.

The BSA instruction performs the function usually referred to as a sub-
routine call. Theindirect BUN instruction at the end of the subroutine performs
the function referred to as a subroutine return. In most commercial computers,
the return address associated with a subroutine is stored in either a processor

Figure 5-10 Example of BSA instruction execution.

Memory Memory
20 0 BSA 135 20 0 BSA 135
PC=21 Next instruction 21 Next instruction
AR=135 135 21
136 Subroutine PC=136 Subroutine
1 BUN 135 1 BUN 135

(a) Memory, PC, and AR at time T,

(b) Memory and PC after execution

SECTION 5-6 Memory-Reference Instructions 149

register or in a portion of memory called a stack. This is discussed in more detail
in Sec. 8-7.

It is not possible to perform the operation of the BSA instruction in one
clock cycle when we use the bus system of the basic computer. To use the
memory and the bus properly, the BSA instruction must be executed with a
sequence of two microoperations:

DsTy: M[AR] <« PC, AR < AR +1
DsTs: PC « AR, SC «< 0

Timing signal T, initiates a memory write operation, places the content of PC
onto the bus, and enables the INR input of AR. The memory write operation
is completed and AR is incremented by the time the next clock transition
occurs. The bus is used at Ts to transfer the content of AR to PC.

ISZ: Increment and Skip if Zero

This instruction increments the word specified by the effective address, and
if theincremented value is equal to 0, PC is incremented by 1. The programmer
usually stores a negative number (in 2’s complement) in the memory word. As
this negative number is repeatedly incremented by one, it eventually reaches
the value of zero. At that time PC is incremented by one in order to skip the
next instruction in the program.

Since it is not possible to increment a word inside the memory, it is
necessary to read the word into DR, increment DR, and store the word back
into memory. This is done with the following sequence of microoperations:

DeT¢ DR « MIAR]
DeTs: DR < DR +1
D¢Te: MIAR] « DR, if (DR = 0) then (PC « PC + 1), SC « 0

Control Flowchart

A flowchart showing all microoperations for the execution of the seven mem-
ory-reference instructions is shown in Fig. 5-11. The control functions are
indicated on top of each box. The microoperations that are performed during
time Ty, Ts, or Ts depend on the operation code value. This is indicated in the
flowchart by six different paths, one of which the control takes after the
instruction is decoded. The sequence counter SC is cleared to 0 with the last
timing signal in each case. This causes a transfer of control to timing signal T,
to start the next instruction cycle.

Note that we need only seven timing signals to execute the longest
instruction (ISZ). The computer can be designed with a 3-bit sequence counter.
The reason for using a 4-bit counter for SC is to provide additional timing
signals for other instructions that are presented in the problems section.

150 CHAPTER FIVE Basic Computer Organization and Design

Memory - reference instruction

AND ADD LDA STA
DT, D\T, DT, DT,
DR « M[AR] I | DR « M [MAR] | | DR « M [AR]) M [AR] « AC
SC«0
DoT;s D\Ts D,Ts
AC « ACADR AC « AC + DR AC « DR
E «Cou
SCe«0 SC«0 SC«0
BUN BSA ISZ
D,T, DT, DT,
PC « AR M [AR) « PC DR « M [AR]
SC«0 AR AR+ 1
D;Ts DqTs
PC « AR DR « DR +1
SC«0
DqTg

M [AR) « DR
If (DR = 0)
then (PC « PC + 1)
SC«0

Figure 5-11 Flowchart for memory-reference instructions.

5-7 Input—Output and Interrupt

A computer can serve no useful purpose unless it communicates with the
external environment. Instructions and data stored in memory must come
from some input device. Computational results must be transmitted to the user
through some output device. Commercial computers include many types of

input register

SECTION 5.7 Input-Output and Interrupt 151

input and output devices. To demonstrate the most basic requirements for
input and output communication, we will use as an illustration a terminal unit
with a keyboard and printer. Input-output organization is dicsussed further in
Chap. 11.

Input—Output Configuration
The terminal sends and receives serial information. Each quantity of informa-
tion has eight bits of an alphanumeric code. The serial information from the
keyboard is shifted into the input register INPR. The serial information for the
printer is stored in the output register OUTR. These two registers communicate
with a communication interface serially and with the AC in parallel. The
input—output configuration is shown in Fig. 5-12. The transmitter interface re-
ceives serial information from the keyboard and transmits it to INPR. The re-
ceiver interface receives information from OUTR and sends it to the printer
serially. The operation of the serial communication interface is explained in
Sec. 11-3.

The input register INPR consists of eight bits and holds an alphanumeric
input information. The 1-bit input flag FGI is a control flip-flop. The flag bit is

Figure 5-12 Input-output configuration.

Input - output Serial Computer
terminal communication registers and
interface flip-flops
FGo
Printer Receiver R]
interface ouTn

Transmi | —
Keyboard interface 1 INPR I

152 CHAPTER FIVE Basic Computer Organization and Design

output register

set to 1 when new information is available in the input device and is cleared
to 0 when the information is accepted by the computer. The flag is needed to
synchronize the timing rate difference between the input device and the
computer. The process of information transfer is as follows. Initially, the input
flag FGl is cleared to 0. When a key is struck in the keyboard, an 8-bit alphanu-
meric code is shifted into INPR and the input flag FGI is set to 1. As long as
the flag is set, the information in INPR cannot be changed by striking another
key. The computer checks the flag bit; if it is 1, the information from INPR is
transferred in parallel into AC and FGI is cleared to 0. Once the flag is cleared,
new information can be shifted into INPR by striking another key.

The output register OUTR works similarly but the direction of informa-
tion flow is reversed. Initially, the output flag FGO is set to 1. The computer
checks the flag bit; if it is 1, the information from AC is transferred in parallel
to OUTR and FGO is cleared to 0. The output device accepts the coded infor-
mation, prints the corresponding character, and when the operation is com-
pleted, it sets FGO to 1. The computer does not load a new character into OUTR
when FGO is 0 because this condition indicates that the output device is in the
process of printing the character.

Input—Output Instructions

Input and output instructions are needed for transferring information to and
from AC register, for checking the flag bits, and for controlling the interrupt
facility. Input—output instructions have an operation code 1111 and are recog-
nized by the control when D; = 1and I = 1. The remaining bits of the instruc-
tion specify the particular operation. The control functions and microopera-
tions for the input—output instructions are listed in Table 5-5. These instructions
are executed with the clock transition associated with timing signal T,. Each
control function needs a Boolean relation D,IT;, which we designate for con-
venience by the symbol p. The control function is distinguished by one of the
bits in IR(6-11). By assigning the symbol B; to bit i of IR, all control functions

TABLE 5-5 Input-Output Instructions

D,IT; = p (common to all input-output instructions)
IR(i) = B; [bit in IR(6-11) that specifies the instruction)

p: SC«0 Clear SC
INP pBu: AC(0-7)«<INPR, FGI<0 Input character
OUT pBi: OUTR<«AC(0-7), FGO <0 Output character

SKI pBy: If (FGI = 1) then (PC«—PC + 1) Skip on input flag

SKO pBs: If (FGO = 1) then (PC «—PC + 1) Skip on output flag
ION pBs. IEN <1 Interrupt enable on
IOF pBs: IEN <0 Interrupt enable off

SECTION 5-7 Input-Output and Interrupt 153

can be denoted by pB; for i = 6 though 11. The sequence counter SC is cleared
to 0 when p = D,IT; = 1.

The INP instruction transfers the input information from INPR into the
eight low-order bits of AC and also clears the input flag to 0. The OUT
instruction transfers the eight least significant bits of AC into the output register
OUTR and clears the output flag to 0. The next two instructions in Table 5-5
check the status of the flags and cause a skip of the next instruction if the flag
is 1. The instruction that is skipped will normally be a branch instruction to
return and check the flag again. The branch instruction is not skipped if the
flag is 0. If the flag is 1, the branch instruction is skipped and an input or output
instruction is executed. (Examples of input and output programs are given
in Sec. 6-8.) The last two instructions set and clear an interrupt enable flip-
flop IEN. The purpose of IEN is explained in conjunction with the interrupt
operation.

Program Interrupt

The process of communication just described is referred to as programmed
control transfer. The computer keeps checking the flag bit, and when it finds
it set, it initiates an information transfer. The difference of information flow
rate between the computer and that of the input-output device makes this type
of transfer inefficient. To see why this is inefficient, consider a computer that can
go through an instruction cycle in 1 us. Assume that the input—output device can
transfer information at a maximum rate of 10 characters per second. This is
equivalent to one character every 100,000 ps. Two instructions are executed when
the computer checks the flag bit and decides not to transfer the information. This
means that at the maximum rate, the computer will check the flag 50,000 times
between each transfer. The computer is wasting time while checking the flag
instead of doing some other useful processing task.

An alternative to the programmed controlled procedure is to let the external
device inform the computer when it is ready for the transfer. In the meantime the
computer can be busy with other tasks. This type of transfer uses the interrupt
facility. While the computer is running a program, it does not check the flags.
However, when a flag is set, the computer is momentarily interrupted from
proceeding with the current program and is informed of the fact that a flag has
been set. The computer deviates momentarily from what it is doing to take care
of the input or output transfer. It then returns to the current program to continue
what it was doing before the interrupt.

The interrupt enable flip-flop IEN can be set and cleared with two instruc-
tions. When IEN is cleared to 0 (with the IOF instruction), the flags cannot
interrupt the computer. When IEN is set to 1 (with the ION instruction), the
computer can be interrupted. These two instructions provide the programmer
with the capability of making a decision as to whether or not to use the
interrupt facility.

154 CHAPTER FIVE Basic Computer Organization and Design

interrupt cycle

Instruction cycle =0 R =1 Interrupt cycle
Fetgh :nd ::!ecode Store return address
instruction in location 0

M[0) « PC

!

l

Execute
instruction
Branch to location 1
PCe1
IEN <0
Re0

Figure 5-13 Flowchart for interrupt cycle.

The way that the interrupt is handled by the computer can be explained
by means of the flowchart of Fig. 5-13. An interrupt flip-flop R is included in
the computer. When R = 0, the computer goes through an instruction cycle.
During the execute phase of the instruction cycle IEN is checked by the control.
If it is 0, it indicates that the programmer does not want to use the interrupt,
so control continues with the next instruction cycle. If IEN is 1, control checks
the flag bits. If both flags are 0, it indicates that neither the input nor the output
registers are ready for transfer of information. In this case, control continues
with the next instruction cycle. If either flag is set to 1 while IEN = 1, flip-flop
R is set to 1. At the end of the execute phase, control checks the value of R,
and if it is equal to 1, it goes to an interrupt cycle instead of an instruction cycle.

The interrupt cycle is a hardware implementation of a branch and save
return address operation. The return address available in PC is stored in a
specific location where it can be found later when the program returns to the
instruction at which it was interrupted. This location may be a processor

SECTION 5-7 Input-Output and Interrupt 155

register, a memory stack, or a specific memory location. Here we choose the
memory location at address 0 as the place for storing the return address.
Control then inserts address 1 into PC and clears IEN and R so that no more
interruptions can occur until the interrupt request from the flag has been
serviced.

An example that shows what happens during the interrupt cycle is shown
in Fig. 5-14. Suppose that an interrupt occurs and R is set to 1 while the control
is executing the instruction at address 255. At this time, the return address 256
is in PC. The programmer has previously placed an input—output service
program in memory starting from address 1120 and a BUN 1120 instruction at
address 1. This is shown in Fig. 5-14(a).

When control reaches timing signal T, and finds that R = 1, it proceeds
with the interrupt cycle. The content of PC (256) is stored in memory location
0, PCis setto 1, and R is cleared to 0. At the beginning of the next instruction
cycle, the instruction that is read from memory is in address 1 since this is the
content of PC. The branch instruction at address 1 causes the program to
transfer to the input—output service program at address 1120. This program
checks the flags, determines which flag is set, and then transfers the required input
or output information. Once this is done, the instruction ION is executed to set
IEN to 1 (to enable further interrupts), and the program returns to the location
where it was interrupted. This is shown in Fig. 5-14(b).

The instruction that returns the computer to the original place in the main
program is a branch indirect instruction with an address part of 0. This instruc-
tion is placed at the end of the /O service program. After this instruction is

Figure 5-14 Demonstration of the interrupt cycle.

Memory Memory
0 0 256
1[0 BUN 1120 PC=1|0 BUN 1120
255 . 255)
PC =256 Main 256 Main
program program
1120 1120
10 10
program program
1 BUN 0 1 BUN 0

(a) Before interrupt (b) After interrupt cycle

156 CHAPTER FIVE Basic Computer Organization and Design

modified fetch phase

read from memory during the fetch phase, control goes to the indirect phase
(because I = 1) toread the effective address. The effective address is in location
0 and is the return address that was stored there during the previous interrupt
cycle. The execution of the indirect BUN instruction results in placing into PC
the return address from location 0.

Interrupt Cycle

We are now ready to list the register transfer statements for the interrupt cycle.
The interrupt cycle is initiated after the last execute phase if the interrupt
flip-flop R is equal to 1. This flip-flop is set to 1 if IEN = 1 and either FGI or
FGO are equal to 1. This can happen with any clock transition except when
timing signals T, Ty, or T; are active. The condition for setting flip-flop R to
1 can be expressed with the following register transfer statement:

TeTiT:(IEN)(FGI + FGO): R<«1

The symbol + between FGI and FGO in the control function designates a logic
OR operation. This is ANDed with IEN and ToT;T;.

We now modify the fetch and decode phases of the instruction cycle.
Instead of using only timing signals To, Ty, and T, (as shown in Fig. 5-9) we
will AND the three timing signals with R’ so that the fetch and decode phases
will be recognized from the three control functions R'T,, R'T;, and R'T,. The
reason for this is that after the instruction is executed and SC is cleared to 0,
the control will go through a fetch phase only if R = 0. Otherwise, if R = 1,
the control will go through an interrupt cycle. The interrupt cycle stores the
return address (available in PC) into memory location 0, branches to memory
location 1, and clears IEN, R, and SC to 0. This can be done with the following
sequence of microoperations:

RTy;: AR<0, TR«PC
RT;: MI[AR]«<TR, PC<«0
RT;; PC«PC+1, IEN«0, R<«0, SC«0

During the first timing signal AR is cleared to 0, and the content of PC is
transferred to the temporary register TR. With the second timing signal, the
return address is stored in memory at location 0 and PC is cleared to 0. The
third timing signal increments PC to 1, clears IEN and R, and control goes back
to T, by clearing SC to 0. The beginning of the next instruction cycle has the
condition R'Ty and the content of PC is equal to 1. The control then goes
through an instruction cycle that fetches and executes the BUN instruction in
location 1.

flowchart for basic
computer

SECTION 59 Design of Basic Computer 157

5.8 Complete Computer Description

The final flowchart of the instruction cycle, including the interrupt cycle for the
basic computer, is shown in Fig. 5-15. The interrupt flip-flop R may be set at
any time during the indirect or execute phases. Control returns to timing signal
T, after SC is cleared to 0. If R = 1, the computer goes through an interrupt
cycle. If R = 0, the computer goes through an instruction cycle. If the instruc-
tion is one of the memory-reference instructions, the computer first checks if
there is an indirect address and then continues to execute the decoded instruc-
tion according to the flowchart of Fig. 5-11. If the instruction is one of the
register-reference instructions, it is executed with one of the microoperations
listed in Table 5-3. If it is an input—output instruction, it is executed with one of
the microoperations listed in Table 5-5.

Instead of using a flowchart, we can describe the operation of the computer
with a list of register transfer st ts. This is done by accumulating all the
control functions and microoperations in one table. The entries in the table are
taken from Figs. 5-11 and 5-15, and Tables 5-3 and 5-5.

The control functions and microoperations for the entire computer are
summarized in Table 5-6. The register transfer statements in this table describe
in a concise form the internal organization of the basic computer. They also give
all the information necessary for the design of the logic circuits of the computer.
The control functions and conditional control statements listed in the table
formulate the Boolean functions for the gates in the control unit. The list of
microoperations specifies the type of control inputs needed for the registers and
memory. A register transfer language is useful not only for describing the internal
organization of a digital system but also for specifying the logic circuits needed
for its design.

5.9 Design of Basic Computer

The basic computer consists of the following hardware components:

A memory unit with 4096 words of 16 bits each

Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
Seven flip-flops: I, S, E, R, IEN, FGI, and FGO

. Two decoders: a 3 X 8 operation decoder and a 4 X 16 timing decoder
5. A 16-bit common bus

. Control logic gates

7. Adder and logic circuit connected to the input of AC

Bwop e

-}

The memory unit is a standard component that can be obtained readily
from a commercial source. The registers are of the type shown in Fig. 2-11 and

158

CHAPTER FIVE Basic Computer Organization and Design

Start
SC«0,IEN «0,R«0

(instruction cycle) =0

=1 (interrupt cycle)

R'T,
[were]
R'T,

l IR <M [AR], PC« PC+ | |

l R'T,

AR IR ©-11), I « IR (15)
Dy D7« Decode IR (12 - 14)

|

(Registeror I/0) =1

AR« 0,TR « PC |

M [AR) « TR, PC <0 |

‘ RT,

PC«PC+1, IEN«0
R«0,SC«0

| I

/Dk =0 (Memory - reference)

{10y =1 =0 (register)
1

Dy Ty Dyl'Ty
Execute Execute
input-output register-reference
instruction instruction
(Table 5-5) (Table 5-3)

7

(indirect) =1 =0 (direct)
I

DTy D9I'Ty
AR « MI[AR] I | Nothing J
Execute
memory — reference
instruction
(Fig 5-11)

|

Figure 5-15 Flowchart for computer operation.

SECTION 5-9 Design of Basic Computer

TABLE 5-6 Control Functions and Microoperations for the Basic Computer

Fetch
Decode

Indirect
Interrupt:

R'Ty,. AR<PC

R'T: IR<M[AR]), PC<PC+1

R'T:: Do, ..., D;«Decode IR(12-14),
AR < IR(0-11), I«<IR(15)

DiTy: AR<M[AR]

T,TTWIEN)(FGI + FGO): R«1

Memory-reference:
AND

ADD
LDA

STA
BUN
BSA

ISZ

Register-reference:

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT
Input-output:

INP
ouT
SKI
SKO
ION
IOF

RT,: AR<«0, TR«<PC
RT;: M[AR])«<TR, PC«0
RT;; PC«PC+1, IEN<0, R<0, SC«0

DoT:: DR« MI[AR]

DoTs: AC«ACADR, SC«0

D\T;: DR <«M[AR]

DiTs: AC«AC + DR, E«C,, SC«0
D.T: DR <«MI[AR)

D,T: AC«DR, SC«0

DiT,: M[AR]«<AC, SC+«0

D, T. PC«AR, SC«0

DsT:: M[AR]«<PC, AR<AR +1

DsTs: PC«AR, SC«0

DsT:: DR < M[AR])

DTs: DR<«DR +1

DT M[AR)«< DR, if(DR = 0)then(PC«PC +1), SC<+0

D,I'Ty = r (common to all register-reference instructions)
IRG)=B,(=0,1,2,..,11)

rr SC«0
rB,: AC«0
rBy: E«0
rBs: AC«AC
rBy E«E

rBi: AC «shr AC, AC(15)«<E, E<«AC(0)
rBs: AC «shl AC, AC(0)«E, E«AC(15)
rBs: AC+«AC+1

rB:: If (AC(15) = 0) then (PC«PC + 1)

rBy: If (AC(15) = 1) then (PC«PC + 1)

rBy: If (AC = 0) then PC—PC + 1)

rBy: If (E = 0) then (PC«PC + 1)

rBy: S§<0

D,ITs = p (common to all input—output instructions)
IR(i)=B:;(i=6,7,8,9,10,11)
p: SC«0

pBy: AC(0-7)«<INPR, FGI<+0

pBiw: OUTR «<AC(0-7), FGO «0

pBs: If (FGI = 1) then (PC«<PC + 1)

pBy: If (FGO = 1) then (PC«PC + 1)

pBy;: IEN«1

pBs: IEN<O

159

160 CHAPTER FIVE Basic Computer Organization and Design

control unit

are similar to integrated circuit type 74163. The flip-flops can be either of the
D or JK type, as described in Sec. 1-6. The two decoders are standard compo-
nents similar to the ones presented in Sec. 2-2. The common bus system can
be constructed with sixteen 8 X 1 multiplexers in a configuration similar to the
one shown in Fig. 4-3. We are now going to show how to design the control
logic gates. The next section deals with the design of the adder and logic circuit
associated with AC.

Control Logic Gates
The block diagram of the control logic gates is shown in Fig. 5-6. The inputs
to this circuit come from the two decoders, the I flip-flop, and bits 0 through
11 of IR. The other inputs to the control logic are: AC bits 0 through 15 to check
if AC = 0 and to detect the sign bit in AC(15); DR bits 0 through 15 to check if
DR = 0; and the values of the seven flip-flops.

The outputs of the control logic circuit are:

. Signals to control the inputs of the nine registers

. Signals to control the read and write inputs of memory
. Signals to set, clear, or complement the flip-flops

. Signals for S;, S, and S, to select a register for the bus
. Signals to control the AC adder and logic circuit

G W N

The specifications for the various control signals can be obtained directly from
the list of register transfer statements in Table 5-6.

Control of Registers and Memory

The registers of the computer connected to a common bus system are shown
in Fig. 5-4. The control inputs of the registers are LD (load), INR (increment),
and CLR (clear). Suppose that we want to derive the gate structure associated
with the control inputs of AR. We scan Table 5-6 to find all the statements that
change the content of AR:

R'Ty AR <«<PC
R'Ty AR «<IR(0-11)

DT AR «MI[AR]
RTq AR<0

DiT¢ AR <«<AR +1

The first three statements specify transfer of information from a register
or memory to AR. The content of the source register or memory is placed on

SECTION 5.9 Design of Basic Computer 161

the bus and the content of the bus is transferred into AR by enabling its LD
control input. The fourth statement clears AR to 0. The last statement incre-
ments AR by 1. The control functions can be combined into three Boolean
expressions as follows:

LD(AR) = R'T, + R'T, + DjIT,
CLR(AR) = RT,
INR(AR) = DsT4

where LD(AR) is the load input of AR, CLR(AR) is the clear input of AR, and
INR(AR) is the increment input of AR. The control gate logic associated with
AR is shown in Fig. 5-16.

In a similar fashion we can derive the control gates for the other registers
as well as the logic needed to control the read and write inputs of memory. The
logic gates associated with the read input of memory is derived by scanning
Table 5-6 to find the statements that specify a read operation. The read oper-
ation is recognized from the symbol < M[AR].

Read = R'Ty + DjITs + (Do + Dy + D, + DT,
The output of the logic gates that implement the Boolean expression above

must be connected to the read input of memory.

Figure 5-16 Control gates associated with AR.

12 12
From bus AR To bus
D _A
7
1 l— Clock
T
3 LD INR | CLR
T
R —
To
Ds | \
Ts 4/

162

CHAPTER FIVE Basic Computer Organization and Design

Control of Single Flip-flops

The control gates for the seven flip-flops can be determined in a similar
manner. For example, Table 5-6 shows that IEN may change as a result of the
two instructions ION and IOF.

pB: IEN «1
pBs: IEN <0

where p = D;IT; and B; and B are bits 7 and 6 of IR, respectively. Moreover,
at the end of the interrupt cycle IEN is cleared to 0.

RTz: IEN <0

If we use a JK flip-flip for IEN, the control gate logic will be as shown in
Fig. 5-17.

Control of Common Bus

The 16-bit common bus shown in Fig. 5-4 is controlled by the selection inputs
S;, S, and S,. The decimal number shown with each bus input specifies the
equivalent binary number that must be applied to the selection inputs in order
to select the corresponding register. Table 5-7 specifies the binary numbers for
5,550 that select each register. Each binary number is associated with a Boolean
variable x, through x;, corresponding to the gate structure that must be active
in order to select the register or memory for the bus. For example, whenx, = 1,
the value of S,5,5, must be 001 and the output of AR will be selected for the
bus. Table 5-7 is recognized as the truth table of a binary encoder. The place-
ment of the encoder at the inputs of the bus selection logic is shown in Fig.
5-18. The Boolean functions for the encoder are

So=x1+x3+ x5+ x7

Si=x+x3+x+ x5
S;=x+x+x%+x

Figure 5-17 Control inputs for IEN.

D, —rﬂ_;:
n—1_/ 5, __D— J Qf—IeN
Clock —
Bg K
R

T;

SECTION 59 Design of Basic Computer 163

TABLE 5-7 Encoder for Bus Selection Circuit

Inputs Outputs Register
X1 X2 X3 X4 X5 X X1 S2 & S for bus
0 0 0 0 0 0 0 0 0 0 None
1 0 0 0 0 0 0 0 0 1 AR
(1] 1 0 0 0 0 0 0 1 0 PC
0 0 1 0 0 0 0 0 1 1 DR
0 0 0 1 0 (1] 0 1 (1] 0 AC
6o o 0 0 1 0 0 1 0 1 IR

0 0 0 0 0 1 0 1 1 0 TR

0 0 0 0 0 0 1 1 1 1 Memory

To determine the logic for each encoder input, it is necessary to find the
control functions that place the corresponding register onto the bus. For exam-
ple, to find the logic that makes x; = 1, we scan all register transfer statements
in Table 5-6 and extract those statements that have AR as a source.

DT PC<AR
D.T¢ PC<AR

Therefore, the Boolean function for x, is
x; = DTy + DsTs
The data output from memory are selected for the bus when x; = 1 and
525150 = 111. The gate logic that generates x, must also be applied to the read
input of memory. Therefore, the Boolean function for x; is the same as the one
derived previously for the read operation.

x; = R'Ty + DjIT; + (Do + Dy + D, + DTy

In a similar manner we can determine the gate logic for the other registers.

Figure 5-18 Encoder for bus selection inputs.

X ———
X |
X3 = S Multiplexer
X4 = Encoder M bus select
PR—— So inputs

Xg ——=]
X7 ————]

164

CHAPTER FIVE Basic Computer Organization and Design

5.10 Design of Accumulator Logic

The circuits associated with the AC register are shown in Fig. 5-19. The adder
and logic circuit has three sets of inputs. One set of 16 inputs comes from the
outputs of AC. Another set of 16 inputs comes from the data register DR. A
third set of eight inputs comes from the input register INPR. The outputs of
the adder and logic circuit provide the data inputs for the register. In addition,
it is necessary to include logic gates for controlling the LD, INR, and CLR in
the register and for controlling the operation of the adder and logic circuit.
In order to design the logic associated with AC, it is necessary to go over
the register transfer statements in Table 5-6 and extract all the statements that

change the content of AC.

DIs: AC<ACADR

DiTss AC<AC + DR

D,Tss AC<«DR

pBu: AC(0-7) < INPR
rBy AC«AC

rBy: AC «shr AC, AC(15)«<E

Bs: AC «shl AC, AC(0)«<E

By AC<0
rBs: AC<AC +1

AND with DR
Add with DR

Transfer from DR
Transfer from INPR

Complement

Shift right
Shift left
Clear
Increment

From this list we can derive the control logic gates and the adder and logic

circuit.
Figure 5-19 Circuits associated with AC.
16
16 Adder and 16 Accumulator
From DR —“> logic register
8 circuit (AC)
From INPR —“>
A
LD INR CLR
Clock
Control

gates

To bus

SECTION 5-10 Design of Accumulator Logic 165

Control of AC Register

The gate structure that controls the LD, INR, and CLR inputs of AC is shown
in Fig. 5-20. The gate configuration is derived from the control functions in the
list above. The control function for the clear microoperation is By, where
r = D;I'T; and By, = IR(11). The output of the AND gate that generates this
control function is connected to the CLR input of the register. Similarly, the
output of the gate that implements the increment microoperation is connected
to the INR input of the register. The other seven microoperations are generated
in the adder and logic circuit and are loaded into AC at the proper time. The
outputs of the gates for each control function is marked with a symbolic name.
These outputs are used in the design of the adder and logic circuit.

Figure 5-20 Gate structure for controlling the LD, INR, and CLR of AC.

From adder __16 16

and logic AC To bus
[Clock
[;" AND LD INN | CLR
s —g
Dy —3 ADD
D2 DR
Ts
P INPR
By
r— COM
By
SHR
By —\
SHL
Bs —|
INC
By —]
By

166 CHAPTER FIVE Basic Computer Organization and Design

adder and
logic circuit

Adder and Logic Circuit

The adder and logic circuit can be subdivided into 16 stages, with each stage
corresponding to one bit of AC. The internal construction of the register is as
shown in Fig. 2-11. Looking back at that figure we note that each stage has a
JK flip-flop, two OR gates, and two AND gates. The load (LD) input is con-
nected to the inputs of the AND gates. Figure 5-21 shows one such AC register
stage (with the OR gates removed). The input is labeled I;and the output AC(i).
When the LD input is enabled, the 16 inputs I; for i =0, 1, 2,..., 15 are
transferred to AC (0-15).

One stage of the adder and logic circuit consists of seven AND gates, one
OR gate and a full-adder (FA), as shown in Fig. 5-21. The inputs of the gates with
symbolic names come from the outputs of gates marked with the same symbolic
name in Fig. 5-20. For example, the input marked ADD in Fig. 5-21 is connected
to the output marked ADD in Fig. 5-20.

The AND operation is achieved by ANDing AC(7) with the corresponding
bit in the data register DR(i). The ADD operation is obtained using a binary
adder similar to the one shown in Fig. 4-6. One stage of the adder uses a

Figure 5-21 One stage of adder and logic circuit.
DR () AC(®)

AND ——~ (Output of OR gate in Fig. 5-20)

i

-
I;(Fig. 2-11)

FA i (Fig J 1) y o]
-

Cist K

INPR
From
INPR Clock

bit (i)

SHR
AC(@i+1) :D—
SHL
ACG-1) :D_

SECTION 510 Design of Accumulator Logic 167

full-adder with the corresponding input and output carries. The transfer from
INPR to AC is only for bits 0 through 7. The complement microoperation is
obtained by inverting the bit value in AC. The shift-right operation transfers
the bit from AC(i + 1), and the shift-left operation transfers the bit from
AC(i = 1). The complete adder and logic circuit consists of 16 stages connected
together.

5-1.

5-2.

i PROBLEMS i

A computer uses a memory unit with 256K words of 32 bits each. A binary

instruction code is stored in one word of memeory. The instruction has four

parts: an indirect bit, an operation code, a register code part to specify one

of 64 registers, and an address part.

a. How many bits are there in the operation code, the register code part,
and the address part?

b. Draw the instruction word format and indicate the number of bits in each

rt.

. lglnawmnybitsmthmh\thedaumdaddmmpubdthemmm?

What is the difference between a direct and an indirect address instruction?

How many references to memory are needed for each type of instruction to

bring an operand into a processor register?

The following control inputs are active in the bus system shown in Fig. 5-4.

For each case, specify the register transfer that-will be executed during the

next clock transition.

5 & S LD of register Memory Adder

IR Read —
PC i —
DR Write —
AC —_ Add

apFe
O
00 e
OO -

The following register transfers are to be executed in the system of Fig. 5-4.
For each transfer, specify: (1) the binary value that must be applied to bus
select inputs 53, 5, and Sg; (2) the register whose LD control input must be
active (if any); (3) a memory read or write operation (if needed); and (4) the
operation in the adder and logic circuit (if any).

a. AR+«PC

b. IR «M[AR]

c. M[AR]«TR

d. AC+ DR, DR+ AC (done simultaneously)

Explain why each of the following microoperations cannot be executed

168

CHAPTER FIVE Basic Computer Organization and Design

5-7.

5-9.

5-10.

5-11.

5-12.

during a single clock pulse in the system shown in Fig. 5-4. Specify a
sequence of microoperations that will perform the operation.

a. IR<M][PC]

b. AC— AC + TR

¢. DR« DR + AC (AC does not change)

Consider the instruction formats of the basic computer shown in Fig. 5-5and
the list of instructions given in Table 5-2. For each of the following 16-bit
instructions, give the equivalent four-digit hexadecimal code and explain in
your own words what it is that the instruction is going to perform.

a. 0001 0000 0010 0100

b. 1011 0001 0010 0100

c. 0111 0000 0010 0000

What are the two instructions needed in the basic computer in order to set
the E flip-flop to 1?

Draw a timing diagram similar to Fig. 5-7 assuming that SC is cleared to 0
at time T if control signal C; is active.

CT: SC«0

C; is activated with the positive clock transition associated with T.

The content of AC in the basic computer is hexadecimal A937 and the initial
value of E is 1. Determine the contents of AC, E, PC, AR, and IR in hexadec-
imal after the execution of the CLA instruction. Repeat 11 more times,
starting from each one of the register-reference instructions. The initial value
of PC is hexadecimal 021.

An instruction at address 021 in the basic computer has I = 0, an operation
code of the AND instruction, and an address part equal to 083 (all numbers
are in hexadecimal). The memory word at address 083 contains the operand
B8F2 and the content of AC is A937. Go over the instruction cycle and
determine the contents of the following registers at the end of the execute
phase: PC, AR, DR, AC, and IR. Repeat the problem six more times starting
with an operation code of another memory-reference instruction.

Show the contents in hexadecimal of registers PC, AR, DR, IR, and SC of
the basic computer when an ISZ indirect instruction is fetched from memory
and executed. The initial content of PC is 7FF. The content of memory at
address 7FF is EA9F. The content of memory at address A9F is 0C35. The
content of memory at address C35 is FFFF. Give the answer in a table with
five columns, one for each register and a row for each timing signal. Show
the contents of the registers after the positive transition of each clock pulse.
The content of PC in the basic computer is 3AF (all numbers are in hexadec-
imal). The content of AC is 7EC3. The content of memory at address 3AF is
932E. The content of memory at address 32E is 09AC. The content of memory
at address 9AC is 8B9F.

a. What is the instruction that will be fetched and executed next?

b. Show the binary operation that will be performed in the AC when the

instruction is executed.

5-13.

SECTION 5-10 Design of Accumulator Logic 169

c. Give the contents of registers PC, AR, DR, AC, and IR in hexadecimal
and the values of E, I, and the sequence counter SC in binary at the end
of the instruction cycle.

Assume that the first six memory-reference instructions in the basic com-
puter listed in Table 5-4 are to be changed to the instructions specified in the
following table. EA is the effective address that resides in AR during time
T.. Assume that the adder and logic circuit in Fig. 5-4 can perform the
exclusive-OR operation AC <~ AC ® DR. Assume further that the adder and
logic circuit cannot perform subtraction directly. The subtraction must be
done using the 2's complement of the subtrahend by complementing and
incrementing AC. Give the sequence of register transfer stat ts needed
to execute each of the listed instructions starting from timing T,. Note that
the value in AC should not change unless the instruction specifies a change
in its content. You can use TR to store the content of AC temporary or you
can exchange DR and AC.

Symbol

Opcode Symbolic designation Description in words

XOR
ADM
SUB
XCH
SEQ

BPA

000 AC<—ACOMI[EA] Exclusive-OR to AC
001 M[EA]—M[EA] + AC Add AC to memory
010 AC«AC - M[EA] Subtract memory from AC
011 AC«M[EA], M[EA]«<AC Exchange AC and memory
100 If (M[EA] = AC) then Skip on equal

(PC—PC +1)
101 If (AC > 0) then (PC < EA) Branch if AC positiveand

non-zero

5-14.

5-15.

Make the following changes to the basic computer.

1. Add aregister to the bus system CTR (count register) to be selected with
525150 = 000.

2. Replace the ISZ instruction with an instruction that loads a number into
CTR.

LDC Address CTR «M[Address]

3. Add aregister reference instruction ICSZ: Increment CTR and skip next
instruction if zero. Discuss the advantage of this change.

The memory unit of the basic computer shown in Fig. 5-3 is to be changed
to a 65,536 X 16 memory, requiring an address of 16 bits. The instruction
format of a memory-reference instruction shown in Fig. 5-5(a) remains the
same for I = 1 (indirect address) with the address part of the instruction
residing in positions 0 through 11. But when I = 0 (direct address), the
address of the instruction is given by the 16 bits in the next word following
the instruction. Modify the microoperations during time Tz, Ts, (and Ty if
necessary) to conform with this configuration.

170

CHAPTER FIVE Basic Computer Organization and Design

5-16.

5-17.

5-18.

5-19.

5-20.

A computer uses a memory of 65,536 words with eight bits in each word.
It has the following registers: PC, AR, TR (16 bits each), and AC, DR, IR
(eight bits each). A memory-reference instruction consists of three words: an
8-bit operation-code (one word) and a 16-bit address (in the next two words).
All operands are eight bits. There is no indirect bit.

a. Draw ablock diagram of the computer showing the memory and registers
as in Fig. 5-3. (Do not use a common bus).

b. Draw a diagram showing the placement in memory of a typical three-
word instruction and the corresponding 8-bit operand.

c. List the sequence of microoperations for fetching a memory reference
instruction and then placing the operand in DR. Start from timing sig-
nal To.

A digital computer has a memory unit with a capacity of 16,384 words, 40
bits per word. The instruction code format consists of six bits for the oper-
ation part and 14 bits for the address part (no indirect mode bit). Two
instructions are packed in one memory word, and a 40-bit instruction regis-
ter IR is available in the control unit. Formulate a procedure for fetching and
executing instructions for this computer.

An output program resides in memory starting from address 2300. It is

executed after the computer recognizes an interrupt when FGO becomes a

1 (while IEN = 1).

a. What instruction must be placed at address 1?

b. What must be the last two instructions of the output program?

The register transfer st ts for a register R and the memory in a com-

puter are as follows (the X’s are control functions that occur at random):

X3X,: R<MI[AR] Read memory word into R
XiX;: R<AC Transfer AC to R
XiXs: M[AR] <R Write R to memory

The memory has data inputs, data outputs, address inputs, and control
inputs to read and write as in Fig. 2-12. Draw the hardware implementation
of R and the memory in block diagram form. Show how the control functions
X, through X, select the load control input of R, the select inputs of multi-
plexers that you include in the diagram, and the read and write inputs of
the memory.

The operations to be performed with a flip-flop F (not used in the basic
computer) are specified by the following register transfer statements:

xTs: Fe1 SetFtol

yTi: F<0 Clear Fto0

zT;: F«F Complement F

wTs: F—G Transfer value of G to F

Otherwise, the content of F must not change. Draw the logic diagram
showing the connections of the gates that form the control functions and the
inputs of flip-flop F. Use a JK flip-flop and minimize the number of gates.

SECTION 510 Design of Accumulator Logic 171

521. Derive the control gates associated with the program counter PC in the basic

computer.

5-22. Derive the control gates for the write input of the memory in the basic

computer.

523. Show the complete logic of the interrupt flip-flops R in the basic computer.

Use a JK flip-flop and minimize the number of gates.

5-24. Derive the Boolean logic expression for x; (see Table 5-7). Show that x; can

be generated with one AND gate and one OR gate.

5-25. Derive the Boolean expression for the gate structure that clears the sequence

counter SC to 0. Draw the logic diagram of the gates and show how the
output is connected to the INR and CLR inputs of 5C (see Fig. 5-6). Minimize
the number of gates.

1 REFERENCES |

. Bell, C. G., J. C. Mudge, and J. E. McNamara, Computer Engineering. Bedford,

MA: Digital Press, 1980.

. Booth, T. L., Introduction to Computer Engineering, 3rd ed. New York: John Wiley,
1984,

. Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice
Hall, 1991.

. Gray, N. A. B., Introduction to Computer Sy Englewood Cliffs, NJ: Prentice
Hall, 1987,

. Hill F.J., and G. R. P Digital Systems: Hardware Organization and Design, 3rd
ed. New York: John Wiley, 1987,

. Lewin, M. H. Logic Design and Computer Organization. Reading, MA: Addison-
Wesley, 1983,

. Mano, M. M., Computer Engineering: Hardware Design. Englewood Cliffs, NJ: Pren-
tice Hall, 1988.

. Patterson, D. A.and]. L. H y, Computer Architecture: A Quantitative Approach
San Mateo, CA: Morgan Kaufm Publist 1990.

. Prosser, F. P., and D. E. Winkel, The Art of Digital Design, 2nd ed. Englewood Cliffs,

NJ: Prentice Hall, 1987,

. Shiva, S. G., Computer Design and Architecture, 2nd ed. New York: HarperCollins

Publishers, 1991,

