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4-1 _Register Transfer Language
A digital system is an interconnection of digital hardware modules that accom-
plish a specific information-processing task. Digital systems vary in size and
complexity from a few integrated circuits to a complex of interconnected and
interacting digital computers. Digital system design invariably uses a modular
approach. The modules are constructed from such digital components as
decoders, arithmetic elements, and control logic. The various mod-
ules are interconnected with common data and control paths to form a digital
computer
Dlglulmdulcsmbectdeﬁmdbythemglmﬂﬂwymm&w
operations that are performed on the data stored in them. The operations
executed on data stored in registers are called microoperations. A microoper-
ation is an elementary operation performed on the information stored in one
or more registers. The result of the operation may replace the previous binary
information of a register or may be transferred to another register. Examples
of microoperations are shift, count, clear, and load. Some of the digital com-
ponents introduced in Chap. 2 are registers that implement microoperations.
For example, a counter with parallel load is capable of performing the micro-
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register transfer
language

operations increment and load. A bidirectional shift register is capable of
performing the shift right and shift left microoperations.
The internal hardware organization of a digital computer is best defined

by specifying:

1. The set of registers it contains and their function.

2. The sequence of microoperations performed on the binary information
stored in the registers.

3. The control that initiates the sequence of microoperations.

It is possible to specify the sequence of microoperations in a computer by
explaining every operation in words, but this procedure usually involves a
lengthy descriptive explanation. It is more convenient to adopt a suitable
symbology to describe the sequence of transfers between registers and the
various arithmetic and logic microoperations associated with the transfers. The
use of symbols instead of a narrative explanation provides an organized and
concise manner for listing the microoperation sequences in registers and the
control functions that initiate them.

The symbolic notation used to describe the microoperation transfers
among registers is called a register transfer language. The term “register
transfer’” implies the availability of hardware logic circuits that can perform a
stated microoperation and transfer the result of the operation to the same or
another register. The word “language” is borrowed from programmers, who
apply this term to programming languages. A programming language is a
procedure for writing symbols to specify a given computational process. Sim-
ilarly, a natural language such as English is a system for writing symbols and
combining them into words and sentences for the purpose of communication
between people. A register transfer language is a system for expressing in
symbolic form the microoperation sequences among the registers of a digital
module. Itis a convenient tool for describing the internal organization of digital
computers in concise and precise manner. It can also be used to facilitate the
design process of digital systems.

The register transfer language adopted here is believed to be as simple
as possible, so it should not take very long to memorize. We will proceed to
define symbols for various types of microoperations, and at the same time,
describe associated hardware that can implement the stated microoperations.
The symbolic designation introduced in this chapter will be utilized in subse-
quent chapters to specify the register transfers, the microoperations, and the
control functions that describe the internal hardware organization of digital
computers. Other symbology in use can easily be learned once this language
has become familiar, for most of the differences between register transfer
languages consist of variations in detail rather than in overall purpose.
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4-2 Register Transfer

Computer registers are designated by capital letters (sometimes followed by
numerals) to denote the function of the register. For example, the register that
holds an address for the memory unit is usually called a memory address
register and is designated by the name MAR. Other designations for registers
are PC (for program counter), IR (for instruction register, and R1 (for processor
register). The individual flip-flops in an n-bit register are numbered in se-
quence from 0 through n — 1, starting from 0 in the rightmost position and
increasing the numbers toward the left. Figure 4-1 shows the representation
of registers in block diagram form. The most common way to represent a
register is by a rectangular box with the name of the register inside, as in
Fig. 4-1(a). The individual bits can be distinguished as in (b). The numbering
of bits in a 16-bit register can be marked on top of the box as shown in (c). A
16-bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned
the symbol L (for low byte) and bits 8 through 15 are assigned the symbol H
(for high byte). The name of the 16-bit register is PC. The symbol PC(0-7) or
PC(L) refers to the low-order byte and PC(8-15) or PC(H) to the high-order
byte.

Information transfer from one register to another is designated in sym-
bolic form bx means of a replacement operator. The statement

R2 « R1

denotes a transfer of the content of register R1 into register R2. It designates
a replacement of the content of R2 by the content of R1. By definition, the
content of the source register R1 does not change after the transfer.

A statement that specifies a register transfer implies that circuits are
available from the outputs of the source register to the inputs of the destination
register and that the destination register has a parallel load capability. Nor-

Figure 4-1 Block diagram of register.
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control function

mally, we want the transfer to occur only under a predetermined control
condition. This can be shown by means of an if-then statement.

If (P = 1) then (R2 « R1)

where P is a control signal generated in the control section. It is sometimes
convenient to separate the control variables from the register transfer operation
by specifying a control function. A control function is a Boolean variable that is
equal to 1 or 0. The control function is included in the statement as follows:

P: R2 <« R1

The control condition is terminated with a colon. It symbolizes the requirement
that the transfer operation be executed by the hardware only if P = 1.
Every statement written in a register transfer notation implies a hardware
construction for implementing the transfer. Figure 4-2 shows the block dia-
gram that depicts the transfer from R1 to R2. The n outputs of register R1 are
connected to the n inputs of register R2. The letter n will be used to indicate
any number of bits for the register. It will be replaced by an actual number
when the length of the register is known. Register R2 has a load input that is
activated by the control variable P. It is assumed that the control variable is
synchronized with the same clock as the one applied to the register. As shown

Figure 4-2 Transfer from R1 to R2 when P = 1.
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in the timing diagram, P is activated in the control section by the rising edge
of a clock pulse at time t. The next positive transition of the clock at time ¢ + 1
finds the load input active and the data inputs of R2 are then loaded into the
register in parallel. P may go back to 0 at time ¢ + 1; otherwise, the transfer
will occur with every clock pulse transition while P remains active.

Note that the clock is not included as a variable in the register transfer
statements. Itis assumed that all transfers occur during a clock edge transition.
Even though the control condition such as P becomes active just after time ¢,
the actual transfer does not occur until the register is triggered by the next
positive transition of the clock at time ¢ + 1.

The basic symbols of the register transfer notation are listed in Table 4-1.
Registers are denoted by capital letters, and numerals may follow the letters.
Parentheses are used to denote a part of a register by specifying the range of
bits or by giving a symbol name to a portion of a register. The arrow denotes
a transfer of information and the direction of transfer. A comma is used to
separate two or more operations that are executed at the same time. The
statement

T: R2 «< R1, Rl «< R2
denotes an operation that exchanges the contents of two registers during one

common clock pulse provided that T = 1. This simultaneous operation is
possible with registers that have edge-triggered flip-flops.

TABLE 4-1 Basic Symbols for Register Transfers

Symbol Description Examples
Letters Denotes a register MAR, R2
(and numerals)
Parentheses () Denotes a part of a register R2(0-7), R2(L)
Arrow « Denotes transfer of information R2 « R1
Comma , Separates two microoperations ~ R2 < R1, R1 « R2

4-3 Bus and Memory Transfers

A typical digital computer has many registers, and paths must be provided to
transfer information from one register to another. The number of wires will be
excessive if separate lines are used between each register and all other registers
in the system. A more efficient scheme for transferring information between
registers in a multiple-register configuration is a common bus system. A bus
structure consists of a set of common lines, one for each bit of a register,
through which binary information is transferred one at a time. Control signals
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determine which register is selected by the bus during each particular register
transfer.

One way of constructing a common bus system is with multiplexers. The
multiplexers select the source register whose binary information is then placed
on the bus. The construction of a bus system for four registers is shown in
Fig. 4-3. Each register has four bits, numbered 0 through 3. The bus consists
of four 4 X 1 multiplexers each having four data inputs, 0 through 3, and two
selection inputs, S; and S,. In order not to complicate the diagram with 16 lines
crossing each other, we use labels to show the connections from the outputs
of the registers to the inputs of the multiplexers. For example, output 1 of
register A is connected to input 0 of MUX 1 because this input is labeled A;.
The diagram shows that the bits in the same significant position in each register
are connected to the data inputs of one multiplexer to form one line of the bus.
Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes the
four 1 bits of the registers, and similarly for the other two bits.

Figure 4-3 Bus system for four registers.
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The two selection lines S; and S, are connected to the selection inputs of
all four multiplexers. The selection lines choose the four bits of one register and
transfer them into the four-line common bus. When $;5, = 00, the 0 data
inputs of all four multiplexers are selected and applied to the outputs that form
the bus. This causes the bus lines to receive the content of register A since the
outputs of this register are connected to the 0 data inputs of the multiplexers.
Similarly, register B is selected if 5,5, = 01, and so on. Table 4-2 shows the
register that is selected by the bus for each of the four possible binary value
of the selection lines.

TABLE 4-2 Function Table for Bus of Fig. 4-3

S1 So  Register selected

0 0 A
0 1 B
1 0 C
1 1 D

In general, a bus system will multiplex k registers of n bits each to produce
an n-line common bus. The number of multiplexers needed to construct the
bus is equal to n, the number of bits in each register. The size of each multi-
plexer must be k X 1 since it multiplexes k data lines. For example, a common
bus for eight registers of 16 bits each requires 16 multiplexers, one for each line
in the bus. Each multiplexer must have eight data input lines and three
selection lines to multiplex one significant bit in the eight registers.

The transfer of information from a bus into one of many destination
registers can be accomplished by connecting the bus lines to the inputs of all
destination registers and activating the load control of the particular destina-
tion register selected. The symbolic statement for a bus transfer may mention
the bus or its presence may be implied in the statement. When the bus is
includes in the statement, the register transfer is symbolized as follows:

BUS < C, Rl « BUS
The content of register C is placed on the bus, and the content of the bus is
loaded into register R1 by activating its load control input. If the bus is known
to exist in the system, it may be convenient just to show the direct transfer.

Rl « C

From this statement the designer knows which control signals must be acti-
vated to produce the transfer through the bus.
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Three-State Bus Buffers

Abus system can be constructed with three-state gates instead of multiplexers.
A three-state gate is a digital circuit that exhibits three states. Two of the states
are signals equivalent to logic 1 and 0 as in a conventional gate. The third state
is a high-impedance state. The high-impedance state behaves like an open circuit,
which means that the output is disconnected and does not have a logic signif-
icance. Three-state gates may perform any conventional logic, such as AND or
NAND. However, the one most commonly used in the design of a bus system
is the buffer gate.

The graphic symbol of a three-state buffer gate is shown in Fig. 4-4. It is
distinguished from a normal buffer by having both a normal input and a control
input. The control input determines the output state. When the control input
is equal to 1, the output is enabled and the gate behaves like any conventional
buffer, with the output equal to the normal input. When the control input is
0, the output is disabled and the gate goes to a high-impedance state, regard-
less of the value in the normal input. The high-impedance state of a three-state
gate provides a special feature not available in other gates. Because of this
feature, a large number of three-state gate outputs can be connected with wires
to form a common bus line without endangering loading effects.

The construction of a bus system with three-state buffers is demonstrated
in Fig. 4-5. The outputs of four buffers are connected together to form a single
bus line. (It must be realized that this type of connection cannot be done with
gates that do not have three-state outputs.) The control inputs to the buffers
determine which of the four normal inputs will communicate with the bus line.
No more than one buffer may be in the active state at any given time. The
connected buffers must be controlled so that only one three-state buffer
has access to the bus line while all other buffers are maintained in a high-
impedance state.

One way to ensure that no more than one control input is active at any
given time is to use a decoder, as shown in the diagram. When the enable input
of the decoder is 0, all of its four outputs are 0, and the bus line is in a
high-impedance state because all four buffers are disabled. When the enable
input is active, one of the three-state buffers will be active, depending on the
binary value in the select inputs of the decoder. Careful investigation will
reveal that Fig. 4-5 is another way of constructing a4 X 1 multiplexer since the
circuit can replace the multiplexer in Fig. 4-3.

To construct a common bus for four registers of n bits each using three-

Figure 4-4 Graphic symbols for three-state buffer.
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Figure 4-5 Bus line with three state-buffers.

state buffers, we need n circuits with four buffers in each as shown in Fig. 4-5.
Each group of four buffers receives one significant bit from the four registers.
Each common output produces one of the lines for the common bus for a total
of n lines. Only one decoder is necessary to select between the four registers.

Memory Transfer

The operation of a memory unit was described in Sec. 2-7. The transfer of
information from a memory word to the outside environment is called a read
operation. The transfer of new information to be stored into the memory is
called a write operation. A memory word will be symbolized by the letter M.
The particular memory word among the many available is selected by the
memory address during the transfer. It is necessary to specify the address of
M when writing memory transfer operations. This will be done by enclosing
the address in square brackets following the letter M.

Consider a memory unit that receives the address from a register, called
the address register, symbolized by AR. The data are transferred to another
register, called the data register, symbolized by DR. The read operation can
be stated as follows:

Read: DR « MI[AR]

This causes a transfer of information into DR from the memory word M
selected by the address in AR.

The write operation transfers the content of a data register to a memory
word M selected by the address. Assume that the input data are in register R1
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R3 « R1+R2 +1
RZ is the symbol for the 1’s complement of R2. Adding 1 to the 1’s complement

produces the2’s complement. Adding the contents of R1 to the 2’s complement
of R2 is equivalent to R1 — R2.

TABLE 4-3 Arithmetic Microoperations

Symbolic

designation Description
R3 « R1+R2 Contents of R1 plus R2 transferred to R3
R3 « R1-R2 Contents of R1 minus R2 transferred to R3
R2 « R2 Complement the contents of R2 (1's complement)
R2 < RZ+1 2’s complement the contents of R2 (negate)
R3 <« R1+R2Z +1 Rl plus the 2's complement of R2 (subtraction)
Rl < R1+1 Increment the contents of R1 by one
Rl «R1-1 Decrement the contents of R1 by one

The increment and decrement microoperations are symbolized by plus-
one and minus-one operations, respectively. These microoperations are imple-
mented with a combinational circuit or with a binary up-down counter.

The arithmetic operations of multiply and divide are not listed in Table 4-
3. These two operations are valid arithmetic operations but are not included
in the basic set of microoperations. The only place where these operations can
be considered as microoperations is in a digital system, where they are imple-
mented by means of a combinational circuit. In such a case, the signals that
perform these operations propagate through gates, and the result of the oper-
ation can be transferred into a destination register by a clock pulse as soon as
the output signal propagates through the combinational circuit. In most com-
puters, the multiplication operation is implemented with a sequence of add
and shift microoperations. Division is implemented with a sequence of subtract
and shift microoperations. To specify the hardware in such a case requires a
list of statements that use the basic microoperations of add, subtract, and shift
(see Chapter 10).

Binary Adder

To implement the add microoperation with hardware, we need the registers
that hold the data and the digital component that performs the arithmetic
addition. The digital circuit that forms the arithmetic sum of two bits and a
previous carry is called a full-adder (see Fig. 1-17). The digital circuit that
generates the arithmetic sum of two binary numbers of any length is called a
binary adder. The binary adder is constructed with full-adder circuits con-
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Figure 4-6 4-bit binary adder.

nected in cascade, with the output carry from one full-adder connected to the
input carry of the next full-adder. Figure 4-6 shows the interconnections of four
full-adders (FA) to provide a 4-bit binary adder. The augend bits of A and the
addend bits of B are designated by subscript numbers from right to left, with
subscript 0 denoting the low-order bit. The carries are connected in a chain
through the full-adders. The input carry to the binary adder is C, and the
output carry is Cy. The S outputs of the full-adders generate the required sum
bits.

An n-bit binary adder requires n full-adders. The output carry from each
full-adder is connected to the input carry of the next-high-order full-adder. The
n data bits for the A inputs come from one register (such as R1), and the n data
bits for the B inputs come from another register (such as R2). The sum can be
transferred to a third register or to one of the source registers (R1 or R2),
replacing its previous content.

Binary Adder-Subtractor

The subtraction of binary numbers can be done most conveniently by means
of complements as discussed in Sec. 3-2. Remember that the subtraction A — B
can be done by taking the 2’s complement of B and adding it to A. The 2’s
complement can be obtained by taking the 1’s complement and adding one to
the least significant pair of bits. The 1’s complement can be implemented with
inverters and a one can be added to the sum through the input carry.

The addition and subtraction operations can be combined into one com-
mon circuit by including an exclusive-OR gate with each full-adder. A 4-bit
adder-subtractor circuit is shown in Fig. 4-7. The mode input M controls the
operation. When M = 0 the circuit is an adder and when M =1 the circuit
becomes a subtractor. Each exclusive-OR gate receives input M and one of the
inputs of B. When M = 0, we have B @ 0 = B. The full-adders receive the
value of B, the input carry is 0, and the circuit performs A plus B. When M = 1,
we have B @ 1 = B’ and C, = 1. The B inputs are all complemented and a 1
is added through the input carry. The circuit performs the operation A plus the
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Figure 4-7 4-bit adder-subtractor.

2's complement of B. For unsigned numbers, this gives A — Bif A = Borthe
2's complement of (B — A) if A < B. For signed numbers, the resultis A — B
provided that there is no overflow.

Binary Incrementer

The increment microoperation adds one to a number in a register. For example,
if a 4-bit register has a binary value 0110, it will go to 0111 after it is incremented.
This microoperation is easily implemented with a binary counter (see Fig. 2-10).
Every time the count enable is active, the clock pulse transition increments the
content of the register by one. There may be occasions when the increment
microoperation must be done with a combinational circuit independent of a
particular register. This can be accomplished by means of half-adders (see
Fig. 1-16) connected in cascade.

The diagram of a 4-bit combinational circuit inc ter is sh in
Fig. 4-8. One of the inputs to the least significant half-adder (HA) is connected
to logic-1 and the other input is connected to the least significant bit of the

ber to be incr ted. The output carry from one half-adder is connected
to one of the inputs of the next-higher-order half-adder. The circuit receives
the four bits from A, through Aj, adds one to it, and generates the incremented
output in 5, through ;. The output carry C, will be 1 only after incrementing
binary 1111. This also causes outputs S, through S, to go to 0.

The circuit of Fig. 4-8 can be extended to an n-bit binary incrementer by
extending the diagram to include n half-adders. The least significant bit must
have one input connected to logic-1. The other inputs receive the number to
be incremented or the carry from the previous stage.
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Figure 4-8 4-bit binary incrementer.

Arithmetic Circuit

The arithmetic microoperations listed in Table 4-3 can be implemented in one
composite arithmetic circuit. The basic component of an arithmetic circuit is the
parallel adder. By controlling the data inputs to the adder, it is possible to
obtain different types of arithmetic operations.

The diagram of a 4-bit arithmetic circuit is shown in Fig. 4-9. It has four
full-adder circuits that constitute the 4-bit adder and four multiplexers for
choosing different operations. There are two 4-bit inputs A and B and a 4-bit
output D. The four inputs from A go directly to the X inputs of the binary
adder. Each of the four inputs from B are connected to the data inputs of the
multiplexers. The multiplexers data inputs also receive the complement of B.
The other two data inputs are connected to logic-0 and logic-1. Logic-0 is a fixed
voltage value (0 volts for TTL integrated circuits) and the logic-1 signal can be
generated through' an inverter whose input is 0. The four multiplexers are
controlled by two selection inputs, S; and S,. The input carry C;, goes to the
carry input of the FA in the least significant position. The other carries are
connected from one stage to the next.

The output of the binary adder is calculated from the following arithmetic
sum:

D=A+Y+Cyn

where A is the 4-bit binary number at the X inputs and Y is the 4-bit binary
number at the Y inputs of the binary adder. C, is the input carry, which can
be equal to 0 or 1. Note that the symbol + in the equation above denotes an
arithmetic plus. By controlling the value of Y with the two selection inputs S,
and S, and making Ci, equal to 0 or 1, it is possible to generate the eight
arithmetic microoperations listed in Table 4-4.
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Figure 4-9  4-bit arithmetic circuit.
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addition
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TABLE 4-4 Arithmetic Circuit Function Table

Select
Input Output

S S G Y D=A+Y+Cn Microoperation
0 0 0 B D=A+B Add
0 0 1 B D=A+B+1 Add with carry
0 1 0 B D=A+8B Subtract with borrow
0 1 1 B D=A+B +1 Subtract
1 0 0 0 D=A Transfer A
1 0 1 0 D=A+1 Increment A
1 1 0 1 D=A-1 Decrement A
1 1 1 1 D=A Transfer A

When 5,5, = 00, the value of B is applied to the Y inputs of the adder.
IfCin = 0, theoutput D = A + B.IfC,, = 1, outputD = A + B + 1. Bothcases
perform the add microoperation with or without adding the input carry.

When 5,5, = 01, the complement of B is applied to the Y inputs of the
adder. If C;, = 1, then D = A + B + 1. This produces A plus the 2’s comple-
ment of B, which is equivalent to a subtraction of A — B. When C;, = 0, then
D = A + B. This is equivalent to a subtract with borrow, that is, A — B — 1.

When S,S, = 10, the inputs from B are neglected, and instead, all 0’s are
inserted into the Y inputs. The output becomes D = A + 0 + C,. This gives
D = Awhen C, =0and D = A + 1 when C, = 1. In the first case we have
a direct transfer from input A to output D. In the second case, the value of A
is incremented by 1.

When S,S, = 11, all 1’s are inserted into the Y inputs of the adder to
produce the decrement operation D = A — 1 when C;, = 0. This is because a
number with all 1’s is equal to the 2’s complement of 1 (the 2’s complement
of binary 0001 is 1111). Adding a number A to the 2’s complement of 1 produces
F=A + 2'scomplementof1=A — 1. WhenC, =1, thenD=A-1+1=
A, which causes a direct transfer from input A to output D. Note that the
microoperation D = A is generated twice, so there are only seven distinct
microoperations in the arithmetic circuit.

4-5 Logic Microoperations

Logic microoperations specify binary operations for strings of bits stored in
registers. These operations consider each bit of the register separately and treat
them as binary variables. For example, the exclusive-OR microoperation with
the contents of two registers R1 and R2 is symbolized by the statement

P: R1 « R1 & R2
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It specifies a logic microoperation to be executed on the individual bits of the
registers provided that the control variable P = 1. As a numerical example,
assume that each register has four bits. Let the content of R1 be 1010 and the
content of R2 be 1100. The exclusive-OR microoperation stated above symbol-
izes the following logic computation:

1010 Content of R1
1100 Content of R2
0110 Content of R1 after P = 1

The content of R1, after the execution of the microoperation, is equal to the
bit-by-bit exclusive-OR operation on pairs of bits in R2 and previous values of
R1. The logic microoperations are seldom used in scientific computations, but
they are very useful for bit manipulation of binary data and for making logical
decisions.

Special symbols will be adopted for the logic microoperations OR, AND,
and complement, to distinguish them from the corresponding symbols used
to express Boolean functions. The symbol \/ will be used to denote an OR
microoperation and the symbol A to denote an AND microoperation. The
complement microoperation is the same as the 1’s complement and uses a bar
on top of the symbol that denotes the register name. By using different
symbols, it will be possible to differentiate between a logic microoperation and
a control (or Boolean) function. Another reason for adopting two sets of
symbols is to be able to distinguish the symbol + , when used to symbolize
an arithmetic plus, from a logic OR operation. Although the + symbol has two
meanings, it will be possible to distinguish between them by noting where the
symbol occurs. When the symbol + occurs in a microoperation, it will denote
an arithmetic plus. When it occurs in a control (or Boolean) function, it will
denote an OR operation. We will never use it to symbolize an OR microoper-
ation. For example, in the statement

P+Q: Rl «~ R2+R3, R4« R5V R6

the + between P and Q is an OR operation between two binary variables of a
control function. The + between R2 and R3 specifies an add microoperation.
The OR microoperation is designated by the symbol \/ between registers R5
and R6.

List of Logic Microoperations _

There are 16 different logic operations that can be performed with two binary
variables. They can be determined from all possible truth tables obtained with
two binary variables as shown in Table 4-5. In this table, each of the 16 columns
F, through Fys represents a truth table of one possible Boolean function for the
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TABLE 4-5 Truth Tables for 16 Functions of Two Variables

x y|\Fb R F F; F, Fs; F¢ F;, F¢ Fo Fo Fu F» Fi3 F Fis
0oo0fo0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
01/0 0 0 0 11 1 1 0 0 O O 1 1 1 1
10/0 0 11 0 0 1 1 0 0 1 1 0 0 1 1
110 1 0 1 0 1 0 1 0 1 O 1 0 1 0 1

two variables x and y. Note that the functions are determined from the 16
binary combinations that can be assigned to F.

The 16 Boolean functions of two variables x and y are expressed in
algebraic form in the first column of Table 4-6. The 16 logic microoperations are
derived from these functions by replacing variable x by the binary content of
register A and variable y by the binary content of register B. It is important to
realize that the Boolean functions listed in the first column of Table 4-6 repre-
sent a relationship between two binary variables x and y. The logic micro-
operations listed in the second column represent a relationship between the
binary content of two registers A and B. Each bit of the register is treated as
a binary variable and the microoperation is performed on the string of bits
stored in the registers.

TABLE 4-6 Sixteen Logic Microoperations

Boolean function Microoperation Name
Fr=0 F<0 Clear
Fi=xy F—<ANB AND
F=xy' F—ANB
F=x FeA Transfer A
Fo=x'y F<A N\B
Fs=y F<B Transfer B
Fs=x®y F—A®B Exclusive-OR
F=x+y F<AVB
Fs=(x+y) F<AV\B NOR
F, = (x®y)’ F—A®B Exclusive-NOR
Fo=y' F«B _ Complement B
Fo=x+y' F<AVB
Fp=x' FeA Complement A
Fa=x"+y F<A\/B
Fi = (xy)' F<ANB NAND

Fis=1 Fe«all1's Setto all 1's
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Hardware Implementation

The hardware implementation of logic microoperations requires that logic
gates be inserted for each bit or pair of bits in the registers to perform the
required logic function. Although there are 16 logic microoperations, most
computers use only four—AND, OR, XOR (exclusive-OR), and complement—
from which all others can be derived.

Figure 4-10 shows one stage of a circuit that generates the four basic logic
microoperations. It consists of four gates and a multiplexer. Each of the four
logic operations is generated through a gate that performs the required logic.
The outputs of the gates are applied to the data inputs of the multiplexer. The
two selection inputs S; and S, choose one of the data inputs of the multiplexer
and direct its value to the output. The diagram shows one typical stage with
subscript i. For a logic circuit with n bits, the diagram must be repeated n times
fori =0,1,2,...,n — 1. The selection variables are applied to all stages. The
function table in Fig. 4-10(b) lists the logic microoperations obtained for each
combination of the selection variables.

Some Applications

Logic microoperations are very useful for manipulating individual bits or a
portion of a word stored in a register. They can be used to change bit values,
delete a group of bits, or insert new bit values into a register. The following
examples show how the bits of one register (designated by A) are manipulated

Figure 4-10 One stage of logic circuit.

S1 —

So —

Aj
B; _D__J 0 Si  So| Output Operation
L‘ Ei 0 0| E=AArB | AND

0 1 E=AvB | OR

LD: I 0| E=A®B| XOR

1 1] E=A Complement

(b) Function table

w

(a) Logic diagram
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selective-set

selective-complement

selective-clear

by logic microoperations as a function of the bits of another register (designated
by B). In a typical application, register A is a processor register and the bits of
register B constitute a logic operand extracted from memory and placed in
register B.

The selective-set operation sets to 1 the bits in register A where there are
corresponding 1’s in register B. It does not affect bit positions that have 0’s in
B. The following numerical example clarifies this operation:

1010 A before
1100 B (logic operand)
1110 A after

The two leftmost bits of B are 1’s, so the corresponding bits of A are set to 1.
One of these two bits was already set and the other has been changed from
0 to 1. The two bits of A with corresponding 0’s in B remain unchanged. The
example above serves as a truth table since it has all four possible combinations
of two binary variables. From the truth table we note that the bits of A after
the operation are obtained from the logic-OR operation of bits in B and previ-
ous values of A. Therefore, the OR microoperation can be used to selectively
set bits of a register.

The selective-complement operation complements bits in A where there are
corresponding 1’s in B. It does not affect bit positions that have 0’s in B. For
example:

1010 A before
1100 B (logic operand)
0110 A after

Again the two leftmost bits of B are 1’s, so the corresponding bits of A are
complemented. This example again can serve as a truth table from which one
can deduce that the selective-complement operation is just an exclusive-OR
microoperation. Therefore, the exclusive-OR microoperation can be used to
selectively complement bits of a register.

The selective-clear operation clears to 0 the bits in A only where there are
corresponding 1’s in B. For example:

1010 A before
1100 B (logic operand)
0010 A after

Again the two leftmost bits of B are 1's, so the corresponding bits of A are
cleared to 0. One can deduce that the Boolean operation performed on the
individual bits is AB’. The corresponding logic microoperation is

A—<AANB
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The mask operation is similar to the selective-clear operation except that
the bits of A are cleared only where there are corresponding 0’s in B. The mask
operation is an AND micro operation as seen from the following numerical
example:

1010 A before
1100 B (logic operand)
1000 A after masking

The two rightmost bits of A are cleared because the corresponding bits of B are
0’s. The two leftmost bits are left unchanged because the corresponding bits
of B are 1’s. The mask operation is more convenient to use than the selective-
clear operation because most computers provide an AND instruction, and few
provide an instruction that executes the microoperation for selective-clear.
The insert operation inserts a new value into a group of bits. This is done
by first masking the bits and then ORing them with the required value. For
example, suppose that an A register contains eight bits, 0110 1010. To replace
the four leftmost bits by the value 1001 we first mask the four unwanted bits:

0110 1010 A before
0000 1111 B (mask)
0000 1010 A after masking

and then insert the new value:

0000 1010 A before
1001 0000 B (insert)
1001 1010 A after insertion

The mask operation is an AND microoperation and the insert operation is an
OR microoperation.

The clear operation compares the words in A and B and produces an all
0’s result if the two numbers are equal. This operation is achieved by an
exclusive-OR microoperation as shown by the following example:

1010 A
1010 B
0000 A<A®B

When A and B are equal, the two corresponding bits are either both 0 or both
1. In either case the exclusive-OR operation produces a 0. The all-0’s result is
then checked to determine if the two numbers were equal.
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logical shift

circular shift

arithmetic shift

4-6 Shift Microoperations

Shift microoperations are used for serial transfer of data. They are also used
in conjunction with arithmetic, logic, and other data-processing operations.
The contents of a register can be shifted to the left or the right. At the same
time that the bits are shifted, the first flip-flop receives its binary information
from the serial input. During a shift-left operation the serial input transfers a
bit into the rightmost position. During a shift-right operation the serial input
transfers a bit into the leftmost position. The information transferred through
the serial input determines the type of shift. There are three types of shifts:
logical, circular, and arithmetic.

A logical shift is one that transfers 0 through the serial input. We will adopt
the symbols shl and shr for logical shift-left and shift-right microoperations. For
example:

R1<shlR1
R2 <shr R2

are two microoperations that specify a 1-bit shift to the left of the content of
register R1and a 1-bit shift to the right of the content of register R2. The register
symbol must be the same on both sides of the arrow. The bit transferred to the
end position through the serial input is assumed to be 0 during a logical shift.

The circular shift (also known as a rotate operation) circulates the bits of
the register around the two ends without loss of information. This is accom-
plished by connecting the serial output of the shift register to its serial input.
We will use the symbols cil and cir for the circular shift left and right, respec-
tively. The symbolic notation for the shift microoperations is shown in Ta-
ble 4-7.

TABLE 4-7 Shift Microoperations

Symbolic designation Description
R«<shlR Shift-left register R
R«<shrR Shift-right register R
ReclR Circular shift-left register R
R«cirR Circular shift-right register R
R «ashl R Arithmetic shift-left R
R «ashr R Arithmetic shift-right R

An arithmetic shift is a microoperation that shifts a signed binary number
to the left or right. An arithmetic shift-left multiplies a signed binary number
by 2. An arithmetic shift-right divides the number by 2. Arithmetic shifts must
leave the sign bit unchanged because the sign of the number remains the same
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I——h-‘_R—nI-lan-zl —_— [ R I Ro |

Sign
bit

Figure 4-11 Arithmetic shift right.

when it is multiplied or divided by 2. The leftmost bit in a register holds the
sign bit, and the remaining bits hold the number. The sign bit is 0 for positive
and 1 for negative. Negative numbers are in 2’s complement form. Figure 4-11
shows a typical register of n bits. Bit R, -; in the leftmost position holds the
sign bit. R,_, is the most significant bit of the number and R, is the least
significant bit. The arithmetic shift-right leaves the sign bit unchanged and
shifts the number (including the sign bit) to the right. Thus R, - ; remains the
same, R, _, receives the bit from R,_;, and so on for the other bits in the
register. The bit in R, is lost.

The arithmetic shift-left inserts a 0 into Ry, and shifts all other bits to the
left. The initial bit of R, -, is lost and replaced by the bit from R, _,. A sign
reversal occurs if the bit in R, - ; changes in value after the shift. This happens
if the multiplication by 2 causes an overflow. An overflow occurs after an
arithmetic shift left if initially, before the shift, R, _; is not equal to R, - ,. An
overflow flip-flop V, can be used to detect an arithmetic shift-left overflow.

Vi=R,_1®R,_,

If V; = 0, there is no overflow, but if V, = 1, there is an overflow and a sign
reversal after the shift. V, must be transferred into the overflow flip-flop with
the same clock pulse that shifts the register.

Hardware Implementation
A possible choice for a shift unit would be a bidirectional shift register with
parallel load (see Fig. 2-9). Information can be transferred to the register in
parallel and then shifted to the right or left. In this type of configuration, a clock
pulse is needed for loading the data into the register, and another pulse is
needed to initiate the shift. In a processor unit with many registers it is more
efficient to implement the shift operation with a combinational circuit. In this
way the content of a register that has to be shifted is first placed onto acommon
bus whose output is connected to the combinational shifter, and the shifted
number is then loaded back into the register. This requires only one clock pulse
for loading the shifted value into the register.

A combinational circuit shifter can be constructed with multiplexers as
shown in Fig. 4-12. The 4-bit shifter has four data inputs, A, through A,, and
four data outputs, Hy through Hj. There are two serial inputs, one for shift left
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ALU

Select
. 0 for shift right (down)
Serial .
input (/) 1 for shift left (up)
N
o0 MUX ——Ho
1
Ao
A —— ¢ — S
Function table
0 MUX |—H,
Az 1 Select Output
N Ho H, Hy Hj
A3
0 I A A A
— S
o MUX ——H2 1 A A Ay I
1
s
0 MUX | —H;

’———— 1
Serial

input (/)

Figure 4-12  4-bit combinational circuit shifter.

(1) and the other for shift right (I.). When the selection input S = 0, the input
data are shifted right (down in the diagram). When S = 1, the input data are
shifted left (up in the diagram). The function table in Fig. 4-12 shows which
input goes to each output after the shift. A shifter with n data inputs and
outputs requires n multiplexers. The two serial inputs can be controlled by
another multiplexer to provide the three possible types of shifts.

4-7 Arithmetic Logic Shift Unit

Instead of having individual registers performing the microoperations directly,
computer systems employ a number of storage registers connected to a com-
mon operational unit called an arithmetic logic unit, abbreviated ALU. To
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perform a microoperation, the contents of specified registers are placed in the
inputs of the common ALU. The ALU performs an operation and the result of
the operation is then transferred to a destination register. The ALU is a
oombmahmulumw&mmemmmmm&ropemhmﬁmh
source registers the ALU and into the destination register can be
performed during one clock pulse period. The shift microoperations are often
performed in a separate unit, but sometimes the shift unit is made part of the
overall ALU.
can be combined into one ALU with common selection variables. One stage
of an arithmetic logic shift unit is shown in Fig. 4-13. The subscript i designates
a typical stage. Inputs A; and B, are applied to both the arithmetic and logic

Figure 4-13  One stage of arithmetic logic shift unit.
5
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5
So
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Aisy
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units. A particular microoperation is selected with inputs S; and So. A 4 X 1
multiplexer at the output chooses between an arithmetic output in E;and a logic
output in H;. The data in the multiplexer are selected with inputs S; and S,.
The other two data inputs to the multiplexer receive inputs 4;-, for the
shift-right operation and 4; , | for the shift-left operation. Note that the diagram
shows just one typical stage. The circuit of Fig. 4-13 must be repeated n times
for an n-bit ALU. The output carry C;, of a given arithmetic stage must be
connected to the input carry C; of the next stage in sequence. The input carry
to the first stage is the input carry Ci,, which provides a selection variable for
the arithmetic operations.

The circuit whose one stage is specified in Fig. 4-13 provides eight arith-
metic operation, four logic operations, and two shift operations. Each opera-
tion is selected with the five variables S;, S,, Sy, So, and Ci,. The input carry C,
is used for selecting an arithmetic operation only.

Table 4-8 lists the 14 operations of the ALU. The first eight are arithmetic
operations (see Table 4-4) and are selected with 535, = 00. The next four are
logic operations (see Fig. 4-10) and are selected with S35, = 01. The input carry
has no effect during the logic operations and is marked with don’t-care x's.
The last two operations are shift operations and are selected with S;S, = 10and
11. The other three selection inputs have no effect on the shift.

TABLE 4-8 Function Table for Arithmetic Logic Shift Unit

Operation select

Ss S2 S, So Cin Operation Function

0 0 0 0 0 F=A Transfer A

(1] 0 (1] (1] 1 F=A+1 Increment A

0 0 0 1 0 F=A+B Addition

(1] 0 0 1 1 F=A+B+1 Add with carry

0o 0 1 0 0 F=A+B Subtract with borrow
0 0 1 0 1 F=A+B +1 Subtraction

0 0 1 1 0 F=Aa-1 Decrement A

0 0 1 1 1 F=Aa Transfer A

0 1 0 0 x F=ANB AND

0 1 0 1 x F=AVB OR

0 1 1 (1] x F=A®B XOR

0o 1 1 1 x F=4 Complement A

1 0 X b3 x F=shra Shift right A into F
1 1 X X X F=shlA Shift left A into F
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l PROBLEMS I
41.  Show the block diagram of the hardware (similar to Fig. 4-2a) that imple-
ments the following regis fer stat it

42,

&7,

yT:: R2«R1, R1+R2

The outputs of four registers, R0, R1, R2, and R3, are connected through
4-to-1-line multiplexers to the inputs of a fifth register, R5. Each register is
eight bits long. The required transfers are dictated by four timing variables
To through T as follows:

Te: R5«RO
T;: R5«R1
Tz R5«R2
Ty R5«R3

The timing variables are mutually exclusive, which means that only one
variable is equal to 1 at any given time, while the other three are equal to
0. Draw a block diagram showing the hardware implementation of the
register transfers. Include the connections necessary from the four timing
variables to the selection inputs of the multiplexers and to the load input of
register R5.

Represent the following conditional i by two register trans-
fer statements with control functions.

If (P = 1) then (R1+R2) else if (Q = 1) then (R1+R3)

What has to be done to the bus system of Fig. 4-3 to be able to transfer
information from any register to any other register? Specifically, show the
connections that must be included to provide a path from the outputs of
register C to the inputs of register A.

Draw a diagram of a bus system similar to the one shown in Fig. 4-3, but use
three-state buffers and a decoder instead of the multiplexers.

A digital hasac bus sy for 16 regi of 32 bits each.
The bus is constructed with multiplexers.

a. How many selection inputs are there in each multiplexer?

b. What size of multiplexers are needed?

¢. How many multiplexers are there in the bus?

The following transfer statements specify a y. Explain the ¥
operation in each case.

a. R2+—MI[AR]

b. M[AR]+R3

¢. R5+M][R5]
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4-8.

4-9.

4-10.

4-11.

4-12.

Draw the block diagram for the hardware that implements the following
statements:

x +yz: AR<AR + BR

where AR and BR are two n-bit registers and x, y, and z are control variables.
Include the logic gates for the control function. (Remember that the sym-
bol + designates an OR operation in a control or Boolean function but that
it represents an arithmetic plus in a microoperation.)

Show the hardware that implements the following statement. Include the
logic gates for the control function and a block diagram for the binary counter
with a count enable input.

xyTo+ Ty +y'Ti: AR<AR +1

Consider the following register transfer 1ts for two 4-bit registers R1
and R2.

xT: Rl1<R1+R2
x'T:  Rl1«<R2

Every time that variable T = 1, either the content of R2 is added to the
content of R1if x = 1, or the content of R2 is transferred to R1if x = 0. Draw
a diagram showing the hardware implementation of the two statements. Use
block diagrams for the two 4-bit registers, a 4-bit adder, and a quadruple
2-to-1-line multiplexer that selects the inputs to R1. In the diagram, show
how the control variables x and T select the inputs of the multiplexer and
the load input of register R1.

Using a 4-bit counter with parallel load as in Fig. 2-11 and a 4-bit adder as

in Fig. 4-6, draw a block diagram that shows how to implement the following
statements: ’

x: Rl1«<R1+R2 Add R2 to R1
x'y: Rl«<R1+1 Increment R1

where R1 is a counter with parallel load and R2 is a 4-bit register.

The adder-subtractor circuit of Fig. 4-7 has the following values for input
mode M and data inputs A and B. In each case, determine the values of the
outputs: Ss, Sz, 5,, So, and C,.

M A B
a. 0 0111 0110
b. 0 1000 1001
c. 1 1100 1000
d. 1 0101 1010
e 1 0000 0001
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4-14.

4-15.

4-16.

4-17.

4-18.

4-19.

4-20.

4-21.
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Design a 4-bit combinational circuit decrementer using four full-adder cir-
cuits.

Assume that the 4-bit arithmetic circuit of Fig. 49 is enclosed in one IC
package. Show the connections among two such ICs to form an 8-bit arith-
metic circuit.

Design an arithmetic circuit with one selection variable S and two n-bit data
inputs A and B. The circuit generates the following four arithmetic opera-
tions in conjunction with the input carry Ci,. Draw the logic diagram for the
first two stages.

N Cn=0 Cn=1

0 D=A+B(add)
1 D = A — 1 (decrement)

1 (increment)
B + 1 (subtract)

+ +

Derive a combinational circuit that selects and generates any of the 16 logic
functions listed in Table 4-5.

Design a digital circuit that performs the four logic operations of exclusive-
OR, exclusive-NOR, NOR, and NAND. Use two selection variables. Show
the logic diagram of one typical stage.

Register A holds the 8-bit binary 11011001. Determine the B operand and the
logic microoperation to be performed in order to change the value in A to:
a. 01101101

b. 11111101

The 8-bit registers AR, BR, CR, and DR initially have the following values:

AR = 11110010
BR = 11111111
CR = 10111001
DR = 11101010

Determine the 8-bit values in each register after the execution of the follow-
ing sequence of microoperations.

AR<AR + BR Add BR to AR
CR<~CRADR,BR<BR +1  AND DR to CR, increment BR
AR «<AR - CR Subtract CR from AR

An 8-bit register contains the binary value 10011100. What is the register
value after an arithmetic shift right? Starting from the initial number
10011100, determine the register value after an arithmetic shift left, and state
whether there is an overflow.

Starting from an initial value of R = 11011101, determine the sequence of
binary values in R after a logical shift-left, followed by a circular shift-right,
followed by a logical shift-right and a circular shift-left.
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422, What is the value of output H in Fig. 412 if input Ais 1001, § = 1, [z =1,

and Iy =07

423.  What is wrong with the following register transfer statements?

a xT: AR«<AR, AR«0
b. yT: R1+R2, R1«R3
c. zT: PC+—AR, PC—<PC+1

10.
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