
 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 1

Early history

sto 1950 s1940-

 1940: the earliest electronic digital computers did not include operating

system. Machines of the time were so primitive (ancient).

 1950: the systems generally executed one job at a time. A job constituted the

set of program instructions. These computers were called single-stream

batch-processing systems. The operating systems reduced interjob transition

times; programmers were required to directly control system resources.

she 1960T -

 It is also called the batch processing systems but using resources more

efficiently by running several jobs at once.

 The systems improved resource utilization by allowing one job to use the

processor while other jobs used peripheral devices.

 Processor bound job or compute bound job means jobs that mainly used the

processor.

 I/O bound job means mainly used peripheral devices.

 Multiprogramming: systems that managed several jobs at once. The

operating system rapidly switches the processor from job to job. Degree of

multiprogramming or level of multiprogramming indicates how many jobs

can be managed at once. Resources are shared among a set of processes.

 Interactive users: communicate with their jobs during execution via dumb

terminals which were online.

 Timesharing: systems were developed to support simultaneous interactive

users.

 Real-time systems: attempt to supply a response within a certain bounded

time period.

 Virtual machine (VM) operating system: these systems were designed to

perform basic interactive computing tasks for individuals, but their real value

proved to be the manner in which they shared programs and data and

demonstrated the value of interactive computing in program development

environment.

 Process: to describe a program in execution in the context of operating

system.

 Concurrent processes: execute independently but multiprogrammed systems

enable multiple processes to cooperate to perform a common task.

 Turnaround time: the time between submission of a job and the return of its

results, was reduced to minutes or seconds.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 2

 Virtual memory: programs are able to address more memory locations than

are actually provided in main memory, also called real memory or physical

memory.

s1970 -
 The systems were primarily multimode multiprogramming systems that

supported batch processing, time sharing and real-time applications

 Personal computers posted by early and continuing developments in

microprocessor technology

 Communications between computers in local area networks (LANs) was

made practical and economical by the Ethernet standard

 Security problems increased with growing volumes of information passing

over vulnerable communications lines. Encryption received much attention

1980s-
 It was the decade of the personnel computers and the workstation

 Software such as spreadsheet programs, word processors, database packages

and graphics packages

 Personnel computers proved to be easy to learn and use partially because of

GUI(windows, icons, menus)

 Distributed computing became wide spread under client/server model.

Clients request services and servers perform the requested services

 The software engineering field continued to evolve

The 1990s-
 Operating system designers developed techniques to protect computers from

attacks

 Microsoft became the dominant in the 1990s. In 1981 Microsoft released

DOS operating system. 1n the mid 1980 Microsoft developed its windows

operating system, and then in 1990s released windows 3.0. 1993 release of

Windows 3.1. After, that Windows 95, Windows 98, Windows NT, and

Windows XP.

 Object technology: each software object encapsulates a set of attributes and

methods. This allows applications to be built with components that can be

reused in many applications. In object-oriented operating system objects

represent components of the operating system and system resources. Object-

oriented concepts were exploited to create modular operating system that

were easier to maintain

 Open-source movement: open-source software is distributed with the source

code, allowing individuals to examine and modify the software before

compiling and executing (Linux operating system)

 Operating system became increasingly user friendly (GUI features)

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 3

2000 and beyond-
 Middleware: is a software that links two separate applications to

communicate and exchange data via the internet

 Massive parallelism: number of systems has large of processors so that

many independent parts of computations can be performed in parallel.

 Computing on mobile devices which are used for e-mail, web browsing

application bases-
 The operating system provides a series of application programming interface

(API) calls which applications programmers and other operations use to

accomplish detailed hardware manipulations and other operations. API

provides system calls by which a user program instructs the operating system

to do the work.

Application base is the combination of the hardware and the operating system

environment in which applications are developed

operating system environment-
 Embedded systems are characterized by a small set of specialized resources

that provide functionality to devices (phones). In embedded environments,

efficient resource management is the key to building a successful operating

system

 Real-time systems require tasks to be performed within a particular time

frame. Real-time operating system must enable processes to respond

immediately to critical events. Soft real-time systems ensure that real-time

tasks execute with higher priority. Hard real-time system guarantee that all

of their tasks complete on time

 Virtual machine (VM) is a software abstraction of a computer that often

executes as a user application on the top of the native operating system. VM

tend to be less efficient than real machines because they access the hardware

indirectly or simulate hardware that is not actually connected to the

computer. This increases the number of software instructions required to

perform each hardware action

 Portability is the ability for software to run on multiple platforms

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 4

Definition of Operating System (OS) ch.1
OS is a set of programs that controls effectively the computer resources and makes

them conveniently available to users i.e easy to use. Os is rather complicated

software and hence designed usually by professional software companies and sold

with computer system as part of it. During computer operation, some basic OS

programs (Called Os Core or Kernel) are resident in main memory while others are

stored on hard disk and loaded into memory when needed.

 O/ S goals
1- The primary goal of an o/s is to make o/s convenient to use

2- A secondary goal is to use the computer H/W in an efficient manner.

3- Provide a connection between the user and computer resources.

Computer System Components
An o/s is an important part of almost every computer system . A computer system

can be divided roughly into four components.

1- The hardware (CPU, Memory , I/O devices) .

2- Operating system(O/S).

3- Application programs(Assemply , Database compiler text , Editor)

4- Users

Fig 1 Abstracted view of the components of computer system

Compiler Assemply text editor database system

 System and application programs

Operating system

 Computer hardware

 Computer hardware

User n User3 User2 User 1

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 5

Functions of OS

The functions can be summarized as follows (will be explained later in more

details):

1- Management of computer resources (processors, memory, disks, I/O

devices, programs, etc.).

2-Scheduling resources among users (time sharing).

3-Protection of programs being executed in memory from one another.

4-Providing a proper user interface e.g Graphics User Interface (GUI).

5-File management.

6-Network communication.

7-Many others.

 O/S Categories

The main categories of modern o/s may be classified into Meny groups , which are

distinguished by the nature of inter action that take place between the computer

and the users .

1- Batch system

In this type of o/s, users submit jobs on regular schedule (e.g, daily, weekly,

monthly) to a central place where the user of such system did not interact directly

with o/s. to speed up processing, jobs with similar needs were batched together and

were run through the computer as a group. thus, the programs would have the

programs with the operator, the major task of this type was to transfer control

automatically from one job to the next. the o/s always resident in memory as in fig2

Fig 2: Memory layout for simple batch system

User

program area

Operating

system

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 6

The output from each job would be sent back to the appropriate programmer.

- Advantage of batch system is very simple

- Disadvantages

 -There is no direct interaction between the user and the job while the job is

executing

 - The delay between the job submission and the job completion (called turn

around time) may result from amount of computing time needed.

Performance Development
o/s attempted to schedule computational activities to ensure good performance ,

where many facilities had been added to o/s some of these are :

a- Spooling (Simulataneous Peripheral operation On- Line)

1- Spooling uses the disk as a very large buffer for reading as far a Head as

possible on input devices and for storing output files until the output devices

are able to accept them.

2- Spooling is now a standard feature of most O/S .

3- Spooling allows the computation of one job can overlap with the I/O of

another jobs , therefore spooling can keep both CPU and I/O devices working

as much higher rates.

4- The figure below show the spooling layout

The spooling layout

b- Multiprogramming batch system

1- Spooling provides an important data structure called a job pool kept on disk.

The O/S picks one job from the pool and begin to execute it.

Disk

C/R

CPU

L/P

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 7

2- In multiprogramming system , when the job may have to wait for any reason

such as an I/O regrets , the O/S simply switches to and executes another job

.when the second job need to wait the CPU is switches to another job and so

on . Then the CPU will never be idle.

3- The figure below show the multiprogramming layout where the O/S keeps

several jobs in memory at a time . This set of jobs is a subset of the jobs

kept in the job pool.

The multiprogramming layout

2-Time Sharing System

 This type of o/s provides on- line communication between the user and the

system , where the user will give instruction to the o/s or to the program directly (

usually from terminal) and receivers an intermediate response , therefore some time

called an interactive system .

The time sharing system allows many users simultaneously share the computer

system where little CPU time is needed for each user.

As the system switches rapidly from one user to the next user is given the

impression that they each have their own computer , while actually one o/s shared

among the many users.

- Advantage : reduce the CPU ideal time

- Disadvantage : more complex.

Monitor (o/s)

Job1

Job2

Job3

Job4

Job5

0

32kb

10

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 8

3-Parallel systems

1- Most systems to date are simple –processor system that is they have one

main CPU.

2- There is a trend to have multiprocessor system , where such systems have

more than one processor in close communication sharing the computer Bus ,

the clock , and some times memory and peripheral devices, in the figure

below

3- The advantage of this type of systems :

Parallel system layout

1- Increase throughput

2- The cost

3- Increase reliability

There are two types of processors in multiprocessors systems:-

a- Symmetric multiprocessor

b- Asymmetric multiprocessor

4-Distributed systems

1- A recent trend in C/S is to distribute computation among several processor.

2- In contrast to the parallel system , the processors do not share memory and

clock.

3- The processors communicate with one another through various

communication lines, such as high speed buses or telephone lines. This type of

systems called a distributed system.

I/O

DEVICES

M

E

M

O

R

Y

CPU

1

CPU

2

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 9

Distributed system

There are many reasons to build this type of system :-

1- Resource sharing

2- Computation speed up

3- Reliability

4- communication

5-Real time system

 A real time system is used when there are rigid time requirement on the

operation of a processor or the flow of data. A real time system guarantees that

critical tasks complete on time . The secondary storage of any sort is usually

limited , data instead being stored in short term memory (ROM)

There are two categories of real time system :

1- hard real time systems

2- soft real time systems

Computer 1

Computer 2

Site A Site B Communication line

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 11

Computer System Operation:

A modern, general-purpose computer system consists of CPU and a number of

device controllers that connected through a common bus that provides access to

shared memory system, CPU other devices can execute concurrently competing for

memory cycles.

Booting:

It is the operation of bringing operating system kernel from the secondary storage

and put it in main storage to execute it in CPU. There is a program bootstrap which

is performing this operation when computer is powered up or rebooted.

Bootstrap software: it is an initial program and simple it is stored in read-only

memory (ROM) such as firmware or EEPROM within the computer hardware.

Jobs of Bootstrap program:

1- Initialize all the aspect of the system, from CPU registers to device controllers to

memory contents.

2- Locate and load the operating system kernel into memory then the operating

system starts executing the first process, such as “init” and waits for some event to

occur.

The operating system then waits for some event to occur

Types of events are either software events (system call) or hardware events (signals

from the hardware devices to the CPU through the system bus and known as an

interrupt).

Note: all modern operating system are “interrupt driven”.

Trap (exception): it is a software-generated interrupt caused either by an error (ex:

division by zero or invalid memory access) or by a specific request from a user

program that an operating system service be performed.

Interrupt vector (IV): it is a fixed locations (an array) in the low memory area (first

100 locations of RAM) of operating system when the interrupt occur the CPU stops

what its doing and transfer execution to a fixed location (IV) contain starting

address of the interrupt service routine(ISR), on completion the CPU resumes the

interrupted computation.

Interrupt Service Routine: is it a routine provided to be responsible for dealing with

the interrupt.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 11

I/O Structure

Each I/O device connected to the C/S through its controller . A device controller

maintains some local buffer storage and a set of special purpose registers [It is

responsible for moving the data between the peripheral devices that is controls and

its local buffer storage]

I/O Interrupts

To start an I/O operation the CPU loads the appropriate registers within the device

controller . The controller examines the contents of these registers to determine

what action to take. For example if it finds a read request the controller will start

the transfer of data from the device to its local buffer . Once the transfer of data is

complete the device controller informs the CPU that it has finished its operation.

DMA Structure

A high _speed device such as a tape , disk , or communication network may be

able to transmit information at close to memory speeds , the CPU would need 2

microseconds to respond to each interrupt . That would not leave much time for

process execution . To solve this problem Direct Memory Access (DMA) is used

for high speed I/O devices After setting up buffer , pointers , and counters for I/O

device , the device controller transfers an entire block of data directly to or from its

own buffer storage to memory with no intervention by the CPU Only one interrupt

is generated per block rather than one interrupt per byte (or word) generated for

low speed devices

The DMA controller interrupts the CPU when the transfer has been completed

Storage Structure

The programs must be in main memory to be executed . Main memory is the only

large storage area that the processor can access directly . Each word in memory has

its own address.

Interaction is achieved through a sequence of load or store instruction to specific

memory addresses. The load instruction moves a word from main memory to an

internal register within the CPU where as the store instruction moves the content

of register to main memory.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 12

We want the programs and data to reside in memory permanently .

This arrangement is not possible for the following two reasons:

A: Main memory is usually too small to store all needed programs and data

permanently.

B: Main memory is volatile storage device that loses its contents when power is

turned off or otherwise lost.

 Therefore most C/S provide secondary storage as an extension of main memory.

It be able to hold large quantities of data permanently . The most common

secondary storage device is a magnetic disk which provides storage of both

programs and data . There are other many media such as floppy disks , CD, ROMs ,

and DVDs.

Storage Hierarchy
The variety of storage systems in a C/S can be organized in hierarchy according to

speed and their cost . figure below the higher levels are expensive , but are fast .

Registers

rs

Magnetic Disk

Cache

Magnetic Tape

Main Memory

Electronic Disk

Optical Disk

Low capacity

, high cost ,

high speed

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 13

Hardware protection:

when we have single user any error occur to the system then we could determined

that this error must be caused by the user program ,but when we begin to dealing

with spooling ,multiprogramming, and sharing disk to hold many users data this

sharing both improved utilization and increase problems .

In multiprogramming system, where one erroneous program might modify the

program or data of another program, or even the resident monitor itself. MS-DOS

and the Macintosh OS both allow this kind of error.

A properly designed operating system must ensure that an incorrect (or malicious)

program cannot cause other program to execute incorrectly.

Many programming error are detected by the hardware these error are normally

handled by the operating system.

Dual-Mode Operation:

To ensure proper operation, we must protect the operating system and all other

programs and their data from any malfunctioning program.

The approach taken by many operating systems provides hardware support that

allows us to differentiate among various modes of execution.

A bit, called the mode bit is added to the hardware of the computer to indicates the

current mode: monitor (0) or user (1) with mode bit we could distinguish between a

task that is executed on behalf of the operating system , and one that is executed on

behalf of the user.

I/O Operation Protection:

A use program may disrupt the normal operation of the system by issuing illegal

I/O instruction we can use various mechanisms to ensure that such disruption can

not take place in the system.

One of them is by defining all I/O instructions to be privileged instructions. Thus

users cannot issue I/O instructions directly they must do it through the operating

system, by execute a system call to request that the operating system performing

I/O in its behalf. The operating system, executing in monitor mode, check that the

request is valid, and (if the request is valid) does the I/O requested. The operating

system then returns to the user.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 14

Memory Protection:

To insure correct operation, we must protect the interrupt vector and interrupt

service routine from modification by a user program. This protection must be

provided by the hardware, we need the ability to determine the range of legal

addresses that the program may access, and to protect the memory outside that

space. We could provided the protection by using two registers a base register and

limit register

Base register hold the smallest legal physical memory address.

Limit register: contains the size of the range.

This protection is accomplished by the CPU hardware comparing every address

generated in user mode with the registers. Any attempt by a program executing in

user mode to access monitor memory or other users’ memory results in a trap to the

monitor, which treats the attempts as a fatal error.

CPU Protection:

In addition to protecting I/O and memory we must insure that the operating system

maintains control. We must prevent the user from getting stuck in an infinite loop

or not calling system services, and never returning control to the operating system.

To accomplish this goal, we can use a timer.

Timer can be set to interrupt the computer after a specified period. The period may

be fixed (for example, 1/60 second) or variable (for example, from 1 millisecond to

1 second) A variable timer is generally implemented by a fixed rate clock and a

counter.

We can use the timer to prevent a user program from running too long Simple

technique is to initialize a counter with the mount of time that a program is allowed

to run.

Amore common use of timer is to implement time sharing. In the most case, the

timer could be set to interrupt every N millisecond, where N is the time slice that

each user is allowed to execute before the next user get control of the CPU. The

operating system is invoked to perform housekeeping tasks.

This procedure is known as a context switching, following a context switch, the

next program continues with its execution from the point at which it left off.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 15

Operating System Structure ch 2

In the following lectures we will consider the components and services

that are provided by different operating systems.

System Components

Many modern computer systems share the goal of supporting the

following components:

Process management

A process can be thought of a program in execution. A process needs

certain resources to accomplish its task. Also the process various

initialization values.

A process is the unit of work in a system. Such a system consists of a

collection of processes, some of which are system processes others are

user processes. All processes execute concurrently by multiplexing the

CPU among them.

The OS responsible for the following activities in connection with

process management:

Creation and deletion both user and system processes.

Suspending and resuming processes.

Providing mechanisms for process synchronization.

Providing mechanisms for process communication.

Providing mechanisms for deadlock handling.

Main Memory Management

The main memory is the central to the operation of a modern computer

system. For a program to be executed it must mapped to absolute

addresses and loaded to the M.M.

The OS responsible for the following activities in connection with M.M

management:

Keeping track of which parts of memory are currently being used and

by whom.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 16

Deciding which processes are to be loaded into memory when memory

space become available.

Allocating and deallocating memory space as needed.

File Management

For convenient use of the computer, the OS provides a uniform logical

view of information storage. The OS abstracts from the physical

properties of its storage device to define the logical storage unit, the file.

A file is acollection of related information defined by its creator. These

files are organized in directories to ease their use.

The OS responsible for the following activities in connection with file

management:

Creating and deleting files.

Creating and deleting directories.

Supporting primitives for manipulating files and directories.

Mapping files onto secondary storage.

Backing up files on stable storage media.

I/O System Management

One of the purposes of OS is to hide the peculiarities of specific

hardware devices. The OS responsible for the following activities in

connection with I/O system management:

A memory management component that includes buffering, caching

and spooling.

A general device driver interface.

Derivers for specific hardware devices.

Secondary Storage Management

The computer system must provide secondary storage to back up main

memory because that are hold by MM are lost when power is switched

of f and the MM is too small to accommodate all data programs. The OS

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 17

responsible for the following activities in connection with disk

management:

Free space management

Storage allocation

Disk scheduling

Networking

A distributed system collects physically separate heterogeneous system

into a single coherent system, providing the user with the access to

various resources that the system maintain. Access to a shared resource

allows computation speed up, increase functionality, increase data

arability, and enhance reliability.

Protection System

Protection is any mechanism for controlling the access programs,

processes, or users to the resources defined by the computer system. This

mechanism must provide means for specification of the controls to be

imposed and means for enforcement. Protection can improve reliability

by detecting latent errors at the interfaces between component

subsystems.

Command Interpreter System

Command Interpreter System is the interface between the user and the

OS. Some of these Command Interpreter System are user friendly such

as mouse based window and menus. In other shells commands are typed

on a keyboard.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 18

Operating System Services

An operating system provides an environment for the execution of

programs. It provides certain services to programs and to the users of

these programs. The specific services provided differ from one operating

system to another but we can identify common classes. These operating

system services are provided for the convenience of the programmer, to

make the programming task easier.

1. Program execution

2. I/O operation

3. File system manipulation

4. Communications

5. Error detection

6. Resource allocation

7. Accounting

8. Protection

System Calls

System calls provide the interface between a process and the operating

system. These calls are generally available as assembly language

instructions and they are usually listed in the various manuals used by

assembly language.

System Programs

System programs provide a convenient environment for program

development and execution. Some of them are simply user interfaces to

system calls others are considerably more complex. They can be divided

into these categories:

File management

Status information

File modification

Programming language support

Program loading and execution

Communications

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 19

System Structure

A system as large and complex as a modern operating system must be

engineered carefully if it is to function properly and to be modified

easily. There are three different system structures:

Simple structure

Layered Approach

Microkernal

System Design and Implementation

The problems and steps of system design and implementation are as

follows:

Design Goals

Mechanisms and Policies

Implementation

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 21

Processes ch3
In the following lectures we will consider the concepts of process.

Process Concepts

A process is a program in execution. A process is more than the program

code, which is sometimes known as the text section. It also includes the

current activity, as represented by the value of the program counter and

the contents of the processor's registers.

Process state

The state of a process is defined in part by the current activity of the

process. Each process may be in one of the following states:

New

Running

Waiting

Ready

Terminated

This diagram is shown in fig 1 where we notice the followings:

1. At any instant of time, there is only one process running i.e allocated CPU time.

2. Exit from Running state may occur as a result of any of following events:

interrupt

new

waiting

running ready

terminated

admitted exit

Scheduler

dispatch

i/o or event

completion

i/o or event

wait

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 21

· Completion of process.

· Request of I/O service by a process.

· Time slice determined by interval timer has expired and hence an interrupt is

 activated which forces CPU to run OS instructions.

3. The transfer from Ready to Running state (dispatch) is carried out by OS

according to certain criteria as will be shown later when studying " Processor

Scheduling".

4. The term " Execution " means generally, " Ready", "

Running", or " waiting".

Process Control Block (PCB)

Each process is represented by a process control block (PCB). A PCB

contains many pieces of information associated with a specific process,

such as:

Process states

Program counter

CPU registers

CPU scheduling information

Memory management information

Accounting information

I/O status information

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 22

 Now, it is very useful to show the different components resident in memory in a

from called " Memory Map" as shown in fig 3.6.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 23

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 24

Process Scheduling

A uniprocessor system can have only one running process. If more

processes exist, as in multiprogramming system, there will be only one

process running and the rest must wait until the CPU is free and can be

rescheduled.

Scheduling Queues

A new process as enter the system is put in a queue called ready queue. It

waits in the ready queue until it is selected for execution. Once the

process is assigned to the CPU and it is executing, one of the several

event could occur:

The process could issue an I/O request, and then be placed in an I/O

queue.

The process could create a new subprocess and wait for the termination.

The process could be removed forcibly from the CPU, as a result of an

interrupt and be put back in the ready queue.

Scheduler

A process migrates between the various scheduling queues throughout its

lifetime. The operating system must select processes from these queues

in some fashion. The selection process is carried out by the appropriate

scheduler. There are two types of scheduling algorithms categorized

according to the frequency of their execution.

Long term scheduler (job scheduler) which selects a process from the

job pool and load them into the MM.

Short term scheduler (CPU scheduler) which select a process from the

ready queue and allocate it to the CPU.

Context Switch

Switching the CPU to another process requires saving the state of the old

process and loading the saved state for the process. This task is known as

a context switch.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 25

Operation on Processes

The process in the system can execute concurrently, and they must be

created and deleted dynamically.

Process Creation

A process may create several new processes during the course of

execution. The creating process is called a parent process, whereas the

new processes are called the children.

When a process is created it obtains various resources and initialization

values that may be passed along from the parent process to the child

process.

Process Termination

A process terminates when it finishes executing its final statement and

asks the operating system to delete it. At that point the process may

return data to its parent process and the OS deallocate all the physical

and logical resources that are previously allocated to that process.

Cooperating Processes

The concurrent process executing in the operating system may be either

independent processes that does not share any data or cooperating that

affects each others.

We may provide an environment that allows process cooperation for

several reasons:

Information sharing

Computation speedup

Modularity

Convenience

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 26

Inter process Communication

The cooperating processes can communicate in a shared memory

environment. The scheme requires that these processes

share a common buffer pool. Another way to achieve the same effect for

the operating system is provided via an interprocess communication

(IPC).

IPC provides a mechanism to allow processes to communicate and

synchronize their actions without sharing the same address space. This

technique is useful for distributed systems. IPC is provided by a message

passing system.

Inter Prcess Communication (IPC)

IPC is some times necessary but it presents two main problems:

1. Address violation problem :IPC means sharing some data (access common

locations in memory). The shared data will be outside the address space of

at least one process which, in turn, creates address violation problem. This

problem may be solved by using "System Calls" for shared variables.

2. Write Access Problem : If the shared variable is of type Read/Write then

another problem has to be solved in order to keep data integrity. This topic

will be discussed later when studying "Asynchronous Concurrent

Execution".

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 27

Definition of Thread in OS ch 4

A thread is a stream of instructions (line of control) within a process that can be

executed independently of other threads. This means that a process may create at

sometimes several threads that can be executed concurrently by several processors

or each thread is dispatched for one time slice. Another definition of thread is a

"Light Weight Process LWP" as it simulates the original process "Called Heavy

Weight Process HWP" in the running for one time slice when it is dispatched.

As the thread runs in a process environment, therefore, it shares a process address

space which means that communication between threads is very simple and

variable sharing is possible without causing address violation problem

Motivations of Threads

From above discussion, we deduce that thread motivations can be summarized as

follows:

1- Fast execution of a program as it can make use of several processors at the same

time (case of multiprocessing) or dispatched more time slices (Case of Single

Processor CPU)

2-Easy communication between threads as they share the same process address

space that created them.

3- Easier design of some applications which have a lot of parallel activities such as

a "Word" program.

"Word" program. Each time a user types a character at the keyboard, OS receives a

keyboard interrupt and issues a signal to the word program (process). The word

process responds by storing the character in memory and displaying it on the

screen. Because today's computers can execute hundreds of millions of instructions

between successive keystroke, a word process can execute several other threads

between keyboard interrupts. For example, a word process may detect misspelled

words as being typed and periodically save a copy of document to disk. Each

feature may be implemented by separate thread. As a result, the Word process

(processor) can respond to keyboard interrupts even if one or more of its threads

are blocked due to I/0 operation (e.g. saving copy of file to disk)

There are two types of programming languages

1-single threaded: Allows single thread of control in the program and hence

concurrent activities are not possible within the same program. Examples of such

language are: C, C++, VB, etc.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 28

2-Multithreaded: Allows several threads of control in the program and hence

concurrent activities are quite possible within the same program. Examples of such

languages are: C#, VB.NET, JAVA, ADA, etc.

It is worth noting that "single threaded languages" are also called "non-threaded" or

"sequential" while "multithreaded" are called "threaded" or "parallel."

 Figure 1: Single-threaded and multithreaded processes

Non-Threaded and Threaded Algorithms

Suppose we want to calculate the following expressions:

Y= (a1+x) ³+ (a2+x)4

where a1, a2 are constants and x is input variable. This calculation can be done as

follows:

1 - Using Non-Threaded Algorithm:

The calculation is shown in fig bellow and we notice that it takes a total of 7

arithmetic operations

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 29

Fig2. Non Threaded Algorithm

2- Using Threaded Algorithm:

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 31

The calculation is shown in fig below The number of arithmetic operations in

Thread1 is 3, and in Thread2 is 3.

Fig3: Threaded Algorithm

Thread1 and Thread2 can be executed concurrently and hence the equivalent

number of operations is 3 only. The total number of operations is 4 which is less

than 7 needed in non threaded algorithm

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 31

Threading Models

1- User-Level Threads

The first method is to put the threads package entirely in user space, the kernel

knows nothing about them, so User level threads perform threading operations in

the user space, meaning that threads are created by runtime libraries that cannot

execute privileged instructions or access kernel primitives directly.

 (a) (b)

Figure 4: (a) A user-level threads package, (b) A threads package managed by the

 kernel.

2- Kernel-Level Threads

Kernel-level threads attempt to address the limitations of user-level threads by

mapping each thread to its own execution context.

3- Combining User- level Threads and kernel-level Threads

Also called hybrid Threads, various ways have been investigated to try to combine

the advantages of user-level threads with kernel-level threads. One way is use

kernel-level threads and then multiplex user-level threads onto some or all of the

kernel threads, as shown in figure bellow

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 32

Figure 5: Multiplexing user-level threads onto kernel-level threads.

Comparison among three models
a-user-level threads

1- threads are created by runtime libraries that cannot execute privileged

 instructions or access kernel primitives directly.

2- The operating system treats each multithreaded process as a single execution

 context.

3- The user-level thread implementations are also called many-to-one thread

 mappings because the operating system maps all threads in a multithreaded

 process to a single execution context.

4- When a process employs user-level threads, user-level libraries perform

 scheduling and dispatching operations on the process's threads.

5- User level threads do not require the operating system support threads.

6- User level threads are more portable because of not relying on a particular

 operating system's threading API.

7- user level threads consume less resource than Kernel level threads

8- user-level threads don’t require that the operating system manage all threads in

 the system.

9- User level thread performance varies depending on the system and on process

 behavior and in multiprocessor User level threads do not scale well to

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 33

 multiprocessor systems, so can result in suboptimal performance in

 multiprocessor systems.

b-kernel-level threads

1- threads are can execute privileged instructions or access kernel primitives

 directly.

2- The operating system creates a kernel thread that executes the user thread's

 instructions.

3- Kernel-level threads are often described as one-to-one threads mapping

4- mapping require operating system to provide each user thread with a kernel

 thread that the operating system can dispatch.

5- Kernel level threads require the operating system support threads.

6- software that employs kernel-level threads is often less portable than software

 employs user-level threads

7- Kernel level threads consume more resource than user level threads

8- Kernel-level threads require that the operating system manage all threads in the

 system.

9- kernel can manage each thread individually, meaning that the operating system

 can dispatch a process's ready threads even if one of its threads is blocked

 (improve performance).

c-hybrid threads

1- threads are can execute privileged instructions or access kernel primitives

 directly.

2- The operating system creates a kernel thread that executes the user thread's

 instructions.

3- The combination is known as the many-to-many thread mapping as its name,

 this implementation maps many user-level-threads to a set of kernel-level

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 34

 threads. Some refer to this technique as (m-to-n threads mapping)

4-Hybrid threads require the operating system support threads.

5- applications can improve performance by customizing the threading library's

 scheduling algorithm.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 35

CPU Scheduling ch5

In the following lectures we will introduce the basic scheduling concepts

and present several different CPU scheduling algorithms.

Scheduling Concepts

Scheduling is a fundamental operating system function. Almost all

computer resources are scheduled before use. The CPU scheduling is

central to operating systems.

CPU-I/O Burst Cycle

The success of CPU scheduling depends on the following observed

property of processes: process execution consists of a cycle of CPU

execution and I/O wait. Processes alternate between these two states.

Process execution begins with a CPU burst. That is followed by I/O

burst, then another CPU burst and so on. The last CPU burst will end

with a system request to terminate execution.

CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one

of the processes in the ready queue to be executed. The selection process

is carried out by the short term scheduler(CPU scheduler). The scheduler

selects from among the processes in in memory that are ready to execute

and allocates the CPU to one of them.

Scheduling Schemes

There are two scheduling schemes can be recognized:

Preemptive scheduling

Nonpreemptive scheduling

Under the nonpreemptive scheduling, once the CPU has been allocated

to a process, the process keeps the CPU until it release the CPU either by

terminating or by switching to the waiting state. On the other hand

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 36

Preemptive scheduling occure when the CPU has been allocted to a

process and this process is interrupted by higher priority process. At this

moment the executing process is stopped and returned back to the ready

queue, the CPU is allocated to the higher priority process.

Dispatcher

It is the module that gives control of the CPU to the process selected by

the CPU scheduler. This function involves:

Switching Context

Switching to user mode

Jumping to the proper location in the user program to restart the

program.

Scheduling Criteria

Many criteria have been suggested for comparing CPU scheduling

algorithms. The criteria include the following:

CPU Utilization

Throughput

Turned around Time

Waiting time

Response time
The optimization criteria are as follow:

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 37

Scheduling Algorithm

Here we will mention some of the CPU scheduling algorithms that are

used in different operating systems

First Come First Served (FCFS)

With this algorithm the process that requests the CPU first is allocated

the CPU first. The implementation of the FCFS policy is easily managed

with FIFO queue. When a process enters the ready queue, its PCB is

linked onto the tail of the queue. When the CPU is free, it is allocated to

the process at the head of the queue.

The average waiting time under the FCFS policy is often quite long.

Consider the following set of processes that arrive at time 0, with the

length of CPU burst time given in millisecond:

Example 1:

The average waiting time = (0+24+27)/ 3=17 millisecond
The average completion time = (24+27+30)/3 = 27 millisecond

Example 2:

If the processes arrive in the order P2, P3, P1 the result will be shown in

the following Gantt Chart:

The average waiting time = (0+3+6)/ 3=3 millisecond
The average completion time = (3+6+30)/3 = 13 millisecond (compared to 27)

Thus the average waiting time under FCFS policy is not the minimal.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 38

2. Shortest Job First Scheduling (SJF)

This algorithm associate with each process the length of the latter's next

CPU burst. When the CPU is available, it is assigned to the process has

the smallest next CPU burst. If two processes have the same length ,

FCFS scheduling is used to break this tie.

As an example consider the following set of processes with the length of

the CPU burst given in millisecond:

Example 3 using SJF:

Process Burst time

P1 6

P2 8

P3 7

P4 3

Gantt chart:

W. T p1 = 3-0 = 3

W. T p2 = 16-0 = 16

W. T p3 = 9-0 = 9

W. T p4 = 0-0 = 0

Average wait time = (3 + 16 + 9 + 0) / 4 = 7 milliseconds

The average completion time = (9+24+16+3)/4 =13 milliseconds

The average waiting time in SJF is the optimal that it gives the minimum

average waiting time.
The SJF is either preemptive or non-preemptive.

– Non preemptive: once CPU given to the process it cannot be preempted until

completes its CPU burst.

– Preemptive: if a new process arrives with CPU burst length less than remaining

time of current executing process, preempt. This scheme is known as the

Shortest Remaining Time First (SRTF).

P2 P3 P1 P4

0 3 9 16 24

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 39

As an example consider the following set of processes with the length of

the CPU burst given in millisecond:

Example 4 using SJF:

Process Burst Time Arrival Time

P0 4 0

P1 4 1

P2 2 2

P3 1 5

P4 3 7

Gantt chart:

P0 P2 P3 P4 P1

W. T p0 = 0-0 = 0

W. T p1 = 10-1 = 9

W. T p2 = 4-2 = 2

W. T p3 = 6-5 = 1

W. T p4 = 7-7 = 0

Average wait time = (0 + 9 + 2 +1+ 0) / 5 = 2.4 milliseconds

3. Priority Scheduling Algorithm

In this algorithm a priority is associated with each process and the CPU

is allocated to the process of the highest priority. We use the low

numbers to represent high priority.

As an example consider the following set of processes with the length of

the CPU burst given in millisecond

Example 5 using priority:

Process Burst time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

0 4 6 7 10 14

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 41

Gantt chart:
P4 P3 P1 P5 P2

W. T p1 = 6-0= 6

W. T p2 = 0-0 = 0

W. T p3 = 16-0 = 16

W. T p4 = 18-0 = 18

W. T p5 = 1-0 = 1

Average wait time = (6 + 0 + 16 +18+ 1) / 5 = 8.2 milliseconds

Example 6 using non-preemptive priority:

Process Burst time Arrival Priority

P0 4 0 3

P1 2 3 2

P2 5 4 1

P3 6 10 0

P4 8 11 5

Gantt chart:

P4 P3 P1 P2 P0

W. T p0 = 0- 0= 0

W. T p1 = 9-3 = 6

W. T p2 = 4 - 4 = 0

W. T p3 = 11-10 = 1

W. T p4 = 17- 11 = 6

Average wait time = (0 + 6 + 0 +1+ 6) / 5 = 2.6 millisecond

0 1 6 16 18 19

0 4 9 11 17 25

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 41

Example 7 using Preemptive Priority:
Process Burst time Arrival Priority

P0 5 0 3

P1 8 2 2

P2 3 3 1

P3 6 4 0

P4 2 8 4

Gantt chart:

P4 P0 P1 P2 P3 P2 P1 P0

W. T p0 = 19-2-0 = 17

W. T p1 = 12 -2-1 = 9

W. T p2 = 10 – 3- 3 = 4

W. T p3 = 4- 4 = 0

W. T p4 = 22- 8 = 14

Average wait time = (17+9+ 4 + 0 +14) / 5 = 8.8 milliseconds

Priority scheduling can be either Preemptive or non preemptive, when a

process arrives the ready queue, its priority is compared with the priority

of the currently running process. A preemptive priority will preempt the

CPU if the priority of the newly arrived process is higher than the

priority of the currently running process. A non preemptive priority

scheduling will put the new

process with the higher priority than the priority of the currently running

process at the head of the ready queue.

4.Round Robin Scheduling Algorithm

The Round Robin algorithm is designed especially for time sharing

system. It is similar to FCFS but preemption is added switch between

processes. A small unit of time called time quantum (or time slice) is

defined. A time quantum is generally from 10 to 100 milliseconds. The

ready queue is treated as a circular queue, allocated the CPU to each

process for a time interval of up to 1 time quantum.

The CPU scheduler picks the first process from the ready queue, sets a

timer to interrupt after 1 time quantum, and dispatch the processes. One

0 2 3 4 10 12 19 22

24

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 42

of two things will then happen. The processes may have a CPU burst of

less than 1 time quantum. In this case, the processes itself will release the

CPU. The scheduler will then proceed to the next process in the ready

queue. Otherwise, if the CPU burst of the currently running processes is

longer than 1 time quantum, the timer will go off and will cause an

interrupt to the operating system. A context switch will be executed, and

the process will be put at the tail of the ready queue. The CPU scheduler

will then select the next process in the ready queue.

As an example consider the following set of processes with the length of

the CPU burst given in millisecond:

Example 8 using RR: quantum=4

Process Burst time

P1 24

P2 3

P3 3

Gantt chart:

W. T p1 = 26-4-4-4-4-4 = 6

W. T p2 = 4-0 = 4

W. T p3 = 7-0 = 7

Average wait time = (6 + 4 +7) / 3 = 5.66 milliseconds

Example 9 using preemptive RR: quantum=2

Process Burst time Arrival time

P0 6 0

P1 8 1

P2 4 7

P3 2 9

P4 10 11

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 43

P0 P1 P0 P1 P2 P3 P4 P0 P1 P2 P4 P1 P4 P4 P4

W. T p0 = 14- 2 – 2- 0= 10

W. T p1 = 22 -2-2-2-1 = 15

W. T p2 = 18 -2-7 = 9

W. T p3 = 10 -9 = 1

W. T p4 = 28 -2-2-2-2-11 = 9

Average wait time = (10 + 15 +9+1+9) / 5 = 8.8 milliseconds

Comparison among Scheduling Algorithms

Advantages Dis advantages Policy type Algorithms

Easy to

implement.

Average waiting time

is often quite long.
Non preemptive FCFS

Gives minimum

average waiting

time.

Knowing the length

of the next CPU

request.

Non preemptive

Or preemptive
SJF

1-Simplicity.

2-support for

priority.

Blocking or

starvation.

Non preemptive

Or preemptive
Priority

It is easy to

implement in

software

If the set time is too

long, then the system

may become

unresponsive, time

wasting and would

emulate First Come

First Served.

preemptive R.R

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

30

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 44

ch6 DeadLocks

A Computer System consist of a finite number of resources to be distributed among

a number of computing processes. The resources are partitioned into several types,

each of which consists of some number of identical instances memory, CPU,

cycles, files, and I/O devices are examples of resource types.

Under the normal of operation, a process may utilize a resource in only the

following sequence:

a- Request: If the request cannot be granted immediately then the requesting

process must wait until it can acquire the resource.

b- Use: The process can operate on the resource (for example, if the resource is a

printer, the process can print on the printer).

c- Release: The process releases the resource.

Deadlock definition

 A set of blocked processes each holding a resource and waiting to acquire a

resource held by another process in the set .

 Example

Consider a C/S with two tape drives, suppose that there or two processes each

holding one of these tape drives. If each process now requests another tape drive,

the two processes will be in a deadlock state, see the fig bellow.

T

1

P1

P2

T

2

acquire request

Fig1 : Deadlock

state

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 45

Deadlock necessary conditions

In a deadlock , processes never finish executing and system resources are tied up ,

preventing other processes from ever starting.

A deadlock situation can arise if and only if the following four conditions hold

simultaneously in a system . these condition are :

a- Mutual Exclusion

 At least one resource is held in a non –sharable mode that is only one process

at a time can use the resource . if another process requests that resource the

requesting process must be delayed until the resource has been released

b- Hold and Wait

 There must exist a process that is holding at least one resource and is

waiting to acquire additional resources are currently being held by

other processes.

c- No Preemption

 Resources can not be preempted , that is a resource can be released

only voluntarily by the process holding after that process has

completed its task.

d- Circular Wait

 There must exist a set {p0,p1,….,pn}of waiting processes such that p0 is

waiting for resource that is held by p1 , p1 is waiting for a resource that is

held by p2, …pn-1 is waiting for a resource that is held by pn , and pn is

waiting for a resource that is held by p0 .

Resource – Allocation Graph(RAG)

Deadlocks can be described more precisely in terms of a directed graph called

(RAG).

 RAG = (V,E) where V is a set of vertices and E is a set of edges.

P0 P1 P2 Pn-1 Pn P0
wait

R {r1 , r2 ,……. , rn} set of resource

P { p1, p2 , ….. , pn } set of process

processes V

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 46

Each element in the set E of edges is an ordered pair (pi,rj)or (rj, pi) where pi is an a

process (pi P) and rj is a resource type (rj R)

If

Graphically we represent each process pi as a circle and each resource type Rj as a

square . Since resource type Rj may have more than one instance we represent each

such instance as a dot within a square , see fig bellow .

Fig2: Resource – allocation graph

The RAG in this fig depicts the following situation

The sets P, R and E :

- P = {p1 , p2 p3}

- R = {r1, r2 , r3 , r4 }

- E= { (p1,r1) , (p2,r3) , (r1,p2) , (r2, p2) ,(r2, p1) , (r3,p3)}

Resource states:

R1= 1, R2= 2, R3= 3 , and R4 = 4 instances.

Process states:

P1 r1, P2r3 , r1P2 , r2P1 , r2P2 , r3p3

pi
(pi , rj) E then pi Rj and if (rj , pi) E then rj

Request edge Assignment

edge

P1 P2 P3

Request edge

R

1
Assignment edge

Instance

R

4

R

2

R

3

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 47

By using a RAG it can be easily shown that if the graph contain no cycles, than no

process in the system is deadlocked. If on the other hand the graph contains a cycle

than a deadlock may exist .

If each resource type has exactly one instance then a cycle implies that a deadlock

has occurred. If the cycle involves only a set of resource types each of which has

only a single instance then a deadlock has occurred.

Each process involved in the cycle is deadlock.

In this case a cycle in the graph is both a necessary and a sufficient condition for

the existence of deadlock .

If each resource type has several instances then a cycle does not necessarily imply

that a deadlock occurred . In this case a cycle in the graph is a necessary but not a

sufficient condition for the existence of deadlock.

To illustrate this concept let us return to fig bellow suppose that p3 requests r2 .

Since no resource instance is currently available a request edge p3r2 is added to

the graph fig. At this point two minimal cycles exist in the system :

P2 r1 p2 r3 p3 r2 p1

P2 r3 p3 r2 p2

Process p1,p2 and p3 are deadlocked.

Fig3 : RAG with deadlock

P1 P2 P3

R

1

R

4

R

2

R

3

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 48

In the fig bellow we have a cycle but there is no deadlock .

P1r1p3r2p1

Where p4 way release its instance of R2 that source can then be allocated to p3

breaking the cycle .

Fig4 : RAG with a cycle but no deadlock

Methods for Handling Deadlock

There are three methods for dealing with the deadlock problem:

a- We can use a protocol to ensure the system will never enter a deadlock state.

b- Allow the system to enter a deadlock state and then recover.

c- We can ignore the problem all together and pretend that deadlocks never occur

in the system.

To ensure that a deadlocks never occur the system can use either a deadlock-

prevention or a deadlock _avoidance scheme.

Deadlock prevention

It is a set of methods for ensuring that at least one of the necessary conditions can

not hold. These methods prevent deadlocks by constraining how requests for

sources can be made.

P

1

P

2

P

3

P

4

R1

R2

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 49

 The mutual-exclusion condition must hold for non –sharable resource, sharable

resources on the other hand do not require mutually exclusive access.

 To ensure that hold-and-wait condition never occurs in the system must

guarantee that whenever a process request a resource it does not hold any other

resources. This can be implemented by :

1- Allocate all resources to process before its execution .

2- A process request a resource only allowed when it has none. The problems

with this the low utilization of resource usage and starvation.

 No –preemption

 If a process that is holding some resources request another resources that can

not allocated to it then all resources currently being held are preempted.

 Circular wait

 Let R ={ R1 , R2 , R3 , ….. , Rn } be the set of resource types we can assign

to each type a number which allow us to compare two resources . If we define a

one – to – one function F : RN where N is the set of numbers.

Example :

F(T/Drive)=1

F(Disk/Drive)=5

F(Printer)=12

Each process can request resources only in an increasing order of enumeration.

That is process initially request any number of instances of Ri after that the process

can request instances of resource type Rj if and only if

F(Rj) F(Ri)

Deadlock Avoidance
For avoiding deadlock is to require additional information about how resources are

to be requested.

For example in C/S with one tape and one printer we might be told that process P

will request first M/T and later L/P before releasing both resources. Process Q on

the other hand will request first the printer and then the M/T. With this knowledge

of the complete sequence of request and releases for each process we can decide for

each request whether or not the process should wait.

Each request requires that then consider the following :

1- The resources currently available .

2- The resources currently allocated to each process.

3- The future requests and releases of each process.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 51

The above information used to decide whether the current request can be satisfied

or must wait to avoid a possible future deadlock.

The various algorithms differ in the amount and type of information required. The

simplest and most useful model requires that each process declare the maximum

number of each type that it may need. A deadlock avoidance algorithm dynamically

examines the resource- allocation state to ensure that these can never be a circular –

wait condition.

 allocatedand availableThe resource allocation state is defined by number of

of the processes. demandsresources and maximum

- Safe state

A state is safe if the system can allocate resources to each process (up to maximum

) in some order and still avoid a deadlock.

A safe state is not a deadlock state , and a deadlock state is an unsafe state , but not

all unsafe states are deadlock. An unsafe state may lead to a deadlock.

Fig : unsafe &deadlock state space

Example :- to illustrate consider a system with 12 M/T and 3 process :

P0 , p1 and p2 . The maximum needs and current needs for each process as

indicated below

(Allocated)

 Maximum needs Current needs available

P0 10 5 3

P1 4 2

P2 9 2

At time the system is in a safe state. The sequence [p0 , p1 , p2]

Suppose that at time t1 process p2 requests and is allocated 1 move tape drive . the

system is no longer in safe state .At this point only process p1 can be allocated all

Deadloc
k

unsafe

safe

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 51

 its tape drives . When it returns the system have only if available and this number

not satisfy the request for p0 or p2 therefore

P0 p2 P0

If we had made p2 wait until either of the order process had finished and released

its resources then we could have avoided the deadlock situation.

There are many deadlock avoidance algorithms , some of these are :

a- RAG Algorithm

If we have a RAG system with only one instance of each resource type . In addition

to the request and assignment edges we introduce a new type of edge called a claim

edge Pi Rj indicates that process Pi may request resource Rj at some time in the

future. It is as a request edge in direction but is represented by a dashed- line when

process pi request Rj the claim edge Pi Rj is converted to a request edge . When a

resource Rj is released by pi the assignment edge Rj Pi is reconverted to a claim

edge Pi Rj.

To illustrate this algorithm consider the RAG in fig below suppose that p2 request r2

. Although r2 is currently free we can not allocate it to p2 since this action will

create a cycle in the graph figure . A cycle indicates that the system is in an unsafe

state . If P1 then requests r2 a deadlock will occur.

Fig : RAG for deadlock avoidance

Fig : An unsafe state in a RAG

Wait Wait

R

1

R

2

Claim

edge

P

1 P

2

R

1

R

2

Claim

edge

P

1 P

2

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 52

b- Banker’s Algorithm

This Alg. Could be used in a banking system to ensure that the bank never allocates

its available cash in such a way that it can no longer satisfy the needs of all its

customers.

When a new a process enters the system it must declare the maximum number of

instances of each resource type that it may need.

- The maximum must be total number of resources in the system.

-When a user requests a set of resources must be leave the system in a safe state if

the resources are allocated otherwise the process must wait until some other

process releases enough resources.

Several data structures must be maintained to implement banker’s algorithm

Let n be the number of processes in the system and m be the number of resource

types . We need the following data structures:

- Available : A vector of length m indicates the number of available resources

of each type.

If available [j] = k these are k instances of resource type Rj available .

- Max : An nxm matrix defines the maximum demand of each process . If

max[i,j] = k , then process Pi may request at most k instances of resource

type Rj

- Allocation : An nxm the resources currently allocated to each process . If

allocation [i,j] = k then process pi is currently allocated process pi is

currently allocated 1 instances of resources of resource type Rj.

- Need : An nxm indicates the remaining resource need of each process . If

need[i,j] = k then process pi may need k more instances of resource type Rj to

complete its task .

Need [i,j] = Max [i,j] – Allocation [i,j]

1- If request i Need i go to step 2 otherwise raise an error since the process has

exceeded its maximum claim.

2- If request i Available go to step 3 . Otherwise pi must wait since the resources

are not available .

3- The system pretends to have allocated the requested resources to process pi by

modifying the state as follows:

Available := Available – Requesti ,

Allocationi := Allocationi + Requesti ,

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 53

Needi:= Needi – Requesti,

If the resulting resource allocation state is safe the transaction is completed and

process pi is allocated its resources. If the new state is unsafe the pi must wait for

request i and the old resource allocation state is restored.

c- Safety Algorithm

The algorithm for finding out whether or out a system is in a safe state can be

described as follows:

1- Let work and finish be vectors of length m and n respectively.

Initialize work := Available and Finish [i] := False for I = 1,2, …, n

2- Find an i such that both

- Finish [i] = false

- Need i work

 If no such i exits, go to step 4

3- Work := work +allocation I Finish[i] := true go to step2

4- If Finish [i] = true for all I then the system is in a safe state

This algorithm may require an order of mxn
2
 operations to decide whether a

state is safe.

Example:

Consider a system with five processes {p0,p1,p2,…} and three resource types

{A,B,C} . Resource type A has 10 instances. Resource type B has 5 instances,

and resource type c has 7 instance. Suppose that at time T0 the following

snapshot of the system has been taken.

Allocation Max Available

A B C A B C A B C

0 1 0 7 5 3 3 3 2

2 0 0 3 2 2

3 0 2 9 0 2

2 1 1 2 2 2

0 0 2 4 3 3

The content of the matrix Need is defined to be max-Allocation and is:

Need

A B C

7 4 3

1 2 2

6 0 0

0 1 1

4 3 1

P0

P1

P2

P3

P4

P0

P1

P2

P3

P4

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 54

The system is in the safe state if the processes executed in the sequence (p1, p3 , p4

,p2 , p0).

Suppose now that process pi requests one additional instance of resource type A and

two instance of resources type C so request 1= (1 ,0 , 2)

To decide whether this request can be immediately granted we first check that

 Request 1 Available (that is , (1,0,2) (3,3,2)) which is true we then

pretend that this request has been fulfilled and we arrive at the following new state.

Allocation Max Available

A B C A B C A B C

0 1 0 7 4 3 3 3 2

3 0 2 0 2 0

3 0 2 6 0 0

2 1 1 0 1 1

0 0 2 4 3 1

By execute the safety Alg. We find the sequence (p1 , p3 , p4 , p0 , p2) satisfies our

safety requirements . Hence we can immediately grant the request of process p1

If p4 request for (3 , 3 , 0) . The request can not granted since the resources are not

available . Request 1> Available . If p0 request (0 , 2 , 0) can not granted even

though the resources are available since the resulting state is unsafe.

Deadlock Detection

If a system does not employ some protocol that ensures that no deadlock will never

occur. Then a detection and recovery scheme must be implemented . The system

can use an algorithm to examines the state of the system periodically to determine

whether has occurred . If so the system must recover from the deadlock by

providing :

a- Maintain information about the current allocation of resources to processes

and outstanding request.

b- Provide an Alg. That use the above information to determine whether the

system has entered the deadlock state.

The detection Alg. Employs several time – varying data structures that are very

similar to those used in the Banker’s Algorithm :

- Available

- Allocation

- Request . An nxm matrix indicating the current request of each process.

If Request [i,j] = k then pi is requesting k more instances of resource type rj

 .

P0

P1

P2

P3

P4

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 55

The detection Alg. Simply investigates every possible allocation sequence

for the processes that remain to be completed.

 The detection Alg . as follows:

1- Let work and finish be vectors of length m and n respectively . Initialize

Work := Available , for i = 1 ,2 ,3, … , n. If allocation ≠ 0 the Finish [i] :=

false.

Otherwise , Finish[i] := false.

2- Find an index i such that :

- Finish [i] = false , and

- Request i ≤ work .

If no such I exits go to step 4.

3- Work := work +Allocation i

Finish [i] := true

Go to step2

4- If Finish [i] = false , for some i , 1≤ i ≤ n then the system is in a deadlock

state. More over , if Finish [i] = false then process pi is deadlocked.

Example

Consider a system with five processes {p0 , p1 ,… p4} and three resources types

{ A=7 instance , B =2 , C=6 instance} suppose that at time T0 we the following

resource allocation state.

Allocation Max Available

A B C A B C A B C

0 1 0 0 0 0 0 0 0

2 0 0 2 0 2

3 0 3 0 0 0

2 1 1 1 0 0

0 0 2 0 0 2

If we execute the detection Alg. We find the system is not in a deadlock state and

the sequence < p0 , p2 , p3 , p1 ,p4 > will result in finish [i] = true for all i .

Suppose now that process p2 makes one additional request for an instance of type

C. the Request matrix is modified as follows :

Need

A B C

0 0 0

2 0 2

P0

P1

P2

P3

P4

P0

P1

P2

P3

P4

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 56

0 0 1

1 0 0

0 0 2

We claim that the system is now deadlocked . Although we can reclaim the

resources held by process p0 the number of available resources is not sufficient to

fut fill the requests of the other processes . Thus a deadlock exist , consisting of

processes < p1 , p2 , p3 and p4 >.

- Single Instance of each resource type

The detection Alg. is of order mxn
2
 . If all resources have only a single

instance we can define a faster Alg. we will use a variant of the resource

allocation graph called a wait – for graph . This graph is obtained from the

resource allocation graph by removing the nodes of type resource and

collapsing the appropriate edges. Where the edge from pi is waiting for

process pj to release a resource that it needs.

An edge (pi ,pj) exists in a wait – for graph if and only if the resource RAG

contains two edges (pi , rq) and (rq , pi) for some resource , see fig bellow

 (a)

P5

r 1

P1 P2 P3

P4

r 3 r 4

r 5

r 2

Request

Assignment

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 57

(b)

Fig: RAG (a) and its wait – for graph (b)

A deadlock exists in the system if and only if the wait – for graph contains a

cycle.

- Recovery from deadlock

When a detection Alg. determines that a deadlock exists the system must

recover from the deadlock .

There are two options for breaking a deadlock

a- Process termination by killing a process , two methods:

- Kill all deadlocked processes.

- Kill one process at a time until the deadlock cycle is eliminated.

b- Resource preemption, to eliminate deadlocks using resource preemption

we can preempt some resources from processes and give them to other

processes until the deadlock cycle is broken .

If preemption is required in order to deal with deadlocks then three issues

need to be addressed:

- Selecting a victim: which process and which resources .

- Rollback : if we preempt a resource from a process what should be done with

that process?

- Starvation : How do we ensure that Starvation will not occur?

That is how can we guarantee that resources will not always be preempted

from the some process?

P4

P5

P3 P1 P2

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 58

 Real Memory Organization ch7

 Memory Management Strategies

-These strategies are designed to obtain the best possible use of main memory.

They are divided into:

1. Fetch strategies: determine when to move the next piece of a program or data

to main memory from secondary storage. We divide them into demand and

anticipatory. In demand fetch strategy, the system places the next piece of program

or data in main memory when a running program references it. Today, many

systems have increased performance by employing anticipatory fetch strategies,

which attempt to load a piece of program or data into memory before it is

referenced.

2. Placement strategies: determine where in main memory the system should

place incoming program or data pieces, first fit, best fit, and worst fit, memory

placement strategies.

3. Replacement strategies: when memory is too full to accommodate a new

program, the system must remove some (or all) of a program or data that currently

resides in memory. The system's replacement strategy determines which piece to

remove.

Contiguous Vs Noncontiguous Memory Allocation

-Contiguous Memory Allocation: to execute a program in early computer systems,

the system operator or the operating system had to find enough contiguous main

memory to accommodate the entire program. If the program was larger than the

available memory then the system could not execute it.

-In Non-Contiguous Memory Allocation: a program is divided into blocks or

segments that the system may place in non adjacent slots in main memory. This

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 59

allows making use of holes (unused gaps) in memory that would be too small to

hold whole programs.

Single-User Contiguous Memory Allocation

-Early computer systems allowed only one person at a time to use a machine. All

the machine's resources were dedicated to that user and the user was charged for all

the resources whether or not the user's job required them.

-The programmer wrote all the code necessary to implement a particular

application including I/O instructions. The designers consolidated (combined) I/O

coding that implemented basic functions into an I/O control system (IOCS). The

programmer called IOCS routines to do the work.

OS

User

Unused

0

a

b

c

Single-user

contiguous

memory allocation

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 61

Overlays

-One way in which a software designer could overcome the memory limitations

was to create overlays, which allowed the system to execute programs larger than

main memory.

-The programmer divides the program into logical sections. When the program

does not need the memory for one section, the system can replace some or all of it

with the memory for a needed section. Overlays enable the programmers to extend

main memory.

0

a

b

c

OS

Portion of user code

& data that must

remain in mm for

duration for

execution

1

2

3

User program with memory requirement

larger than available portion of mm

initialization processing output

 phase phase phase

b b b

1 load initialization phase at b and run

2 then load processing phase at b and run

3 then load output phase at b and run

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 61

Swapping:

A process can be swapped temporarily out of memory to a backing store, and then

brought back into memory for continued execution

- Backing store – fast disk large enough to accommodate copies of all memory

images for all users; must provide direct access to these memory images

- Roll out, roll in – swapping variant used for priority-based scheduling

algorithms; lower-priority process is swapped out so higher-priority process

can be loaded and executed

- Major part of swap time is transfer time; total transfer time is directly

proportional to the amount of memory swapped

- Modified versions of swapping are found on many systems (i.e., UNIX,

Linux, and Windows)

- System maintains a ready queue of ready-to-run processes which have

memory images on disk

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 62

Protection in a Single-User System

 Memory CPU

-Without protection, the process may alter the operating system. The protection can

be implemented with a single boundary register built into the processor which can

be modified only by a privileged instruction.

-The boundary register contains the memory address at which the user's program

begins. Each time a process references a memory address, the system determines if

the request is for an address greater than or equal to that stored in the boundary

register.

- If so, the system services the request. If not, then the program is trying to access

the operating system. The system intercepts the request and terminates the process

with an appropriate error message.

Fixed-Partition Multiprogramming

-The earliest multiprogramming systems used fixed partition multiprogramming.

The system divides main memory into a number of fixed size partitions. Each

partition holds a single job.

OS Area

(Fixed)
OS

Program Area

(variable)
Process Image

Unused

(Empty)

a

a

Boundary

register

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 63

-In the earliest multiprogramming systems, the programmer translated a job using

an absolute assembler or compiler. It meant that a job had its precise location in

memory determined before it was launched and could run only in a specific

partition. If the programs partition was occupied then that job had to wait even if

other partitions were available.

-In the following figure, all the jobs in the system must run in partition 3. Because

this partition currently is in use, all other jobs are forced to wait, even though the

system has two other partitions in which the jobs could run.

Operating system

Partition 1

Partition 2

Partition 3

a

b

c

d

Job queue for partition

These jobs run only in

Partition 1

These jobs run only in

Partition 2

These jobs run only in

Partition 3

0

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 64

-To overcome the problem, the developers created relocating compilers, assemblers

and loaders. These tools produce a Relocatable program that can run in any

available partition that is large enough to hold that program.

-Protection often is implemented with multiple boundary register. The system can

delimit each partition with two boundary registers low and high, also called base

and limit registers.

Operating system

Partition 1

(empty)

Partition 2

Partition 3

a

b

c

d

Job queue

Operating system

Partition 1-empty

(empty)

Partition 2-empty

Partition 3

In use

a

b

c

d

Job queue for partition 1

No jobs waiting for

Partition 1

No jobs waiting for

Partition 2

These jobs run only in

Partition 3

Job queue for partition 2

Job queue for partition 3

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 65

 Memory CPU

OS

P1

P3

-When a process issues a memory request, the system checks whether the requested

address is greater than or equal to the process's low boundary register value and

less than the process's high boundary register value. If so, the system honors the

request, otherwise, the system terminates the program with an error message.

-Fixed partition multiprogramming suffers from internal fragmentation, which

occurs when the size of a process's memory and data is smaller than that of the

partition in which the process executes.

P2

a

a b

High address

boundary

register

P2

b

Process

address

space

low address

boundary

register

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 66

-The system's three user partitions are occupied but each program is smaller than its

corresponding partition. Consequently, the system may have enough main space in

which to run another program but has no remaining partitions in which to run the

program. Thus, some of the system's memory are wasted.

 Variable-Partition Multiprogramming

 Variable-Partition Characteristics

-The queue at the top of the figure contains available jobs and information about

their memory requirements. The operating system makes no assumption about the

size of a job except that it does not exceed the size of available main memory.

-The system progresses through the queue and places each job in memory, where

there is available space, at which point it becomes a process. This organization does

not suffer from internal fragmentation, because a process's partition is exactly the

size of the process.

-The waste does not become obvious until processes finish and leave holes in main

memory. The system can continue to place new processes in these holes. Every

hole eventually becomes too small to hold a new process. This is called external

Operating system

Partition 1

(empty)

Partition 2

Partition 3

a

b

c

d

Unused memory

Used memory

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 67

fragmentation, where the sum of the holes is enough to accommodate another

process.

-The system can determine whether the newly freed memory area is adjacent to

other free memory areas. The system then records in a free memory list either (1)

that the system now has an additional hole or (2) that an existing hole has been

enlarged.

-The process of merging adjacent holes to form a single, larger hole is called

coalescing (merge things). The system reclaims the largest possible contiguous

blocks of memory.

-Another technique for reducing external fragmentation is called memory

compaction (burping the memory or garbage collection). This relocates all

occupied areas of memory to one end or the other of main memory. Now all of the

available free memory is contiguous. The drawbacks are:

 Overhead consumes system resources.

 The system must cease (stop something) all other computation during

compaction which results in erratic response times for interactive users.

 Compaction must relocate the process.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 68

 Memory CPU

OS

P1

P3

P4

Unused

OS

P1

P2

Hole

P4

Unused

a

a b

High address

boundary

register

P2

b

Process

address

space

low address

boundary

register

After some time (P3 is completed)

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 69

OS

Hole 5

P4

Hole 3

Hole 2

P1

P6

OS

Hole 5

P4

Hole (2+3)

P1

P6

Merging

Small

over head

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 71

OS

Hole 5

P4

Hole 3

Hole 2

P1

P6

OS

P6

P4

P1

Holes

(2 + 3 + 5)

Same locations

No relocation

A
ddre

ss
 R

el
oca

tio
n

A
ddre

ss
 R

el
oca

tio
n

Large

overhead

Memory Memory

All
processes

in

One

 area

Holes In

one area

Memory Placement Strategies

-Determines where in main memory to place incoming programs and data. The

main strategies are:

 Best fit: place the job in the smallest possible hole. The disadvantage is that

the rest of hole will not be enough for new job.

 First fit: place the job in the first suitable hole. The advantage is low

overhead i.e. small CPU wasted time in implementing the strategy.

 Worst fit: place the job in the largest available hole. The rest of hole may be

still enough for new job

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 71

P!

hole

OS

P8

hole

P6

P5

hole

P3

hole

P10 P9P11

Firs
t f

it

Best fit

W
orst fit

Image of

10000 byte

Memory

15000 byte

10200 byte

25000 byte

8000 byte

Programs

on disk

 Multiprogramming with Memory Swapping

-When memory is full and new program is required to be executed then OS has to

carry out a swapping process as follows:

1. Save resident process image to disk. The process should be in ready or

blocked state (or suspended state which is preferred as will be shown later). The

memory space of that image becomes free (empty) and may be used for new

process. This free space is called “Swapping Area".

2. Load the new program from disk to swapping area and create a PCB for it

(create new process).

-When the old process is needed to run again, it has to be reloaded to its original

space i.e. to the swapping area, however, after saving the new process to disk.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 72

Program 5

Process 2

Image

Program 2

Process 5

Image

P4

P3

Process 2

Image

(P2)

P1

os

Other

programs

and files

Disk Memory

Load

Save

Reload

Save

2

1

4

3

Swapping

Area

Fragmentation:

• External Fragmentation: total memory space exists to satisfy a request, but it

is not contiguous

• Reduce external fragmentation by compaction

 - shffle memory contents to place all free memory together in one large block

 - Compaction is possible only if relocation is dynamic, and is done at

 Execution time.

 - I/O problem

 @ Latch job in memory while it is involved in I/O

 @ Do I/O only into OS buffers

• Internal Fragmentation: allocated memory may be slightly larger than

requestedmemory, this size difference is memory internal to a partition, but

not being used

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 73

Virtual Memory

Virtual Memory: Basic Concepts

Virtual memory is a technique that allows the execution of processes that may not

be completely in memory. One major advantage of this scheme is that programs

can be larger than physical memory.

There are two types of addresses in virtual memory systems: those referenced by

processes (virtual addresses) and those available in main memory (physical or real

addresses).

Virtual memory systems contain special-purpose hardware called the memory

management unit (MMU) that quickly maps virtual addresses to physical addresses.

A key to implementing virtual memory systems is how to map virtual addresses to

physical addresses as process execute. Dynamic address translation (DAT)

mechanisms convert virtual addresses to physical addresses during execution.

Paging

Paging is a memory management scheme that eliminates the need for contiguous

allocation of physical memory. This scheme permits the physical address space of a

process to be non – contiguous.

The physical memory is broken into fixed-sized blocks called frames. Logical

memory is also broken into blocks of the same size called pages. When a process is

to be executed, its pages are loaded into any available memory frames from the

backing store. The backing store is divided into fixed-sized blocks that are of the

same size as the memory frames.

The hardware support for paging is illustrated in Figure (1). Every address

generated by the CPU is divided into two parts:

 Page number (p): Number of bits required to represent the pages in Logical

Address Space.

 Page offset (d): Number of bits required to represent particular word in a page

or page size of Logical Address Space.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 74

The page number is used as an index into a page table. The page table contains the

base address of each page in physical memory. This base address is combined with

the page offset to define the physical memory address that is sent to the memory

unit.

Figure 1: Paging hardware

When we use a paging scheme, we have no external fragmentation: Any free frame

can be allocated to a process that needs it. However, we may have some internal

fragmentation.

The hardware implementation of page table can be done by using dedicated

registers. But the usage of register for the page table is satisfactory only if page

table is small. If page table contain large number of entries then we can use TLB

(translation Look-aside buffer), a special, small, fast look up hardware cache. The

TLB is used with page tables in the following way.

The TLB contains only a few of the page-table entries. When a logical address is

generated by the CPU, its page number is presented to the TLB. If the page number

is found, its frame number is immediately available and is used to access memory.

The whole task may take less than 10 percent longer than it would if an unmapped

memory reference were used.

If the page number is not in the TLB (known as a TLB miss), a memory reference

to the page table must be made. When the frame number is obtained, we can use it

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 75

to access memory. In addition, we add the page number and frame number to the

TLB, so that they will be found quickly on the next reference.

Figure 2: Paging hardware with TLB

Protection

Memory protection in a paged environment is accomplished by protection bits that

are associated with each frame. Normally, these bits are kept in the page table. One

bit can define a page to be read-write or read-only. Every reference to memory goes

through the page table to find the correct frame number. At the same time that the

physical address is being computed, the protection bits can be checked to verify

that no writes are being made to a read-only page. An attempt to write to a read-

only page causes a hardware trap to the operating system (or memory-protection

violation). We can easily expand this approach to provide a finer level of

protection. We can create hardware to provide read-only, read-write, or execute-

only protection. Or, by providing separate protection bits for each kind of access,

we can allow any combination of these accesses; illegal attempts will be trapped to

the operating system.

One more bit is generally attached to each entry in the page table: a valid-invalid

bit. When this bit is set to "valid," this value indicates that the associated page is in

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 76

the process' logical-address space, and is thus a legal (or valid) page. If the bit is set

to "invalid", this value indicates that the page is not in the process' logical-address

space. Illegal addresses are trapped by using the valid-invalid bit. The operating

system sets this bit for each page to allow or disallow accesses to that page.

Figure 3: Valid (v) or invalid (i) bit in a page table.

Segmentation

A Memory Management technique in which memory is divided into variable sized

chunks which can be allocated to processes. Each chunk is called a Segment. Each

segment consists of contiguous locations. The segments need not be the same size

nor must be placed adjacent to one another in main memory.

A table stores the information about all such segments and is called segment

table. It maps two dimensional Logical address into one dimensional Physical

address. Each entry of the segment table has a segment base and a segment limit.

The segment base contains the starting physical address where the segment resides

in memory, whereas the segment limit specifies the length of the segment.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 77

The use of a segment table is illustrated in Figure (4). Every address generated by

the CPU is divided into two parts:

 Segment number (s): Number of bits required to represent the segment.

 Segment offset (d): Number of bits required to represent the size of the

segment.

Figure 4: Segmentation hardware

As an example, consider the situation shown in Figure (5). We have five segments

numbered from 0 through 4. The segments are stored in physical memory as

shown. The segment table has a separate entry for each segment, giving the

beginning address of the segment in physical memory (or base) and the length of

that segment (or limit). For example, segment 2 is 400 bytes long and begins at

location 4300.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 78

Figure 5: Example of segmentation.

Demand Paging

A demand-paging system is similar to a paging system with swapping (Figure 6).

Processes reside on secondary memory (which is usually a disk). When we want to

execute a process, we swap it into memory.

Figure 6: Transfer of a paged memory to contiguous disk space.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 79

When a process is to be swapped in, the pager guesses which pages will be used

before the process is swapped out again. Instead of swapping in a whole process,

the pager brings only those necessary pages into memory. Thus, it avoids reading

into memory pages that will not be used anyway, decreasing the swap time and the

amount of physical memory needed.

With this scheme, we need some form of hardware support to distinguish between

those pages that are in memory and those pages that are on the disk. The valid

invalid bit scheme can be used for this purpose. When this bit is set to "valid," this

value indicates that the associated page is both legal and in memory. If the bit is set

to "invalid," this value indicates that the page either is not valid (that is, not in the

logical address space of the process), or is valid but is currently on the disk. The

page-table entry for a page that is brought into memory is set as usual, but the page-

table entry for a page that is not currently in memory is simply marked invalid, or

contains the address of the page on disk. This situation is depicted in Figure 7.

Figure 7: Page table when some pages are not in main memory.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 81

Page Fault

When the process tries to access a page that was not brought into memory (access

to a page marked invalid) causes a page-fault trap.

The paging hardware, in translating the address through the page table, will notice

that the invalid bit is set, causing a trap to the operating system. This trap is the

result of the operating system's failure to bring the desired page into memory,

rather than an invalid address error as a result of an attempt to use an illegal

memory address. The procedure for handling this page fault is illustrates in Figure

(8).

Figure 8: Steps in handling a page fault.

1. Check the page table (usually kept with the process control block) for this

process, to determine whether the reference was a valid or invalid memory

access.

2. If the reference was invalid, a page fault exception is raised.

3. The operating system must locate logical page in secondary memory.

4. Schedule a disk operation to read the desired page and swap into memory into a

free frame.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 81

5. When the disk read is complete, we modify the page table to indicate that the

page is now in memory (set valid bit).

6. Restart the instruction that was interrupted by the illegal address trap.

Page Replacement

Page replacement takes the following approach. If no frame is free, we find one

that is not currently being used and free it. We can free a frame by writing its

contents to swap space, and changing the page table to indicate that the page is no

longer in memory (Figure 9). We can now use the free frame to hold the page for

which the process faulted. We modify the page-fault service routine to include page

replacement:

1. Find the location of the desired page on the disk.

2. Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a page-replacement algorithm to select a victim

frame.

c. Write the victim page to the disk; change the page and frame tables

accordingly.

3. Read the desired page into the (newly) free frame; change the page and frame

tables.

4. Restart the user process.

Figure 9: Page replacement.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 82

Page Replacement Algorithms

In an operating systems that use paging for memory management, page

replacement algorithm are needed to decide which page needed to be replaced

when new page comes in. Whenever a new page is referred and not present in

memory, page fault occurs and Operating System replaces one of the existing pages

with newly needed page. Different page replacement algorithms suggest different

ways to decide which page to replace. The target for all algorithms is to reduce

number of page faults.

1. FIFO Page Replacement

The simplest page-replacement algorithm is a FIFO algorithm. A FIFO replacement

algorithm associates with each page the time when that page was brought into

memory. When a page must be replaced, the oldest page is chosen. Notice that it is

not strictly necessary to record the time when a page is brought in. We can create a

FIFO queue to hold all pages in memory. We replace the page at the head of the

queue. When a page is brought into memory, we insert it at the tail of the queue.

Example: Suppose three pages can be in memory at a time per process. Process

references pages: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 , what is the number of page

fault?

The number of page fault = 15

2. Optimal Page Replacement

In this algorithm, pages are replaced which are not used for the longest duration of

time in the future. Use of this page-replacement algorithm guarantees the lowest

possible page fault rate for a fixed number of frames.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 83

Example: Suppose we have the following process references pages:

7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

What is the number of page fault if we use three page frames?

The number of page fault = 9

3. LRU Page Replacement

In least recently used (LRU) replacement algorithm page will be replaced which is

least recently used. When a page must be replaced, LRU chooses that page that has

not been used for the longest period of time.

Example: Suppose three pages can be in memory at a time per process. Process

references pages: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1 , what is the number of page

fault?

The number of page fault = 12

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 84

Disk Performance Optimization ch.8

 Introduction

In recent years, processors & memory speeds have increased more rapidly than

those of hard disk. As a result, processes requesting data from disk tend to

experience long service delay. In this chapter, we discuss how to optimize disk

performance by recording disk requests to increase throughput, decrease response

time & reduce the variance of response times. We also discuss how OSs reorganize

data on disk & exploit buffers & caches to boost performance.

Finally, we discuss Redundant Arrays of Independent Disks (RAIDs), which

improve disk access times & fault tolerance by servicing requests using multiple

disks at once.

 Characteristics of Moving-Head Disk Storage

The general structure of hard disk is shown in fig below. In this figure, we notice

the followings:

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 85

Actuator

Direction of

movement

Spindle

(rotating thousands of

revolutions per minute)

Platter (2 surfaces)

Track

Track

Platter (2 surfaces)

Read/write head

(2 for each platter)

Cylinder (4 tracks)

Fig Disk Structure (Schematic Side View)

- The disk storage may consist of several platters & each has a separate

read/write moving-head. All heads are fixed to the same actuator & hence move

together to select certain cylinder. The cylinder is a set of tracks on all surfaces.

Usually, at one time, only one head is active & deals with one track of the whole

cylinder. This means that OS has to select the proper head to read/write (r/w) data.

- Each track is divided to several sectors as shown in fig 10.2 each sector is of

512 byte size.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 86

platter

Sector

(512 byte)

Track

Sector

(512 byte)

Fig Tracks & Sectors of Disk

From the above, it is clear that for the OS to R/W data from disk, it needs to:

1- Specify the proper surface containing the data & hence the proper moving

head.

2- Specify the track & sectors containing the data on that surface.

3- Instruct actuator to move head to the proper track. This movement takes time

which is called "Seek Time" & its average value is in the range of few milliseconds

(e.g. 7 msec).

4- The platter has to be rotating & the head should wait for the proper sector in

the track to get the data.

This time depends on revolution speed & its average value is half of one revolution

period & is usually of few milliseconds value (e.g. 4 msec). This time is called

"Latency Time".

5- When the head is on the proper sector, it starts reading/writing data & also

this process takes time depending on number of sectors to be read.

 This time is called "Transmission Time" as shown in Figure.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 87

From the above, It is clear that a few milliseconds are necessary to R/W data from

the disk while the CPU can execute millions of instructions in thatv time.

data

Head

Disk arm

Seek Time

Rotational

latency time

Transmission time

The new track

Current track

 Fig components of disk access (Total time of few milliseconds)

e.g. 10 msec

Why Disk Scheduling is Necessary

Many processes can generate requests for reading & writing data on a disk

simultaneously. Because these processes sometimes makes requests faster than they

can be serviced by the disk, waiting lines or queues build up to hold disk requests.

Some early computing systems simply serviced these request on a "First Come

First Served FCFS" basis, in which the earliest arriving request is serviced first.

FCFS exhibits a random seek pattern in which successive requests can cause time

consuming seeks from the innermost to the outermost cylinders (tracks). To reduce

the time spent seeking records, it seems reasonable to reorder the request queue in

some manners other than FCFS. This process, called disk scheduling, can

significantly improve throughput.

The two most common types of scheduling are "Seek optimizing" & "Rotational

Optimizing". Because seek times are usually greater than latency times, most

scheduling algorithms concentrate on minimizing total seek time for a set of

requests.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 88

 Disk Scheduling Strategies

The strategies are evaluated by the following criteria:

- Throughput: The number of requests serviced per unit time. The maximum

number is the better.

- Mean response time: The average time spent waiting for a request to be serviced.

The minimum time is the better.

- Variance of response time: The difference between the request waiting time

andthe mean response time. The minimum variance is the better.

Here, it is necessary to check the possibility of a request indefinite postponement.

 There are many strategies & we shall discuss some of them as follows:

1 First Come First Served (FCFS) Disk Scheduling

This has been already discussed & it suffers from long seek time & hence low

throughput especially under heavy loads.

2 Shortest Seek Time First (SSTF)

In this strategy, the next request to be serviced is the one that is closest to the R/W

head & thus incurs the shortest seek time.

The main problem is the possibility of indefinite postponement for the innermost &

outermost tracks especially under heavy loads i.e. many requests are coming all the

time.

3 Scan Disk Scheduling

Here, the disk head moves from the outer track to the inner & then in the opposite

direction. The request to be serviced is the one that its track is ahead of the head in

the motion direction.

This means that the requests coming in front of the head in the motion direction are

serviced first.

The scheduling may suffer indefinite postponement or long waits for requests of

innermost and outermost tracks under heavy load.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 89

4 C-Scan Disk Scheduling

C-Scan mean circular scan & it is similar to SCAN but the head doesn't service

requests when moving in the opposite direction i.e. it service requests in only one

direction & hence decrease the possibility of indefinite postponement of outerside

tracks.

5 Other scheduling strategies

There are also other strategies such as:

 Fscan

 N-Step Scan

 Look Scan

 C-Look Scan

 Shortest Latency Time First (SLTF)

 Shortest Positioning Time First (SPTF)

 Shortest Access Time First (SATF)

 Caching & Buffering

Many systems maintain a "disk cache buffer", which is a region of main memory

that the OS reserves for disk data. In one context, the reserved memory acts as

cache, allowing processes quick access to data that would otherwise need to be

fetched from disk. The reserved memory also acts as a buffer, allowing the OS to

delay writing modified data until the disk experiences a light load or until the disk

head is in a favorable position to improve I/O performance.

The disk cache buffer presents several challenges to OS designers such as:

- Size of cache buffer

- Replacement strategy

- Inconsistency of data when power or system fail.

Many of today's hard disk drives maintain an independent high-speed buffer cache

(on board cache) of several megabytes it's not related to main memory i.e. not part

of it (i.e. can't be addressed by CPU directly).

Also, some hard disk controllers (e.g. SCSI, RAID) maintain their own buffer

cache (normal RAM) separate from main memory.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 91

ALL buffers are used to enhance the disk performance i.e. increase the speed of

data retrieval.

 Redundant Arrays of Independent Disks (RAID)

Previously, we have been discussing non RAID disks that have the following

features:

- The disk includes several platters. Each platter has two R/W heads. ALL the

heads are mounted on one actuator & hence move together.

- Usually, the OS determines the location of data on which surface of which

platter & instructs the proper head to R/W.

- At any one time, only one head is used for reading or writing i.e. it is not

possible to make multiple accesses with several heads.

In other words, the disk has multiple heads but only one of them is used at any one

time.

- The file is usually stored on one surface of one platter only unless it is very

large.

- The only objective of this disk structure is to get large storage volume.

In the RAID structure, the philosophy is completely different from the nonRAID as

it has the following features:

- The disk includes several platters & heads as before but each head here has

its own actuator and hence can move independently of the other heads. This will

enable multiple reads & writes to be carried out at the same time & hence faster

disk response.

- The file may be stored on one platter or on several ones & hence it is

possible to read/write several parts of the same file at the same time & this means

fast R/W.

- Reliability issue is handled here and hence we find out that an error

correcting code (ECC) is being used & hence more storage is needed and this is

reason for the term "Redundancy". The redundancy will help in correcting errors &

hence the RAID system will be "fault tolerant" in this case.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 91

From the above, we conclude that the RAID structure is equivalent to the use of

multiple "Independent" disks & therefore we are going to use the word "disk"

instead of platter when describing the RAID technology (RAID structure).

There are several methods for using the disks in the RAID system & these methods

are identified by the following names: level0, level1, level2, etc.

We are going to discuss some of these levels in a brief way as showing later.

In RAID systems we use the following terms:

- Data Striping: entail dividing data into fixed size blocks called "strips".

Contiguous strips of a file are typically placed on separate disks so that request for

file data can be serviced using multiple disks at once, which improves access times.

- Stripe: consists of the set of strips at the same location on each disk of the

array.

- Fine grained strips: small size strips & this tend to spread file data across

several disks & hence reduce access time.

- Coarse grained strips: large size strips & this enable some files, to fit entirely

on one strip & hence the access time is as in the Non-RAID system, for that file,

however, several requests for several files can be serviced together

(Simultaneously).

Notes: The RAID systems (levels) take into consideration the following factors:

Access time (Multiple access for one file), fault tolerance, Multiple accesses (for

several files on several disks)

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 92

RAID interface

(controller)

strip1 strip2 strip3 strip4

strip1 strip2 strip3 strip4
stripe

Strip1+ strip2 + strip3+

strip4

File

Disks

Fig Strips & stripe in RAID systems

RAID Level :

RAID level uses a striped disk array with no fault tolerance and hence has

no redundancy. The disk contains data only & there is no ECC data.

In level , multiple reads & writes are possible.

The striping level (size) is a block.

Level is sometimes not considered as RAID as it has no redundancy (No ECC).

2 RAID Level1 (Mirroring)

This level employs disk mirroring (shadowing) to provide redundancy, so each disk

in the array is duplicated. Stripes are not implemented in level1 & hence multiple

access for the same file is only possible on reading but not on writing. On writing,

the same data has to be written on both disks (the original & the mirror) but on

reading, 2 different parts of the same file can be read at the same time from the

original & mirror disks. The mirror technology enhances reliability & restricted

multiple access but doubling the cost.

3 RAID Level2

RAID level2 arrays are striped at the bit level, so each strip stores one bit. This

means that adjacent bits of file are stored on different disks. Level2 arrays are not

mirrored, which reduces the storage overhead incurred by Level1.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 93

The fault tolerance is achieved here by using hamming error correcting codes

(hamming ECCs). The error code bits are stored on separate disks (parity disks).

Of course, each stripe of one bit size on data disks has a stripe of one bit size on

parity disks. This means that each group of data bits has a corresponding group of

ECC bits.

The clear problem here is that if the OS wants to write few bits of the group

(stripe), it has to read all data stripes first & then modify the necessary data bits &

then calculate the ECC bits & at last store the new data & ECC bits. This is called

"read-modify-write" cycle.

From the above, we notice that the storage overhead is decreased compared to

mirror system but the multiple access for several files is not possible as all disks

will be occupied for one file request (remember that the adjacent file bits are

distributed among the disks, also, it is necessary to read the parity disks).

 Note: In hamming, we can correct one data bit error. The number of ECC

bits are as follows:

 Number of number of

 data bits ECC bits

3

11 4

26 5

27

It is clear that the larger data stripe, the better & hence the more data disks in the

array (stripe) are the better.

4 RAID Level3
RAID level3 stripes data at the bit or byte level but use parity checks for fault

tolerance instead of Hamming. In parity check, we use only one bit (even or odd

parity) & this bit does not locate the place of error (as incase of Hamming) but

indicates only its existence. When the error occurs, the OS will inform the user

immediately who has to find out the erroneous disk and replace it. The data on the

faulty disk can be regenerated automatically with the help of other data disks & the

parity disk. The advantages of such system:

1- Large storage.

2- Fault tolerance with one extra disk (one parity disk).

3- Multiple access for one file is possible and hence fast access time.

Of course, multiple access for several files is not possible as any file request will

occupy all of the disks.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 94

5 RAID Level4
RAID Level4 systems are striped using fixed size blocks (typically much larger

than a byte) & use one disk for parity (even or odd parity). The difference with

level3 is that the file may occupy fraction of disks & not all of them (remember the

coarse grained stripes) & hence multiple requests for multiple files may be possible

at the same time. Here, we should remember that when reading data from disks, it

is not always necessary to read parity bits as these bits are stored not for error

detection but mainly for error correction (of one bit –usually one disk may be

faulty-).

 Note: Multiple writes is not possible because the parity disk will be occupied

for one write.

6 RAID Level5

RAID Level5 arrays are striped at the block level & a parity check (even or odd) is

used like in level4. The difference with level4 is that the parity bits are not located

on one disk but distributed throughout the arrays of disks. This means that disk1

carries parity bit1, disk2 carries parity bit2, & so on. The advantage of this level is

that multiple writes (writes for several files) are possible because the parity bits are

not stored on one disk as the case of level4.

7 Other RAID Levels
There are other levels such as:

- RAID Level6

- RAID Level10+1

- RAID Level10

- RAID Level10+3, 0+5, 50, 1+5, etc.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 95

8 comparison of RAID Levels

The properties of different RAID levels can be summarized as follows:

 From multiple files

RAID

Level

Read

concurrency

Write

concurrency

Redundancy Striping

Level

 0 Yes Yes

 None Block

 1 Yes No

Mirroring None

 2 No No Hamming ECC Bit

 3 No No Even or odd

parity

Bit/Byte

 4 Yes No Even or odd

parity

Block

 5 Yes Yes Distributed

even or odd

parity

Block

 Notes:

1- When striping level is bit or byte. This means that the file data are distributed on

all the disk arrays & hence it is not possible to service multiple requests for several

files, however, the single file will be read/write very quickly i.e. fast access (fast

data transmission).

When block level is used then the file may occupy few disks of the array (stripe) &

the others may be for other file, & hence multiple files may be serviced.

2- The main purpose of redundancy is not to detect errors but to correct it & hence,

it is not always necessary to read parity disks during read cycle & this allows

multiple read for several files when block (coarse grained striping) striping is used.

3- Hamming ECC is not necessary as the faulty disk may be discovered by other

means & hence one parity (even or odd) bit is enough for error detection &

correction. In other words, the parity bit will inform us about the existence of error

and then by other means (electrical, mechanical) we can find out the faulty disk &

hence regenerates its data from knowing the other data bits on the data disks & the

parity bit from the parity disk.

 المرحلة: الرابعة المادة:انظمة التشغيل استاذ المادة: المدرس أمين عبد الزهرة 96

 Note: in RAID, we discover that there are errors by using parity check. Then

by some means we find the faulty disk & then we regenerate the data on the faulty

disk by making parity of all other data disks (except the faulty one) & of the parity

disk itself.

Conclusions;

 The parity check can be used to correct data if the erroneous bit location is

known.

Once we know this location, we can find the missing bit by making parity of all

other data bits & the parity bit.

In RAID, we know location by knowing the faulty disk by different means & this

starts by finding parity check error.

From the above we notice that RAID systems features are:

- Large storage volume as it uses arrays of disk.

- Fast data transmission as many heads work together (Independent Disks).

- Fault tolerance with low overhead storage by using parity check

(redundancy).

