IN THIS CHAPTER

3-1 Data Types

3-2 Complements

3.3 Fixed-Point Representation
3-4 Floating-Point Representation
3.5 Other Binary Codes

3.6 Error Detection Codes

3-1 Data Types

Binary information in digital computers is stored in memory or processor
registers. Registers contain either data or control information. Control informa-
tion is a bit or a group of bits used to specify the sequence of command signals
needed for manipulation of the data in other registers. Data are numbers and
other binary-coded information that are operated on to achieve required com-
putational results. In this chapter we present the most common types of data
found in digital computers and show how the various data types are repre-
sented in binary-coded form in computer registers.

The data types found in the registers of digital computers may be classi-
fied as being one of the following categories: (1) numbers used in arithmetic
compmauom (Zjldmdthedphabausedmdahmsun&mdﬁ)oﬂm

discrete symbols used for specific purposes. All types of data, except binary
numbers, are represented in computer registers in binary-coded form. This is
because registers are made up of flip-flops and flip-flops are two-state devices
that can store only 1's and (’s. The binary number system is the most natural
system to use in a digital computer. But sometimes it is convenient to employ
different number systems, especially the decimal number system, since it is
usedbypeopleboperﬁrmaﬁﬂmehcmpnhﬁms

67

68 CHAPTER THREE Data Representation

radix

decimal

binary

octal
hexademical

conversion

Number Systems

A number system of base, or radix, r is a system that uses distinct symbols for
r digits. Numbers are represented by a string of digit symbols. To determine
the quantity that the number represents, it is necessary to multiply each digit
by an integer power of r and then form the sum of all weighted digits. For
example, the decimal number system in everyday use employs the radix 10
system. The 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The string of digits
724.5 is interpreted to represent the quantity

7x 10 +2x 10" + 4 x 10° + 5 x 107!

that is, 7 hundreds, plus 2 tens, plus 4 units, plus 5 tenths. Every decimal
number can be similarly interpreted to find the quantity it represents.

The binary number system uses the radix 2. The two digit symbols used
are 0 and 1. The string of digits 101101 is interpreted to represent the quantity

I1X2P4+0X2+1x22+1x22+0x2'+1x2°=45

To distinguish between different radix numbers, the digits will be enclosed in
parentheses and the radix of the number inserted as a subscript. For example,
to show the equality between decimal and binary forty-five we will write
(101101), = (45)0-

Besides the decimal and binary number systems, the octal (radix 8) and
hexadecimal (radix 16) are important in digital computer work. The eight sym-
bols of the octal system are 0, 1, 2, 3, 4, 5, 6, and 7. The 16 symbols of the
hexadecimal system are0, 1,2, 3,4,5,6,7,8,9, A, B, C,D, E, and F. The last
six symbols are, unfortunately, identical to the letters of the alphabet and can
cause confusion at times. However, this is the convention that has been
adopted. When used to represent hexadecimal digits, the symbols A, B, C, D,
E, F correspond to the decimal numbers 10, 11, 12, 13, 14, 15, respectively.

A number in radix 7 can be converted to the familiar decimal system by
forming the sum of the weighted digits. For example, octal 736.4 is converted
to decimal as follows:

(736.4)s =7 x 8 +3 X8 +6x8 +4 x8!
=7Xx64+3%X8+6x1+48=(478.5)

The equivalent decimal number of hexadecimal F3 is obtained from the follow-
ing calculation:

(F3)=F x 16 + 3= 15 X 16 + 3 = (243)y0

Conversion from decimal to its equivalent representation in the radix r system
is carried out by separating the number into its integer and fraction parts and

SECTION 3-1 Data Types 69

converting each part separately. The conversion of a decimal integer into a base
r representation is done by successive divisions by 7 and accumulation of the
remainders. The conversion of a decimal fraction to radix representation is
accomplished by successive multiplications by 7 and accumulation of the in-
teger digits so obtained. Figure 3-1 demonstrates these procedures.

The conversion of decimal 41.6875 into binary is done by first separating
the number into its integer part 41 and fraction part .6875. The integer part is
converted by dividing 41 by r = 2 to give an integer quotient of 20 and a
remainder of 1. The quotient is again divided by 2 to give a new quotient and
remainder. This process is repeated until the integer quotient becomes 0. The
coefficients of the binary number are obtained from the remainders with the
first remainder giving the low-order bit of the converted binary number.

The fraction part is converted by multiplying itby r = 2 to give an integer
and a fraction. The new fraction (without the integer) is multiplied again by 2
to give a new integer and a new fraction. This process is repeated until the
fraction part becomes zero or until the number of digits obtained gives the
required accuracy. The coefficients of the binary fraction are obtained from
the integer digits with the first integer computed being the digit to be placed
next to the binary point. Finally, the two parts are combined to give the total
required conversion.

Octal and Hexadecimal Numbers

The conversion from and to binary, octal, and hexadecimal representation
plays an important part in digital computers. Since 2° = 8 and 2* = 16, each
octal digit corresponds to three binary digits and each hexadecimal digit cor-
responds to four binary digits. The conversion from binary to octal is easily
accomplished by partitioning the binary number into groups of three bits each.
The corresponding octal digit is then assigned to each group of bits and the
string of digits so obtained gives the octal equivalent of the binary number.
Consider, for example, a 16-bit register. Physically, one may think of the

Figure 3-1 Conversion of decimal 41.6875 into binary.

Integer = 41 Fraction = 0.6875

41 0.6875
20 |1 2
10 [0 1.3750
510 x 2
21 0.7500
1[0 x 2
01 1.5000
x 2
1.0000

(41),0 = (101001), (0.6875),0 = (0.1011),

(41.6875), = (101001.1011),

70

CHAPTER THREE Data Representation

1 2 7 5 4 3 Octal
~—— e = L=
101011110110001t 1 Binary

A F 6 3 Hexadecimal

Figure 3-2 Binary, octal, and hexadecimal conversion.

register as composed of 16 binary storage cells, with each cell capable of
holding eithera 1 ora0. Suppose that the bit configuration stored in the register
is as shown in Fig. 3-2. Since a binary number consists of a string of 1's and
0’s, the 16-bit register can be used to store any binary number from 0 to 26— 1,
For the particular example shown, the binary number stored in the register is
the equivalent of decimal 44899. Starting from the low-order bit, we partition
the register into groups of three bits each (the sixteenth bit remains in a group
by itself). Each group of three bits is assigned its octal equivalent and placed
on top of the register. The string of octal digits so obtained represents the octal
equivalent of the binary number.

Conversion from binary to hexadecimal is similar except that the bits are
divided into groups of four. The corresponding hexadecimal digit for each
group of four bits is written as shown below the register of Fig. 3-2. The string
of hexadecimal digits so obtained represents the hexadecimal equivalent of the
binary number. The corresponding octal digit for each group of three bits is
easily remembered after studying the first eight entries listed in Table 3-1. The
correspondence between a hexadecimal digit and its equivalent 4-bit code can
be found in the first 16 entries of Table 3-2.

TABLE 3-1 Binary-Coded Octal Numbers

Octal Binary-coded Decimal

number octal equivalent

0 000 0 I
1 001 1
2 010 2 Code
3 011 3 for one
4 100 4 octal
5 101 5 digit
6 110 6
7 11 7 l
10 001 000 8

1 001 001 9

12 001 010 10

24 010 100 20

62 110 010 50

143 001 100 011 9

370 011 111 000 248

SECTION 3-1 Data Types 71

Table 3-1 lists a few octal numbers and their representation in registers
in binary-coded form. The binary code is obtained by the procedure explained
above. Each octal digit is assigned a 3-bit code as specified by the entries of the
first eight digits in the table. Similarly, Table 3-2 lists a few hexadecimal
numbers and their representation in registers in binary-coded form. Here the
binary code is obtained by assigning to each hexadecimal digit the 4-bit code
listed in the first 16 entries of the table.

Comparing the binary-coded octal and hexadecimal numbers with their
binary number equivalent we find that the bit combination in all three repre-
sentations is exactly the same. For example, decimal 99, when converted to
binary, becomes 1100011. The binary-coded octal equivalent of decimal 99 is
001 100 011 and the binary-coded hexadecimal of decimal 99 is 0110 0011. If
we neglect the leading zeros in these three binary representations, we find that
their bit combination is identical. This should be so because of the straightfor-
ward conversion that exists between binary numbers and octal or hexadecimal.
The point of all this is that a string of 1’s and 0’s stored in a register could
represent a binary number, but this same string of bits may be interpreted as
holding an octal number in binary-coded form (if we divide the bits in groups
of three) or as holding a hexadecimal number in binary-coded form (if we
divide the bits in groups of four).

TABLE 3-2 Binary-Coded Hexadecimal Numbers

Hexadecimal ~ Binary-coded Decimal

number hexadecimal equivalent
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6 Code
7 0111 7 for one
8 1000 8 hexadecimal
9 1001 9 digit
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15
14 0001 0100 20
32 0011 0010 50
63 0110 0011 99

F8 1111 1000 248

72 CHAPTER THREE Data Representation

binary code

BCD

The registers in a digital computer contain many bits. Specifying the
content of registers by their binary values will require a long string of binary
digits. It is more convenient to specify content of registers by their octal or
hexadecimal equivalent. The number of digits is reduced by one-third in the
octal designation and by one-fourth in the hexadecimal designation. For exam-
ple, the binary number 1111 1111 1111 has 12 digits. It can be expressed in
octals as 7777 (four digits) or in hexadecimal as FFF (three digits). Computer
manuals invariably choose either the octal or the hexadecimal designation for
specifying contents of registers.

Decimal Representation

The binary number system is the most natural system for a computer, but
people are accustomed to the decimal system. One way to solve this conflict
is to convert all input decimal numbers into binary numbers, let the computer
perform all arithmetic operations in binary and then convert the binary results
back to decimal for the human user to understand. However, it is also possible
for the computer to perform arithmetic operations directly with decimal num-
bers provided they are placed in registers in a coded form. Decimal numbers
enter the computer usually as binary-coded alphanumeric characters. These
codes, introduced later, may contain from six to eight bits for each decimal
digit. When decimal numbers are used for internal arithmetic computations,
they are converted to a binary code with four bits per digit.

A binary code is a group of n bits that assume up to 2" distinct combina-
tions of 1’s and 0’s with each combination representing one element of the set
that is being coded. For example, a set of four elements can be coded by a 2-bit
code with each element assigned one of the following bit combinations; 00, 01,
10, or 11. A set of eight elements requires a 3-bit code, a set of 16 elements
requires a 4-bit code, and so on. A binary code will have some unassigned bit
combinations if the number of elements in the set is not a multiple power of
2. The 10 decimal digits form such a set. A binary code that distinguishes
among 10 elements must contain at least four bits, but six combinations will
remain unassigned. Numerous different codes can be obtained by arranging
four bits in 10 distinct combinations. The bit assignment most commonly used
for the decimal digits is the straight binary assignment listed in the first 10
entries of Table 3-3. This particular code is called binary-coded decimal and is
commonly referred to by its abbreviation BCD. Other decimal codes are some-
times used and a few of them are given in Sec. 3-5.

It is very important to understand the difference between the conversion
of decimal numbers into binary and the binary coding of decimal numbers. For
example, when converted to a binary number, the decimal number 99 is repre-
sented by the string of bits 1100011, but when represented in BCD, it becomes
1001 1001. The only difference between a decimal number represented by the
familiar digit symbols 0, 1,2, ...,9 and the BCD symbols 0001, 0010, .. ., 1001
is in the symbols used to represent the digits—the number itself is exactly the

character

Ascl

SECTION 3.1 Data Types 73

TABLE 3-3 Binary-Coded Decimal (BCD) Numbers

Decimal Binary-coded decimal

number (BCD) number
0 0000
1 0001
2 0010
3 0011 Code
4 0100 for one
5 0101 decimal
6 0110 digit
7 0111
8 1000 1
9 1001
10 0001 0000
20 0010 0000
50 0101 0000
99 1001 1001
248 0010 0100 1000

same. A few decimal numbers and their representation in BCD are listed in
Table 3-3.

Alphanumeric Representation

Many applications of digital computers require the handling of data that
consist not only of numbers, but also of the letters of the alphabet and certain
special characters. An alphanumeric character set is a set of elements that includes
the 10 decimal digits, the 26 letters of the alphabet and a number of special
characters, suchas $, +, and =. Such a set contains between 32 and 64 elements
(if only uppercase letters are included) or between 64 and 128 (if both uppercase
and lowercase letters are included). In the first case, the binary code will require
six bits and in the second case, seven bits. The standard alphanumeric binary
code is the ASCII (American Standard Code for Information Interchange),
which uses seven bits to code 128 characters. The binary code for the uppercase
letters, the decimal digits, and a few special characters is listed in Table 3-4.
Note that the decimal digits in ASCII can be converted to BCD by removing
the three high-order bits, 011. A complete list of ASCII characters is provided
in Table 11-1.

Binary codes play an important part in digital computer operations. The
codes must be in binary because registers can only hold binary information.
One must realize that binary codes merely change the symbols, not the mean-
ing of the discrete elements they represent. The operations specified for digital

74 CHAPTER THREE Data Representation

TABLE 3-4 American Standard Code for Information Interchange (ASCII)

Binary Binary
Character code Character code

A 100 0001 0 011 0000
B 100 0010 1 011 0001
C 100 0011 2 011 0010
D 100 0100 3 011 0011
E 100 0101 4 011 0100
F 100 0110 5 011 0101
G 100 0111 6 011 0110
H 100 1000 7 011 0111
I 100 1001 8 011 1000
J 100 1010 9 011 1001
K 100 1011
L 100 1100
M 100 1101 space 010 0000
N 100 1110 . 010 1110
o 100 1111 (010 1000
P 101 0000 + 010 1011
Q 101 0001 $ 010 0100
R 101 0010 * 010 1010
S 101 0011) 010 1001
T 101 0100 - 010 1101
U 101 0101 / 010 1111
\% 101 0110 , 010 1100
w 101 0111 = 011 1101
X 101 1000
Y 101 1001
z 101 1010

computers must take into consideration the meaning of the bits stored in
registers so that operations are performed on operands of the same type. In
inspecting the bits of a computer register at random, one is likely to find that
it represents some type of coded information rather than a binary number.

Binary codes can be formulated for any set of discrete elements such as
the musical notes and chess pieces and their positions on the chessboard.
Binary codes are also used to formulate instructions that specify control infor-
mation for the computer. This chapter is concerned with data representation.
Instruction codes are discussed in Chap. 5.

3-2 Complements

Complements are used in digital computers for simplifying the subtraction
operation and for logical manipulation. There are two types of complements
for each base r system: the r’s complement and the (r — 1)’s complement.

9's complement

1’s complement

10’s complement

2’s complement

SECTION 3-2 Complements 75

When the value of the base r is substituted in the name, the two types are
referred to as the 2’s and 1’s complement for binary numbers and the 10’s and
9’s complement for decimal numbers.

(r — 1)’s Complement
Given a number N in base r having n digits, the (r — 1)’s complement of N is
defined as (r" — 1) — N. For decimal numbersr = 10andr — 1 = 9, sothe 9's
complement of Nis (10" — 1) — N. Now, 10" represents a number that consists
of a single 1 followed by n 0’s. 10" — 1 is a number represented by n 9's. For
example, with n = 4 we have 10* = 10000 and 10* — 1 = 9999. It follows that
the 9's complement of a decimal number is obtained by subtracting each digit
from 9. For example, the 9s complement of 546700 is 999999 — 546700 =
453299 and the 9’s complement of 12389 is 99999 — 12389 = 87610.

For binary numbers, r = 2and r — 1 = 1, so the 1’s complement of N is
(2" — 1) — N. Again, 2" is represented by a binary number that consists of a 1
followed by n 0’s. 2" — 1is a binary number represented by n 1’s. For example,
with n = 4, we have 2* = (10000), and 2* — 1 = (1111),. Thus the 1’s comple-
ment of a binary number is obtained by subtracting each digit from 1. However,
the subtraction of a binary digit from 1 causes the bit to change from 0 to 1 or
from 1 to 0. Therefore, the 1’s complement of a binary number is formed by
changing 1’s into 0’s and 0’s into 1’s. For example, the 1’s complement of
1011001 is 0100110 and the 1’s complement of 0001111 is 1110000.

The (r — 1)’s complement of octal or hexadecimal numbers are obtained
by subtracting each digit from 7 or F (decimal 15) respectively.

(r’s) Complement

The r’s complement of an n-digit number N in base r is defined as r" — N for
N # 0and 0 for N = 0. Comparing with the (» — 1)’s complement, we note
that the r’s complement is obtained by adding 1 to the (» — 1)’s complement
since r" = N = [(r" — 1) — N] + 1. Thus the 10’s complement of the decimal
2389 is 7610 + 1 = 7611 and is obtained by adding 1 to the 9’s complement
value. The 2's complement of binary 101100 is 010011 + 1 = 010100 and is
obtained by adding 1 to the 1’s complement value.

Since 10" is a number represented by a 1 followed by n 0’s, then 10" — N,
which is the 10’s complement of N, can be formed also be leaving all least
significant 0’s unchanged, subtracting the first nonzero least significant digit
from 10, and then subtracting all higher significant digits from 9. The 10’s
complement of 246700 is 753300 and is obtained by leaving the two zeros
unchanged, subtracting 7 from 10, and subtracting the other three digits from
9. Similarly, the 2’s complement can be formed by leaving all least significant
0’s and the first 1 unchanged, and then replacing 1’s by 0’s and 0’s by 1’s in
all other higher significant bits. The 2’s complement of 1101100 is 0010100 and
is obtained by leaving the two low-order 0’s and the first 1 unchanged, and then
replacing 1’s by 0’s and 0’s by 1’s in the other four most significant bits.

76 CHAPTER THREE Data Representation

subtraction

end carry

In the definitions above it was assumed that the numbers do not have a
radix point. If the original number N contains a radix point, it should be
removed temporarily to form the r’s or (r — 1)’s complement. The radix point
is then restored to the complemented number in the same relative position. It
is also worth mentioning that the complement of the complement restores the
number to its original value. The r’s complement of N is r" = N. The comple-
ment of the complement is " — (r" — N) = N giving back the original number.

Subtraction of Unsigned Numbers
The direct method of subtraction taught in elementary schools uses the borrow
concept. In this method we borrow a 1 from a higher significant position when
the minuend digit is smaller than the corresponding subtrahend digit. This
seems to be easiest when people perform subtraction with paper and pencil.
When subtraction is implemented with digital hardware, this method is found
to be less efficient than the method that uses complements.

The subtraction of two n-digit unsigned numbers M — N(N # 0) in base
r can be done as follows:

1. Add the minuend M to the r’s complement of the subtrahend N. This
performs M + (" = N) =M — N + r".

2. If M = N, the sum will produce an end carry r" which is discarded, and
what is left is the result M — N.

3. If M <N, the sum does not produce an end carry and is equal to
r" — (N — M), which is the r’s complement of (N — M). To obtain the
answer in a familiar form, take the r’s complement of the sum and place
a negative sign in front.

Consider, for example, the subtraction 72532 — 13250 = 59282. The 10’s com-
plement of 13250 is 86750. Therefore:

M= 72532
10’s complement of N = +86750
Sum = 159282

Discard end carry 10° = —100000
Answer = 59282

Now consider an example with M < N. The subtraction 13250 — 72532
produces negative 59282. Using the procedure with complements, we have

M= 13250
10’s complement of N = +27468
Sum = 40718

binary point

SECTION 3.3 Fixed-Point Representation 77

There is no end carry

Answer is negative 59282 = 10’s complement of 40718

Since we are dealing with unsigned numbers, there is really no way to
get an unsigned result for the second example. When working with paper and
pencil, we recognize that the answer must be changed to a signed negative
number. When subtracting with complements, the negative answer is recog-
nized by the absence of the end carry and the complemented result.

Subtraction with complements is done with binary numbers in a similar
manner using the same procedure outlined above. Using the two binary
numbers X = 1010100 and Y = 1000011, we perform the subtraction X — Y
and Y — X using 2's complements:

X = 1010100

2’s complement of Y = +0111101
Sum = 10010001

Discard end carry 2’ = —10000000
Answer: X — Y = 0010001

Y= 1000011
2’s complement of X = +0101100
Sum = 1101111

There is no end carry
Answer is negative 0010001 = 2’s complement of 1101111

3.3 Fixed-Point Representation

Positive integers, including zero, can be represented as unsigned numbers.
However, to represent negative integers, we need a notation for negative
values. In ordinary arithmetic, a negative number is indicated by a minus sign
and a positive number by a plus sign. Because of hardware limitations, com-
puters must represent everything with 1’s and 0’s, including the sign of a
number. As a consequence, it is customary to represent the sign with a bit
placed in the leftmost position of the number. The convention is to make the
sign bit equal to 0 for positive and to 1 for negative.

In addition to the sign, a number may have a binary (or decimal) point.
The position of the binary point is needed to represent fractions, integers, or
mixed integer—fraction numbers. The representation of the binary point in a
register is complicated by the fact that it is characterized by a position in the
register. There are two ways of specifying the position of the binary point in
a register: by giving it a fixed position or by employing a floating-point repre-
sentation. The fixed-point method assumes that the binary point is always

78 CHAPTER THREE Data Representation

signed numbers

fixed in one position. The two positions most widely used are (1) a binary point
in the extreme left of the register to make the stored number a fraction, and
(2) abinary point in the extreme right of the register to make the stored number
an integer. In either case, the binary point is not actually present, but its
presence is assumed from the fact that the number stored in the register is
treated as a fraction or as an integer. The floating-point representation uses a
second register to store a number that designates the position of the decimal
point in the first register. Floating-point representation is discussed further in
the next section.

Integer Representation

When an integer binary number is positive, the sign is represented by 0 and
the magnitude by a positive binary number. When the number is negative, the
sign is represented by 1 but the rest of the number may be represented in one
of three possible ways:

1. Signed-magnitude representation
2. Signed-1’s complement representation
3. Signed 2’s complement representation

The signed-magnitude representation of a negative number consists of the
magnitude and a negative sign. In the other two representations, the negative
number is represented in either the 1’s or 2's complement of its positive value.
As an example, consider the signed number 14 stored in an 8-bit register. +14
is represented by a sign bit of 0 in the leftmost position followed by the binary
equivalent of 14: 00001110. Note that each of the eight bits of the register must
have a value and therefore 0’s must be inserted in the most significant positions
following the sign bit. Although there is only one way to represent +14, there
are three different ways to represent —14 with eight bits.

In signed-magnitude representation 1 0001110
In signed-1’s complement representation 1 1110001

In signed-2’s complement representation 1 1110010

The signed-magnitude representation of —14 is obtained from +14 by comple-
menting only the sign bit. The signed-1’s complement representation of —14
is obtained by complementing all the bits of +14, including the sign bit. The
signed-2’s complement representation is obtained by taking the 2’s comple-
ment of the positive number, including its sign bit.

The signed-magnitude system is used in ordinary arithmetic but is awk-
ward when employed in computer arithmetic. Therefore, the signed-comple-
ment is normally used. The 1’s complement imposes difficulties because it

2’s complement
addition

SECTION 3.3 Fixed-Point Representation 79

has two representations of 0 (+0 and —0). It is seldom used for arithmetic
operations except in some older computers. The 1’s complement is useful as
alogical operation since the change of 1 to 0 or 0 to 1 is equivalent to a logical
complement operation. The following discussion of signed binary arithmetic
deals exclusively with the signed-2’s complement representation of negative
numbers.

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules
of ordinary arithmetic. If the signs are the same, we add the two magnitudes
and give the sum the common sign. If the signs are different, we subtract the
smaller magnitude from the larger and give the result the sign of the larger
magnitude. For example, (+25) + (—37) = —(37 — 25) = —12 and is done by
subtracting the smaller magnitude 25 from the larger magnitude 37 and using
the sign of 37 for the sign of the result. This is a process that requires the
comparison of the signs and the magnitudes and then performing either
addition or subtraction. (The procedure for adding binary numbers in signed-
magnitude representation is described in Sec. 10-2.) By contrast, the rule for
adding numbers in the signed-2’s complement system does not require a
comparison or subtraction, only addition and complementation. The proce-
dure is very simple and can be stated as follows: Add the two numbers,
including their sign bits, and discard any carry out of the sign (leftmost) bit
position. Numerical examples for addition are shown below. Note that nega-
tive numbers must initially be in 2’s complement and that if the sum obtained
after the addition is negative, it is in 2’s complement form.

+6 00000110 -6 11111010
+13 00001101 +13 00001101
+19 00010011 +7 00000111
+6 00000110 -6 11111010
-13 11110011 -13 11110011
=7 11111001 -19 11101101

Ineach of the four cases, the operation performed is always addition, including
the sign bits. Any carry out of the sign bit position is discarded, and negative
results are automatically in 2's complement form.

The complement form of representing negative numbers is unfamiliar to
people used to the signed-magnitude system. To determine the value of a
negative number when in signed-2's complement, it is necessary to convert it
to a positive number to place it in a more familiar form. For example, the signed
binary number 11111001 is negative because the leftmost bit is 1. Its 2's com-
plement is 00000111, which is the binary equivalent of +7. We therefore
recognize the original negative number to be equal to —7.

80 CHAPTER THREE Data Representation

2’s complement
subtraction

overflow

Arithmetic Subtraction
Subtraction of two signed binary numbers when negative numbers are in 2’s
complement form is very simple and can be stated as follows: Take the 2’s
complement of the subtrahend (including the sign bit) and add it to the
minuend (including the sign bit). A carry out of the sign bit position is dis-
carded.

This procedure stems from the fact that a subtraction operation can be
changed to an addition operation if the sign of the subtrahend is changed. This
is demonstrated by the following relationship:

(£A) — (+B) = (xA) + (-B)
(£4) = (=B) = (x4) + (+B)

But changing a positive number to a negative number is easily done by taking
its 2's complement. The reverse is also true because the complement of a
negative number in complement form produces the equivalent positive num-
ber. Consider the subtraction of (—6) — (—13) = +7. In binary with eight bits
this is written as 11111010 — 11110011. The subtraction is changed to addition
by taking the 2's complement of the subtrahend (—13) to give (+13). In binary
this is 11111010 + 00001101 = 100000111. Removing the end carry, we obtain
the correct answer 00000111 (+7).

It is worth noting that binary numbers in the signed-2’s complement
system are added and subtracted by the same basic addition and subtraction
rules as unsigned numbers. Therefore, computers need only one common
hardware circuit to handle both types of arithmetic. The user or programmer
must interpret the results of such addition or subtraction differently depending
on whether it is assumed that the numbers are signed or unsigned.

Overflow

When two numbers of n digits each are added and the sum occupies n + 1
digits, we say that an overflow occurred. When the addition is performed with
paper and pencil, an overflow is not a problem since there is no limit to the
width of the page to write down the sum. An overflow is a problem in digital
computers because the width of registers is finite. A result that contains n + 1
bits cannot be accommodated in a register with a standard length of n bits. For
this reason, many computers detect the occurrence of an overflow, and when
itoccurs, a corresponding flip-flop is set which can then be checked by the user.

The detection of an overflow after the addition of two binary numbers
depends on whether the numbers are considered to be signed or unsigned.
When two unsigned numbers are added, an overflow is detected from the end
carry out of the most significant position. In the case of signed numbers, the
leftmost bit always represents the sign, and negative numbers are in 2’s

flow detection

SECTION 3-3 Fixed-Point Representation 81

complement form. When two signed numbers are added, the sign bit is treated
as part of the number and the end carry does not indicate an overflow.

An overflow cannot occur after an addition if one number is positive and
the other is negative, since adding a positive number to a negative number
produces a result that is smaller than the larger of the two original numbers.
An overflow may occur if the two numbers added are both positive or both
negative. To see how this can happen, consider the following example. Two
signed binary numbers, +70 and +80, are stored in two 8-bit registers. The
range of numbers that each register can accommodate is from binary +127 to
binary —128. Since the sum of the two numbers is +150, it exceeds the capacity
of the 8-bit register. This is true if the numbers are both positive or both
negative. The two additions in binary are shown below together with the last
two carries.

carries: 0 1 carries: 1 0
+70 0 1000110 -70 1 0111010
+80 0 1010000 —80 1 0110000
+150 1 0010110 -150 0 1101010

Note that the 8-bit result that should have been positive has a negative sign
bit and the 8-bit result that should have been negative has a positive sign bit.
If, however, the carry out of the sign bit position is taken as the sign bit of the
result, the 9-bit answer so obtained will be correct. Since the answer cannot be
accommodated within 8 bits, we say that an overflow occurred.

An overflow condition can be detected by observing the carry into the
sign bit position and the carry out of the sign bit position. If these two carries
are not equal, an overflow condition is produced. This is indicated in the
examples where the two carries are explicitly shown. If the two carries are
applied to an exclusive-OR gate, an overflow will be detected when the output
of the gate is equal to 1.

Decimal Fixed-Point Representation

The representation of decimal numbers in registers is a function of the binary
code used to represent a decimal digit. A 4-bit decimal code requires four
flip-flops for each decimal digit. The representation of 4385 in BCD requires 16
flip-flops, four flip-flops for each digit. The number will be represented in a
register with 16 flip-flops as follows:

0100 0011 1000 0101
By representing numbers in decimal we are wasting a considerable

amount of storage space since the number of bits needed to store a decimal
number in a binary code is greater than the number of bits needed for its

82

CHAPTER THREE Data Representation

equivalent binary representation. Also, the circuits required to perform deci-
mal arithmetic are more complex. However, there are some advantages in the
use of decimal representation because computer input and output data are
generated by people who use the decimal system. Some applications, such as
business data processing, require small amounts of arithmetic computations
compared to theamount required for input and output of decimal data. For this
reason, some computers and all electronic calculators perform arithmetic oper-
ations directly with the decimal data (in a binary code) and thus eliminate the
need for conversion to binary and back to decimal. Some computer systems
have hardware for arithmetic calculations with both binary and decimal data.

The representation of signed decimal numbers in BCD is similar to the
representation of signed numbers in binary. We can either use the familiar
signed-magnitude system or the signed-complement system. The sign of a
decimal number is usually represented with four bits to conform with the 4-bit
code of the decimal digits. It is customary to designate a plus with four 0’s and
a minus with the BCD equivalent of 9, which is 1001.

The signed-magnitude system is difficult to use with computers. The
signed-complement system can be either the 9's or the 10’s complement, but
the 10’s complement is the one most often used. To obtain the 10’s complement
of a BCD number, we first take the 9's complement and then add one to the
least significant digit. The 9's complement is calculated from the subtraction
of each digit from 9.

The procedures developed for the signed-2's complement system apply
also to the signed-10’s complement system for decimal numbers. Addition is
done by adding all digits, including the sign digit, and discarding the end
carry. Obviously, this assumes that all negative numbers are in 10’s comple-
ment form. Consider the addition (+375) + (—240) = +135donein the signed-
10’s complement system.

0 375 (0000 0011 0111 0101)scp
+9 760 (1001 0111 0110 0000)scp

0 135 (0000 0001 0011 0101)scp

The 9 in the leftmost position of the second number indicates that the number
is negative. 9760 is the 10’s complement of 0240. The two numbers are added
and the end carry is discarded to obtain +135. Of course, the decimal numbers
inside the computer must be in BCD, including the sign digits. The addition
is done with BCD adders (see Fig. 10-18).

The subtraction of decimal numbers either unsigned or in the signed-10s
complement system is the same as in the binary case. Take the 10’s complement
of the subtrahend and add it to the minuend. Many computers have special
hardware to perform arithmetic calculations directly with decimal numbers in
BCD. The user of the computer can specify by programmed instructions that
the arithmetic operations be performed with decimal numbers directly without
having to convert them to binary.

mantissa

exponent

fraction

normalization

SECTION 3-4 Floating-Point Representation 83

3-4 Floating-Point Representation

The floating-point representation of a number has two parts. The first part
represents a signed, fixed-point number called the mantissa. The second part
designates the position of the decimal (or binary) point and is called the
exponent. The fixed-point mantissa may be a fraction or an integer. For exam-
ple, the decimal number +6132.789 is represented in floating-point with a
fraction and an exponent as follows:

Fraction Exponent
+0.6132789 +04

The value of the exponent indicates that the actual position of the decimal point
is four positions to the right of the indicated decimal point in the fraction. This
representation is equivalent to the scientific notation +0.6132789 x 10**.

Floating-point is always interpreted to represent a number in the follow-
ing form:

mXr

Only the mantissa m and the exponent e are physically represented in the
register (including their signs). The radix r and the radix-point position of the
mantissa are always assumed. The circuits that manipulate the floating-point
numbers in registers conform with these two assumptions in order to provide
the correct computational results.

A floating-point binary number is represented in a similar manner except
that it uses base 2 for the exponent. For example, the binary number +1001.11
is represented with an 8-bit fraction and 6-bit exponent as follows:

Fraction Exponent
01001110 000100

The fraction has a 0 in the leftmost position to denote positive. The binary point
of the fraction follows the sign bit but is not shown in the register. The exponent
has the equivalent binary number +4. The floating-point number is equivalent
to

m X 2¢= +(.1001110), x 2**

A floating-point number is said to be normalized if the most significant
digit of the mantissa is nonzero. For example, the decimal number 350 is
normalized but 00035 is not. Regardless of where the position of the radix point
is assumed to be in the mantissa, the number is normalized only if its leftmost
digit is nonzero. For example, the 8-bit binary number 00011010 is not normal-

84 CHAPTER THREE Data Representation

Gray code

ized because of the three leading 0’s. The number can be normalized by shifting
it three positions to the left and discarding the leading 0’s to obtain 11010000.
The three shifts multiply the number by 2° = 8. To keep the same value for the
floating-point number, the exponent must be subtracted by 3. Normalized
numbers provide the maximum possible precision for the floating-point num-
ber. A zero cannot be normalized because it does not have a nonzero digit. It
is usually represented in floating-point by all 0s in the mantissa and exponent.

Arithmetic operations with floating-point numbers are more complicated
than arithmetic operations with fixed-point numbers and their execution takes
longer and requires more complex hardware. However, floating-point repre-
sentation is a must for scientific computations because of the scaling problems
involved with fixed-point computations. Many computers and all electronic
calculators have the built-in capability of performing floating-point arithmetic
operations. Computers that do not have hardware for floating-point computa-
tions have a set of subroutines to help the user program scientific problems
with floating-point numbers. Arithmetic operations with floating-point num-
bers are discussed in Sec. 10-5.

3.5 Other Binary Codes

In previous sections we introduced the most common types of binary-coded
data found in digital computers. Other binary codes for decimal numbers and
alphanumeric characters are sometimes used. Digital computers also employ
other binary codes for special applications. A few additional binary codes
encountered in digital computers are presented in this section.

Gray Code

Digital systems can process data in discrete form only. Many physical systems
supply continuous output data. The data must be converted into digital form
before they can be used by a digital computer. Continuous, or analog, infor-
mation is converted into digital form by means of an analog-to-digital con-
verter. The reflected binary or Gray code, shown in Table 3-5, is sometimes used
for the converted digital data. The advantage of the Gray code over straight
binary numbers is that the Gray code changes by only one bit as it sequences
from one number to the next. In other words, the change from any number
to the next in sequence is recognized by a change of only one bit from 0 to 1
or from 1 to 0. A typical application of the Gray code occurs when the analog
data are represented by the continuous change of a shaft position. The shaft
is partitioned into segments with each segment assigned a number. If adjacent
segments are made to correspond to adjacent Gray code numbers, ambiguity
is reduced when the shaft position is in the line that separates any two
segments.

Gray code counters are sometimes used to provide the timing sequences

TABLE 3-5 4-Bit Gray Code

SECTION 3-5 Other Binary Codes 85

Binary Decimal Binary Decimal
code equivalent code equivalent
0000 0 1100 8
0001 1 1101 9
0011 2 1111 10
0010 3 1110 11
0110 4 1010 12
0111 5 1011 13
0101 6 1001 14
0100 7 1000 15

that control the operations in a digital system. A Gray code counter is a counter
whose flip-flops go through a sequence of states as specified in Table 3-5. Gray
code counters remove the ambiguity during the change from one state of the
counter to the next because only one bit can change during the state transition.

Other Decimal Codes

Binary codes for decimal digits require a minimum of four bits. Numerous
different codes can be formulated by arranging four or more bits in 10 distinct
possible combinations. A few possibilities are shown in Table 3-6.

TABLE 3-6 Four Different Binary Codes for the Decimal Digit

Decimal BCD Excess-3
digit 8421 2421 Excess-3 gray
0 0000 0000 0011 0010
1 0001 0001 0100 0110
2 0010 0010 0101 0111
3 0011 0011 0110 0101
4 0100 0100 0111 0100
5 0101 1011 1000 1100
6 0110 1100 1001 1101
7 0111 1101 1010 1111
8 1000 1110 1011 1110
9 1001 1111 1100 1010
1010 0101 0000 0000
Unused 1011 0110 0001 0001
bit 1100 0111 0010 0011
combi- 1101 1000 1101 1000
nations 1110 1001 1110 1001
1111 1010 1111 1011

86 cHAPTER THREE Data Representation

self-complementing

weighted code

excess-3 code

The BCD (binary-coded decimal) has been introduced before. It uses a
straight assignment of the binary equivalent of the digit. The six unused bit
combinations listed have no meaning when BCD is used, just as the letter H
has no meaning when decimal digit symbols are written down. For example,
saying that 1001 1110 is a decimal number in BCD is like saying that 9H is a
decimal number in the conventional symbol designation. Both cases contain
an invalid symbol and therefore designate a meaningless number.

One disadvantage of using BCD is the difficulty encountered when the
9’s complement of the number is-to be computed. On the other hand, the 9's
complement is easily obtained with the 2421 and the excess-3 codes listed
in Table 3-6. These two codes have a self-complementing property which
means that the 9's complement of a decimal number, when represented in one
of these codes, is easily obtained by changing 1’s to 0’s and 0’s to 1’s. This
property is useful when arithmetic operations are done in signed-complement
representation.

The 2421 is an example of a weighted code. In a weighted code, the bits are
multiplied by the weights indicated and the sum of the weighted bits gives the
decimal digit. For example, the bit combination 1101, when weighted by the
respective digits 2421, gives the decimal equivalent of 2 X1+ 4 X 1 +2X
0+ 1+ 1=7. The BCD code can be assigned the weights 8421 and for this
reason it is sometimes called the 8421 code.

The excess-3 code is a decimal code that has been used in older comput-
ers. This is an unweighted code. Its binary code assignment is obtained from
the corresponding BCD equivalent binary number after the addition of binary
3 (0011).

From Table 3-5 we note that the Gray code is not suited for a decimal code
if we were to choose the first 10 entries in the table. This is because the
transition from 9 back to 0 involves a change of three bits (from 1101 to 0000).
To overcome this difficulty, we choose the 10 numbers starting from the third
entry 0010 up to the twelfth entry 1010. Now the transition from 1010 to 0010
involves a change of only one bit. Since the code has been shifted up three
numbers, it is called the excess-3 Gray. This code is listed with the other
decimal codes in Table 3-6.

Other Alphanumeric Codes

The ASCII code (Table 3-4) is the standard code commonly used for the
transmission of binary information. Each character is represented by a 7-bit
code and usually an eighth bit is inserted for parity (see Sec. 3-6). The code
consists of 128 characters. Ninety-five characters represent graphic symbols that
include upper- and lowercase letters, numerals zero to nine, punctuation
marks, and special symbols. Twenty-three characters represent format effectors,
which are functional characters for controlling the layout of printing or display
devices such as carriage return, line feed, horizontal tabulation, and back

EBCDIC

parity bit

parity generator

parity checker

SECTION 3.6 Error Detection Codes 87

space. The other 10 characters are used to direct the data communication flow
and report its status.

Another alphanumeric (sometimes called alphameric) code used in IBM
equipment is the EBCDIC (Extended BCD Interchange Code). It uses eight bits
for each character (and a ninth bit for parity). EBCDIC has the same character
symbols as ASCII but the bit assignment to characters is different.

When alphanumeric characters are used internally in a computer for data
processing (not for transmission purposes) it is more convenient to use a 6-bit
code to represent 64 characters. A 6-bit code can specify the 26 uppercase letters
of the alphabet, numerals zero to nine, and up to 28 special characters. This
set of characters is usually sufficient for data-processing purposes. Using fewer
bits to code characters has the advantage of reducing the memory space needed
to store large quantities of alphanumeric data.

3.6 Error Detection Codes

Binary information transmitted through some form of communication medium
is subject to external noise that could change bits from 1 to 0, and vice versa.
An error detection code is a binary code that detects digital errors during
transmission. The detected errors cannot be corrected but their presence is
indicated. The usual procedure is to observe the frequency of errors. If errors
occur infrequently at random, the particular erroneous information is transmit-
ted again. If the error occurs too often, the system is checked for malfunction.

The most common error detection code used is the parity bit. A parity bit
is an extra bit included with a binary message to make the total number of 1’s
either odd or even. A message of three bits and two possible parity bits is
shown in Table 3-7. The P(odd) bit is chosen in such a way as to make the sum
of 1’s (in all four bits) odd. The P(even) bit is chosen to make the sum of all
1’s even. In either case, the sum is taken over the message and the P bit. In
any particular application, one or the other type of parity will be adopted. The
even-parity scheme has the disadvantage of having a bit combination of all 0's,
while in the odd parity there is always one bit (of the four bits that constitute
the message and P) that is 1. Note that the P(odd) is the complement of the
P(even).

Duning transfer of information from one location to another, the parity
bit is handled as follows. At the sending end, the message (in this case three
bits) is applied to a parity generator, where the required parity bit is generated.
The message, including the parity bit, is transmitted to its destination. At the
receiving end, all the incoming bits (in this case, four) are applied to a parity
checker that checks the proper parity adopted (odd or even). An error is detected
if the checked parity does not conform to the adopted parity. The parity
method detects the presence of one, three, or any odd number of errors. An
even number of errors is not detected.

88 CHAPTER THREE Data Representation

odd function

TABLE 3-7 Parity Bit Generation

xyz Plodd) P(even)

000 1 0
001 0 1
010 0 1
011 1 0
100 0 1
101 1 0
110 1 1]
m 0 1

Parity generator and checker networks are logic circuits constructed with
exclusive-OR functions. This is because, as mentioned in Sec. 1-2, the exclu-
sive-OR function of three or more variables is by definition an odd function.
An odd function is a logic function whose value is binary 1 if, and only if, an
odd number of variables are equal to 1. According to this definition, the P(even)
function is the exclusive-OR of x, y, and z because it is equal to 1 when either
one or all three of the variables are equal to 1 (Table 3-7). The P(odd) function
is the complement of the P(even) function.

As an example, consider a 3-bit message to be transmitted with an odd
parity bit. At the sending end, the odd-parity bit is generated by a parity

Figure 3-3 Error detection with odd paricy bit.

Parity generator Parity checker

SECTION 36 Error Detection Codes 89

generator circuit. As shown in Fig. 3-3, this circuit consists of one exclusive-OR
and one exclusive-NOR gate. Since P(even) is the exclusive-OR of x, y, z, and
P(odd) is the complement of P(even), it is necessary to employ an exclusive-
NOR gate for the needed complementation. The message and the odd-parity
bit are transmitted to their destination where they are applied to a parity
checker. An error has occurred during transmission if the parity of the four bits
received is even, since the binary information transmitted was originally odd.
The output of the parity checker would be 1 when an error occurs, thatis, when
the number of 1's in the four inputs is even. Since the exclusive-OR function
of the four inputs is an odd function, we again need to complement the output
by using an exclusive-NOR gate. .

It is worth noting that the parity generator can use the same circuit as the
parity checker if the fourth input is permanently held at a logic-0 value. The
advantage of this is that the same circuit can be used for both parity generation
and parity checking.

It is evident from the example above that even-parity generators and
checkers can be implemented with exclusive-OR functions. Odd-parity net-
works need an exclusive-NOR at the output to complement the function.

= === PROBLEMS | — —

3-1. Convert the following binary numbers to decimal: 101110; 1110101; and
110110100.

3.2, Convert the following numbers with the indicated bases to decimal: (12121)y;
(4310)s; (50)7; and (198)sa.

3-3. Convert the following decimal numbers to binary: 1231; 673; and 1998.

34, Convert the following decimal numbers to the bases indicated.

a. 7562 to octal
b. 1938 to hexadecimal
¢. 175 to binary

3.5. Convert the hexadecimal number F3A7C2 to binary and octal.

3-6. What is the radix of the numbers if the solution to the quadratic equation
x*=10x+31=0isx=5and x = 8?

3-7. Show the value of all bits of a 12-bit register that hold the number equivalent
to decimal 215 in (a) binary; (b) binary-coded octal; (c) binary-coded hexadec-
imal; (d) binary-coded decimal (BCD).

3-8. Show the bit configuration of a 24-bit register when its content represents
the decimal equivalent of 295: (a) in binary; (b) in BCD; (c) in ASCII using
eight bits with even parity.

39 Write your name in ASCII using an 8-bit code with the leftmost bit always
0. Include a space between names and a period after a middle initial.

90

CHAPTER THREE Data Representation

3-10.

3-13.

3-14.

3-15.

3-16.

3-17.

3-18.

3-19.

3-20.

3-21.

3-22.

Decode the following ASCII code:
1001010 1001111 1001000 1001110 0100000 1000100 1001111 1000101

Obtain the 9’s complement of the following eight-digit decimal numbers:
12349876; 00980100; 90009951; and 00000000.

Obtain the 10’s complement of the following six-digit decimal numbers:
123900; 090657; 100000; and 000000.

Obtain the 1’s and 2's complements of the following eight-digit binary
numbers: 10101110; 10000001; 10000000; 00000001; and 00000000.

Perform the subtraction with the following unsigned decimal numbers by
taking the 10’s complement of the subtrahend.

a. 5250 - 1321 b. 1753 — 8640

¢. 20 — 100 d. 1200 - 250

Perform the subtraction with the following unsigned binary numbers by
taking the 2’s complement of the subtrahend.

a. 11010 — 10000 b. 11010 — 1101

c. 100 — 110000 d. 1010100 — 1010100

Perform the arithmetic operations (+42) + (—13) and (—42) — (—13) in bi-
nary using signed-2’s complement representation for negative numbers.
Perform the arithmetic operations (+70) + (+80) and (—70) + (—80) with
binary numbers in signed-2's complement representation. Use eight bits to
accommodate each number together with its sign. Show that overflow oc-
curs in both cases, that the last two carries are unequal, and that there is a
sign reversal.

Perform the following arithmetic operations with the decimal numbers using
signed-10’s complement representation for negative numbers.

a. (—638) + (+785)

b. (—638) — (+185)

A 36-bit floating-point binary number has eight bits plus sign for the expo-
nent and 26 bits plus sign for the mantissa. The mantissa is a normalized
fraction. Numbers in the mantissa and exponent are in signed-magnitude
representation. What are the largest and smallest positive quantities that can
be represented, excluding zero?

Represent the number (+46.5);0 as a floating-point binary number with
24 bits. The normalized fraction mantissa has 16 bits and the exponent has
8 bits.

The Gray code is sometimes called a reflected code because the bit values are

reflected on both sides of any 2" value. For example, as shown in Table 3-5,

the values of the three low-order bits are reflected over a line drawn between

7 and 8. Using this property of the Gray code, obtain:

a. The Gray code numbers for 16 through 31 as a continuation of Table 3-5.

b. The excess-3 Gray code for decimals 10 to 19 as a continuation of the list
in Table 3-6.

Represent decimal number 8620 in (a) BCD; (b) excess-3 code; (c) 2421 code;
(d) as a binary number.

SECTION 36 Error Detection Codes 91

3-23. List the 10 BCD digits with an even parity in the leftmost position (total of

five bits per digit). Repeat with an odd-parity bit.

3-24. Represent decimal 3984 in the 2421 code of Table 3-6. Complement all bits

of the coded number and show that the result is the 9's complement of 3984
in the 2421 code.

3-25. Show that the exclusive-OR function x = A @ B@C&® D is an odd function.

One way to show this is to obtain the truth table for y = A®B and for
z = C® D and then formulate the truth table for x = y @z. Show thatx =1
only when the total number of 1's in A, B, C, and D is odd.

3-26. Derive the circuits for a 3-bit parity generator and 4-bit parity checker using

an even-parity bit. (The circuits of Fig. 3-3 use odd parity.)

| REFERENCES

. Hill, F.]., and G. R. Peterson, Introduction to Switching Theory and Logical Design, 3rd
ed. New York: John Wiley, 1981.

. Langholz, G.,]. Francioni, and A. Kandel, Elements of Computer Orgamization.
Englewood Cliffs, NJ: Prentice Hall, 1989.

. Lewin, M. H., Logic Design and Comy Organization. Reading, MA: Addi
Wesley, 1983.

. Mano, M. M., Digital Design, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1991.

5. Roth, C. H., Fundamentals of Logic Design, 3rd ed. St. Paul, MN: West Publishing,

10.

1985.
. Sandige, R. 5., Modern Digital Design. New York: McGraw-Hill, 1990.
. Shiva, 5. G., Introduction to Logic Design. Glenview, II: Scott, Foresman, 1988,

. Tomek, L., Introduction to Comp Org Rockville, MD: Computer Science
Press, 1981.

. Wakerly,). F., Microcomputer Architecture and Programming. New York: John Wiley,
1981.

Ward, S. A., and R. H. Halstead, Jr., Computation Structures. Cambridge, MA: MIT
Press, 1990.

