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4.1 Perceptron

A single layer perceptron (SLP) is a feed-forward network based on a threshold transfer
function. SLP is the simplest type of artificial neural networks and can only classify
linearly separable cases with a binary target (1, 0).

Single Layer Perceptron
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The single layer perceptron does not have a prior knowledge, so the initial weights are
assigned randomly. SLP sums all the weighted inputs and if the sum is above the
threshold (some predetermined value), SLP is said to be activated (output=1).
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4.2 Learning Algorithm: Training Perceptron

The training of Perceptron is a supervised learning algorithm where
weights are adjusted to minimize error when ever the output does
not match the desired output.

- If the output is correct then no adjustment of weights is done.

K+1 K
i.e. w.. = W

ij ij
— If the output is 1 but should have been 0 then the weights are
decreased on the active input link

K+1 K
i.e. w. = wf.}. — . Xi

— If the output is 0 but should have been 1 then the weights are
increased on the active input link

K+1 K
i.e. w.. = W.. + a.Xi
ij ij
Where
K+1 K
wf_}_ is the new adjusted weight, W;j is the old weight

xi is theinput and « is the learning rate parameter.

o  small leads to slow and « large leads to fast learning.
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4.3 Perceptron Learning Algorithm

The algorithm is illustrated step-by-step.

Step 1:

Create a peceptron with (n+1) input neurons xo, x1,..... , - Xn,
where xo =1 is the bias input.

Let 0o be the output neuron.

Step 2 :

Initialize weight w = (wo, w1, ..... , - wn ) to random weights.

Step 3:

Iterate through the input patterns Xxj of the training set using the

n
weight set; ie compute the weighted sum of inputs net j = f Xi Wi

i=1
for each input pattern j.
Step 4:
Compute the output yj using the step function
1 if netj =20 n
yvi= f(netj) = where neti = 2 Xi Wij
0 if netj < 0 =1

Step 5:
Compare the computed output yj with the target output vyj for

each input patternj .

If all the input patterns have been classified correctly, then output
(read) the weights and exit.
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m Step6:

Otherwise, update the weights as given below :

If the computed outputs yj is 1 but should have been o,

Then wi = wi - axi, i=0,1,2,....,n

If the computed outputs yj is 0 but should have been 1,
Then wi =wi +axi, i=0,1,2,....,n
where o is the learning parameter and is constant.
m Step7:

goto step 3
m END
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4.4 Example

Ex1: Train a perceptron network to simulate of “OR GATE”. Learning rate n=1, 6 =0,

Initial weights: wl =0, w2 =0.
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X: input vector

Inputs  Goal outputs

X1 | X2 d =Odesired
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u: weighted sum W1 Wz _ _ W1 W2
w: weight Xi X2 og olg 07Odesied y=O E oy
Aw: the weight change 0 0 0 0 0 0 1019 0

. 0 1 0 0 1 0 11 0 1
n: learning rate
d: desired Output 17 0j07]1 1 0 j1) 1)1
y= 0 : actual Output 1 1 1 1 1 1 (01 1
A\ = E :error betweendand y
Input 1: When (X1=0, X2=0

( ) NOTE 1:

u=y Wij* Xj (weighted sum)
O=f (3, Wij * X))
= (W1*X1+W2*X2)
=f(0*0+ 0*0)
=f(0) u<=0
=0

Gk e o5 Al Perceptron 4Sud 8
4,505 A1l o3a 5 (Threshold) dell Al
Clslaal) Aadais Y1 eansy Y 138 5 dagil
Aghall

NOTE 2:
Goal output=desired output=Target output
A sllaall il ) 4y s el il i )
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Adjust the weights = update of weights
Wij new = Wij old + AWij
AWij=n Ai Xj

Wij new = Wij old + 1 Ai X
Wij new = Wij old + 1 E X

W1 new = Wiold + 1 (Odesired - Oactual) X1
Winew= 0 +1*(0-0)*0
Winew=0

W2 new = W2old + 1 (Odesired - Oactual) X2
W2rew= 0 +1*(0-0)*0
Wanew = 0

Input 2: When (X1=0, X2=1)

u=y Wij* Xj (weighted sum)
0= f (T Wij * X))
= f (W1*X1+W2*X2)
=f(0*0+ 0*1)
=1 (0) u<=0
=0

Adjust the weights

W1 new = Wiold + 1 (Odesired = Oactual) X1
Winew= 0 +1*(1-0)*0
W1 new=0

W2 new = W2old + 1 (Odesired = Oactual) X2

Wanew= 0 +1*(1-0)*1
Wonew = 0+1
W2new =1

NOTE 3:
Actual output= ek Al Dila Al a
il and ) 8080 e sl U

Error signal= Ai=E = (Odesired - Oactual)

E=(d-Y)
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Input 3: When (X1=1, X2=0)
u=y Wij* Xj (weighted sum)
O=1f (X Wij * X))

= f (W1*X1+W2*X2)
=f(0*1+ 1*0)
=f(0) u<=0
=0

Adjust the weights

W1 new = Wiold + 1 (Odesired - Oactual) X1
Winew= 0 +1*(1-0)*1

Winew=1

W2 new = W2old + 1 (Odesired - Oactual) X2
W2pnew= 1 +1*%(1-0)*0

Woanew = 1+0

Wanew =1

Input 4: When (X1=1, X2=1)

u=y Wij* Xj (weighted sum)
O=f (3 Wij * X))
= f (W1*X1+W2*X2)
=f(1*1+ 1*1)
=f(2) u>0
=1

Adjust the weights

W1 new = Wiold + 1 (Odesired = Oactual) X1
Winew= 1 +1*(1-1)*1

W1 new=1

W2 new = W2old + 1 (Odesired - Oactual) X2
W2new= 1 +1*%(1-1)*1

Wanew = 1+0

Wanew =1
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Homework :

Ex2: Train a perceptron network to simulate logic operation “NAND”.
Learning rate n= 0.1, [wo= 0, wl= 0, w2 = 0], threshold (0) = 0.5.

Inputs AND Goal outputs
Gate

Xo | X1 | X2 @) NOTO= Odesired
f Output
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