Maha ali hussain	object oriented programming	 `lecture 6 

6.1 Function Overloading:- 
         C++ also permits overloading of functions. This means that we can use the same function name to create functions that perform a variety of different tasks. This is known as function polymorphism in OOP. We can design a family of functions with one function name but with different argument lists.

               // Declarations
                 
               int add(int a, int b);                         // prototype 1
               int add(int a, int b, int c);                // prototype 2
               double add(double x, double y);     // prototype 3
               double add(int p, double q);           //  prototype 4
               double add(double p, int q);          //   prototype 5

             // Function calls
               
               cout << add(5, 10);                    // uses prototype 1
               cout << add(5, 10.0);                 // uses prototype 4
               cout << add(12.5, 7.5);              // uses prototype 3
               cout << add(5,  10, 15);             // uses prototype 2
               cout << add(0.75, 5);                 // uses prototype 5

A function call first matches the prototype having the same number and type of arguments and then calls the appropriate function for execution. A best match must be unique. The function selection involves the following steps:
1. The compiler first tries to find an exact match in which the types of actual arguments are the same and use that function. 
2. If an exact match is not found. The compiler uses the integral promotions to the actual arguments, such as: 
                          Char to int
                          Float to double 
///////////////////////////////////////[ function overloading ]///////////////////////////////////
Ex : W.P create class to be called volume ?
# include <iostream.h> 
int volume (int);              // prototype declarations 
double volume (double, int );           // for overloading volume ( )
long volume (long, int, int );
 
void vmain ( )
{
     cout <<volume (10) << “\n’’
      cout<<volume (2.5,8)<<’’\n”;
      cout<< volume (100l,75,15);
}

//………………………..FUNCTION DEFINITION……………………….

int volume (int s )                                       //cube
{
        return (s*s*s);
}
double volume (double r, int h )             // cylinder 
{
  return (3.14519 * r*r*h); 
}
long volume (long l, int b , int h )          // rectangular box 
}
return  (l*b*h) 
}
********* The output of above program would be: 
    1000
    157.2595
    112500




 6.2 Different Numbers of Arguments Example: 

    The starline() function printed a line using 45 asterisks. 
The repchar() function used a character and a line length that were both specified when the function was called. 
The charline() function that always prints 45 characters but that allows the calling program to specify the character to be printed. 
These three functions—starline(), repchar(), and charline()— perform similar activities but have different names. 
For programmers using these functions, that means three names to remember and three places to look them up if they are listed alphabetically in an application’s. 
It would be better to use the same name for all three functions, even though they each have different arguments. 
Here’s a program, OVERLOAD, that makes this possible: 
#include <iostream.h> 
void repchar(); //declarations 
void repchar(char); 
void repchar(char, int); 
int main() 
{ repchar(); 
repchar(‘=’); 
repchar(‘+’, 20); 
return 0; 
} 
void repchar() 
{ 
for(int j=0; j<45; j++) 
cout << ‘*’; // always prints asterisk 
cout << endl; 
} 
void repchar(char ch) 
{ 
for(int j=0; j<45; j++) // always loops 45 times 
cout << ch; // prints specified character 
cout << endl; 
} 
// repchar() 
// displays specified number of copies of specified character
void repchar(char ch, int n) 
{for(int j=0; j<n; j++) // loops n times 
cout << ch; // prints specified character 
cout << endl; 
} 
This program prints out three lines of characters. Here’s the output: 
********************************************** 
=============================== 
++++++++++++++++++++

String variables
  strings can be variables or constants. Here’s an example that defines a single string variable. It asks the user to enter a string, and places this string in the string variable. Then it displays the string. Here’s the listing for STRINGIN: 

EX: eHere’s a program, in which three functions all access a global variable. 
// demonstrates global variables :

#include <iostream.h> 
int main() 
{const int MAX = 80; //max characters in string 
char str[MAX]; //string variable str 
cout << “Enter a string: “; 
cin >> str; //put string in str 
cout << “You entered: “ << str << endl; 
return 0;}

#include <iostream.h> 
#include <conio.h> //for getch() 
char ch = ‘a’; //global variable ch 
void getachar(); 
void putachar(); 

int main() 
{ while( ch != ‘\r’ )                                   //main() accesses ch 
{ getachar(); 
putachar(); 
} 
cout << endl; 
return 0; 
} 

void getachar()                                                           //getachar() accesses ch 
{ ch = getch();} 
void putachar()                                                             //putachar() accesses ch 
{ cout << ch; } 

Ex: A stack 
#include <iostream.h> 
class Stack 
{ 
private: 
enum { MAX = 10 }; //(non-standard syntax) 
int st[MAX]; //stack: array of integers 
int top; //number of top of stack 
public: 
Stack() //constructor 
{ top = 0; } 
void push(int var) //put number on stack 
{ st[++top] = var; } 
int pop() //take number off stack 
{ return st[top--]; } 
}; 
int main() 
{ 
Stack s1; 
s1.push(11); 
s1.push(22); 
cout << “1: “ << s1.pop() << endl; //22 
cout << “2: “ << s1.pop() << endl; //11 
s1.push(33); 
s1.push(44); 
s1.push(55); 
s1.push(66); 
cout << “3: “ << s1.pop() << endl; //66 
cout << “4: “ << s1.pop() << endl; //55 
cout << “5: “ << s1.pop() << endl; //44 
cout << “6: “ << s1.pop() << endl; //33 
return 0;} 

comments:
The size of the array used for the stack is specified by MAX, in the statement 
enum { MAX = 10 }; 4: 
  In keeping with the philosophy of encapsulation, it’s preferable to define constants that will be used entirely within a class, as MAX is here, within the class. Thus the use of global const variables for this purpose is no optimal. Standard C++ mandates that we should be able to declare MAX within the class as static const int MAX = 10; 
This means that MAX is constant and applies to all objects in the class. 
Here’s the output:
1: 22 
2: 11 
3: 66 
4: 55 
5: 44 
6: 33


EX: Arrays of English Distances 
The next program, ENGLARAY, demonstrates an array of such objects. 
#include <iostream.h> 
class Distance                                                          //English Distance class 
{private: int feet; float inches; 
public: 

void getdist()                                                             //get length from user 
{cout << “\n Enter feet: “;   cin >> feet; 
cout << “ Enter inches: “;    cin >> inches;} 

void showdist() const //display distance 
 { cout << feet << “\’-” << inches << endl‘\”’; } 
}; 

 void  main() 
{    Distance dist[100];                                                  //array of distances 
      int n=0;                                            //count the entries 
char ans;                                               //user response (‘y’ or ‘n’) 
cout << endl; 
do {                                                                              //get distances from user 
cout << “Enter distance number “ << n+1; 
dist[n++].getdist();                                                     //store distance in array 
cout << “Enter another (y/n)?: “; 
cin >> ans; 
} while( ans != ‘n’ );                                                         //quit if user types ‘n’ 
for(int j=0; j<n; j++)                                                       //display all distances 
{cout << “\nDistance number “ << j+1 << “ is “; 
dist[j].showdist();} 
cout << endl; 
return 0; } 

Here’s a sample interaction when the user enters three distances: 
Enter distance number 1 
Enter feet: 5 
Enter inches: 4 
Enter another (y/n)? y 
Enter distance number 2

Enter feet: 6 
Enter inches: 2.5 
Enter another (y/n)? y 
Enter distance number 3 
Enter feet: 5 
Enter inches: 10.75 
Enter another (y/n)? n 
Distance number 1 is 5’-4” 
Distance number 2 is 6’-2.5” 
Distance number 3 is 5’-10.75”

Opertator overloading :

     Operator overloading is one of the many exciting features of c++ language.it is an important technique that has enhanced the power of extensibility of c++ .this means that c++ has the ability to provide the operators with a mechanism of giving such special meanings to an operator is known as operator overloading .
OR:
        Operator overloading is one of the most exciting features of object-oriented programming. It can transform complex, obscure program listings into intuitively obvious ones. can be changed to the much more readable d3 = d1 + d2; The rather forbidding term operator overloading refers to giving the normal C++ operators, such as +, *, <=, and +=, additional meanings when they are applied to user-defined data types. Normally a = b + c; works only with basic types such as int and float, and attempting to apply it when a, b, and care objects of a user-defined class will cause complaints from the compiler. 

[image: ]



[image: ]
[image: ]
[image: ]

[image: ]

Overloading Unary Operators 
    Examples of unary operators  are  the increment and decrement operators ++ and --, and the unary minus, as in -33. In the COUNTER example ―Objects and Classes,‖ we created a class Counter to keep track of a count. Objects of that class were incremented by calling a member function: c1.inc_count();That did the job, but the listing would have been more readable if we could have used the increment operator ++ instead: ++c1; Let‘s rewrite COUNTER to make this possible. Here‘s the listing for COUNTPP1: 
EX:W.P define a class to  increment counter variable with overloading (++ operator )
#include <iostream.h> 
class Counter 
{ 
private: 
int count; //count 
public: 	
Counter() : count(0) { } //constructor 
int ret_count() //return count 
{ return count; } 
void operator ++ () //increment (prefix) 
{++count;} 
}; 
int main() 
{Counter c1, c2; //define and initialize
cout << “\nc1= ” << c1.ret_count();                           //display 
cout << “\nc2=” << c2.ret_count(); 
++c1;                                                                           //increment c1 
++c2;                                                                           //increment c2 
++c2;                                                                           //increment c2 
cout << “\nc1=” << c1.ret_count();                         //display again 
cout << “\nc2=” << c2.ret_count() << endl; 
return 0;}

In this program we create two objects of class Counter: c1 and c2. The counts in the objects are displayed; they are initially 0. Then, using the overloaded ++ operator, we increment c1 once and c2 twice, and display the resulting values. Here‘s the program‘s output: 
c1=0           counts are initially 0 
c2=0 
c1=1          incremented once 
c2=2           incremented twice 
The statements responsible for these operations are 
++c1; 
++c2; 
++c2; 
The ++ operator is applied once to c1 and twice to c 



[image: ]

EX: unary  minus operator : a minus operator when used as unary ,takes just one operand . it change the sign of an operand when applied  to a basic data item .this operator applied 
[image: ]

#include <iostream.h>
class space
{      int X,Y,Z;
public:

void getdata (int a ,int b,int c)
{X=a;
  Y=b;
  Z=c;
  }
void display()
{cout <<"X= "<<X<<"\t";
   cout<<"Y "<<Y<<"\t";
   cout <<"Z "<<Z<<"\t";
   }
   void operator -()
   {X= -X;        Y=-Y;         Z=-Z;        }
 };
 void main()
[image: ] {
 space   S;
 S.getdata (10,-20,30);
 cout<<" S: ";
 S.display();

 -S;
 cout<<"\n S:  ";
 S.display ();
  }











[image: ]

Another  example:
Operator Return Values 
The operator++() function in the COUNTPP1 program has a subtle defect. You will discover it if you use a statement like this in main(): 
c1 = ++c2; 

The compiler will complain. Why? Because we have defined the ++ operator to have a return type of void in the operator++() function, while in the assignment statement it is being asked to return a variable of type Counter. That is, the compiler is being asked to return whatever value c2 has after being operated on by the ++ operator, and assign this value to c1. So as defined in COUNTPP1, we can‘t use ++ to increment Counter objects in assignments; it must always stand alone with its operand. Of course the normal ++ operator, applied to basic data types such as int, would not have this problem. To make it possible to use our homemade operator++() in
assignment expressions, we must provide a way for it to return a value. The next program, COUNTPP2, does just that. 
// countpp2.cpp 
// increment counter variable with ++ operator, return value 
#include <iostream.h> 
class Counter 
{ 
private: 
int count; //count 
public: 
Counter() : count(0) //constructor 
{ } 
int ret_count() //return count 
{ return count; } 
Counter operator ++ () //increment count 
{ 
++count; //increment count 
Counter temp; //make a temporary Counter 
temp.count = count; //give it same value as this obj 
return temp; //return the copy 
} 
}; 
int main() 
{ 
Counter c1, c2; //c1=0, c2=0 
cout << “\nc1=” << c1.ret_count(); //display 
cout << “\nc2=” << c2.ret_count(); 
++c1; //c1=1 
c2 = ++c1; //c1=2, c2=2 
cout << “\nc1=” << c1.ret_count(); //display again 
cout << “\nc2=” << c2.ret_count() << endl; 
return 0; 
} 
Here the operator++() function creates a new object of type Counter, called temp, to use as a return value. It increments the count data in its own object as before, then creates the new temp object and assigns count in the new object the same value as in its own object. Finally, it returns the temp object. This has the desired effect. Expressions like 
++c1 
now return a value, so they can be used in other expressions, such as 
c2 = ++c1; 
as shown in main(), where the value returned from c1++ is assigned to c2. The output from this program is 
c1=0 
c2=0
c1=2 
c2=2 

6.3 Nameless Temporary Objects 
In COUNTPP2 we created a temporary object of type Counter, named temp, whose sole purpose was to provide a return value for the ++ operator. This required three statements. 
Counter temp; // make a temporary Counter object 
temp.count = count; // give it same value as this object 
return temp; // return it 
There are more convenient ways to return temporary objects from functions and overloaded operators. Let‘s examine another approach, as shown in the program COUNTPP3: 
// countpp3.cpp 
// increment counter variable with ++ operator 
// uses unnamed temporary object 
#include <iostream.h> 
class Counter 
{
private: 
unsigned int count; //count 
public: 
Counter() : count(0) //constructor no args 
{ } 
Counter(int c) : count(c) //constructor, one arg 
{ } 
int ret_count() //return count 
{ return count; } 
Counter operator ++ () //increment count 
{
++count; // increment count, then return 
return Counter(count); // an unnamed temporary object 
} // initialized to this count 
}; 
int main() 
{
Counter c1, c2; //c1=0, c2=0 
cout << ―\nc1=‖ << c1.ret_count(); //display 
cout << ―\nc2=‖ << c2.ret_count(); 
++c1; //c1=1 
c2 = ++c1; //c1=2, c2=2 
cout << ―\nc1=‖ << c1.ret_count(); //display again 
cout << ―\nc2=‖ << c2.ret_count() << endl; 
return 0; 
} 
In this program a single statement return Counter (count); does what all three statements did in COUNTPP2. This statement
creates an object of type Counter. This object has no name; it won‘t be around long enough to need one. This unnamed object is initialized to the value provided by the argument count. But wait: Doesn‘t this require a constructor that takes one argument? It does, and to make this statement work we sneakily inserted just such a constructor into the member function list in COUNTPP3. 
Counter (int c): count(c) //constructor, one arg 
{ } 
Once the unnamed object is initialized to the value of count, it can then be returned. The output of this program is the same as that of COUNTPP2. The approaches in both COUNTPP2 and COUNTPP3 involve making a copy of the original object (the object of which the function is a member), and returning the copy. 



6.4 Postfix Notation 
 where the variable is incremented after its value is used in the expression? 
c1++ 
To make both versions of the increment operator work, we define two overloaded ++ operators, as shown in the POSTFIX program: 
// postfix.cpp 
// overloaded ++ operator in both prefix and postfix 
#include <iostream.h> 
class Counter 
{
private: 
unsigned int count;                                                                       //count 
public: 
Counter() : count(0)                                                         //constructor no args 
{ } 
Counter(int c) : count(c)                                                  //constructor, one arg 
{ } 
int get_count() const                                                        //return count 
{ return count; } 
Counter operator ++ ()                                                   //increment count (prefix) 
{ //increment count, then return 
return Counter(++count);                                                //an unnamed temporary object 
} //initialized to this count 
Counter operator ++ (int)                                               //increment count (postfix) 
{ //return an unnamed temporary 
return Counter(count++);                                               //object initialized to this
} //count, then increment count 
}; 
int main() 
{
Counter c1, c2;                                                                          //c1=0, c2=0 
cout << “\nc1=” << c1.get_count();                                    //display 
cout << “\nc2=” << c2.get_count(); 
++c1;                                                                                      //c1=1 
c2 = ++c1; //c1=2, c2=2 (prefix) 
cout << “\nc1=” << c1.get_count();                                             //display 
cout << “\nc2=” << c2.get_count(); 
c2 = c1++; //c1=3, c2=2 (postfix) 
cout << “\nc1=” << c1.get_count();                                      //display again 
cout << “\nc2=” << c2.get_count() << endl; 
return 0; 
} 
Now there are two different declarators for overloading the ++ operator. The one we‘ve seen before, for prefix notation, is Counter operator ++ ()  The new one, for postfix notation, is  Counter operator ++ (int) 
The only difference is the int in the parentheses. This int isn‘t really an argument, and it doesn‘t mean integer. It‘s simply a signal to the compiler to create the postfix version of the operator. Here‘s the
output from the program: 
c1=0 
c2=0 
c1=2 
c2=2 
c1=3 
c2=2 
We saw the first four of these output lines in COUNTPP2 and COUNTPP3. But in the last two lines we see the results of the statement 
c2=c1++; 
Here, c1 is incremented to 3, but c2 is assigned the value of c1 before it is incremented, so c2 retains the value 2. Of course, you can use this same approach with the decrement operator (--). 
6.5 Overloading Binary Operators
Binary operators can be overloaded just as easily as unary operators. We‘ll look at examples that overload arithmetic operators, comparison operators, and arithmetic assignment operators. 
6.5.1 Arithmetic Operators 
In the English Distance program we showed how two English Distance objects could be added using a member function add_dist(): 
dist3.add_dist(dist1, dist2); 
By overloading the + operator we can reduce this dense-looking expression to 
dist3 = dist1 + dist2; 
Here‘s the listing for ENGLPLUS, which does just that: 
// englplus.cpp 
// overloaded ‗+‘ operator adds two Distances 
#include <iostream.h> 
class Distance //English Distance class 
{
private: 
int feet; 
float inches; 
public: //constructor (no args) 
Distance() : feet(0), inches(0.0) 
{ } //constructor (two args) 
Distance(int ft, float in) : feet(ft), inches(in) 
{ } 
void getdist()                                                                                 //get length from user 
{
cout << “\nEnter feet: “; cin >> feet; 
cout << “Enter inches: “; cin >> inches; 
}
void showdist() const                                                                           //display distance 
{ cout << feet << “   “ << inches << “   “; } 
Distance operator + ( Distance ) const;                                                        //add 2 distances 
}; 
//add this distance to d2 
Distance Distance::operator + (Distance d2) const //return sum 
{
int f = feet + d2.feet; //add the feet 
float i = inches + d2.inches; //add the inches 
if(i >= 12.0) //if total exceeds 12.0, 
{ //then decrease inches 
i -= 12.0; //by 12.0 and 
f++; //increase feet by 1 
} //return a temporary Distance 
return Distance(f,i); //initialized to sum 
}
int main() 
{Distance dist1, dist3, dist4; //define distances 
dist1.getdist(); //get dist1 from user 
Distance dist2(11, 6.25); //define, initialize dist2 
dist3 = dist1 + dist2; //single ‗+‘ operator 
dist4 = dist1 + dist2 + dist3; //multiple ‗+‘ operators 
//display all lengths 
cout << “dist1 = “; dist1.showdist(); cout << endl; 
cout << “dist2 = “; dist2.showdist(); cout << endl; 
cout << “dist3 = “; dist3.showdist(); cout << endl; 
cout << “dist4 =  “ dist4.showdist(); cout << endl; 
return 0; 
}
To show that the result of an addition can be used in another addition as well as in an assignment, another addition is performed in main (). We add dist1, dist2, and dist3 to obtain dist4 (which should be double the value of dist3), in the statement 
dist4 = dist1 + dist2 + dist3;//Nameless Temporary Object will hold the intermediate result from adding dist1 and dist2. 
Here‘s the output from the program: 
Enter feet: 10 
Enter inches: 6.5 
dist1 = 10‘-6.5            from user 
dist2 = 11‘-6.25          initialized in program 
dist3 = 22‘-0.75          dist1+dist2 
dist4 = 44‘-1.5           dist1+dist2+dist3 
In class Distance the declaration for the operator+ () function looks like this: 
Distance operator + (Distance); 
This function has a return type of Distance, and takes one argument of type Distance. In expressions like 
dist3 = dist1 + dist2; 
It‘s important to understand how the return value and arguments of the operator relate to the objects. When the compiler sees this expression it looks at the argument types, and finding only type Distance, it realizes it must use the Distance member function operator+(). But what does this function use as its argument—dist1 or dist2? And doesn‘t it need two arguments, since there are two numbers to be added? 
Here‘s the key: The argument on the left side of the operator (dist1 in this case) is the object of which the operator is a member. The object on the right side of the operator (dist2) must be furnished as an argument to the operator. The operator returns a value, which canbe assigned or used in other ways; in this case it is assigned to dist3.
6.5.2 Overloaded binary operator: one argument. 
In the operator+ () function, the left operand is accessed directly—since this is the object of which the operator is a member— using feet and inches. The right operand is accessed as the function‘s argument, as d2.feet and d2.inches. We can generalize and say that an overloaded operator always requires one less argument than its number of operands, since one operand is the object of which the operator is a member. That‘s why unary operators require no arguments. To calculate the return value of operator+() in ENGLPLUS, we first add the feet and inches from the two operands (adjusting for a carry if necessary). The resulting values, f and i, are then used to initialize a nameless Distance object, which is returned in the statement 
return Distance (f, i); 
This is similar to the arrangement used in COUNTPP3, except that the constructor takes two arguments instead of one. The statement
dist3 = dist1 + dist2; 
In main () then assigns the value of the nameless Distance object to dist3. Compare this intuitively obvious statement with the use of a function call to perform the same task, as in the ENGLCON example. Similar functions could be created to overload other operators in the Distance class, so you could subtract, multiply, and divide objects of this class in natural-looking ways. 

6.5 Overloading Binary Operators
Binary operators can be overloaded just as easily as unary operators. We‘ll look at examples that overload arithmetic operators, comparison operators, and arithmetic assignment operators. 
6.5.1 Arithmetic Operators 
In the English Distance program we showed how two English Distance objects could be added using a member function add_dist(): 
dist3.add_dist(dist1, dist2); 
By overloading the + operator we can reduce this dense-looking expression to 
dist3 = dist1 + dist2; 
Here‘s the listing for ENGLPLUS, which does just that: 
// englplus.cpp 
// overloaded ‗+‘ operator adds two Distances 
#include <iostream.h> 
class Distance //English Distance class 
{ 
private: 
int feet; 
float inches; 
public: //constructor (no args) 
Distance() : feet(0), inches(0.0) 
{ } //constructor (two args) 
Distance(int ft, float in) : feet(ft), inches(in) 
{ } 
void getdist() //get length from user 
{ 
cout << ―\nEnter feet: ―; cin >> feet; 
cout << ―Enter inches: ―; cin >> inches; 
} 
void showdist() const //display distance 
{ cout << feet << “\‘-‖” << inches << “\‖‘”; } 
Distance operator + ( Distance ) const; //add 2 distances 
}; 
//add this distance to d2 
Distance Distance::operator + (Distance d2) const //return sum 
{ 
int f = feet + d2.feet; //add the feet 
float i = inches + d2.inches; //add the inches 
if(i >= 12.0) //if total exceeds 12.0, 
{ //then decrease inches 
i -= 12.0; //by 12.0 and 
f++; //increase feet by 1 
} //return a temporary Distance 
return Distance(f,i); //initialized to sum 
} 
int main() 
{
Distance dist1, dist3, dist4; //define distances 
dist1.getdist(); //get dist1 from user 
Distance dist2(11, 6.25); //define, initialize dist2 
dist3 = dist1 + dist2; //single ‗+‘ operator 
dist4 = dist1 + dist2 + dist3; //multiple ‗+‘ operators 
//display all lengths 
cout << ―dist1 = ―; dist1.showdist(); cout << endl; 
cout << ―dist2 = ―; dist2.showdist(); cout << endl; 
cout << ―dist3 = ―; dist3.showdist(); cout << endl; 
cout << ―dist4 = ―; dist4.showdist(); cout << endl; 
return 0; 
} 
To show that the result of an addition can be used in another addition as well as in an assignment, another addition is performed in main (). We add dist1, dist2, and dist3 to obtain dist4 (which should be double the value of dist3), in the statement 
dist4 = dist1 + dist2 + dist3;//Nameless Temporary Object will hold the intermediate result from adding dist1 and dist2. 
Here‘s the output from the program: 
Enter feet: 10 
Enter inches: 6.5 
dist1 = 10‘-6.5‖ from user 
dist2 = 11‘-6.25‖ initialized in program 
dist3 = 22‘-0.75‖ dist1+dist2 
dist4 = 44‘-1.5‖ dist1+dist2+dist3 
In class Distance the declaration for the operator+ () function looks like this: 
Distance operator + (Distance); 
This function has a return type of Distance, and takes one argument of type Distance. In expressions like 
dist3 = dist1 + dist2; 
It‘s important to understand how the return value and arguments of the operator relate to the objects. When the compiler sees this expression it looks at the argument types, and finding only type Distance, it realizes it must use the Distance member function operator+(). But what does this function use as its argument—dist1 or dist2? And doesn‘t it need two arguments, since there are two numbers to be added? 
Here‘s the key: The argument on the left side of the operator (dist1 in this case) is the object of which the operator is a member. The object on the right side of the operator (dist2) must be furnished as an argument to the operator. The operator returns a value, which can
6.5.2 Overloaded binary operator: one argument. 
In the operator+ () function, the left operand is accessed directly—since this is the object of which the operator is a member—using feet and inches. The right operand is accessed as the function‘s argument, as d2.feet and d2.inches. We can generalize and say that an overloaded operator always requires one less argument than its number of operands, since one operand is the object of which the operator is a member. That‘s why unary operators require no arguments. To calculate the return value of operator+() in ENGLPLUS, we first add the feet and inches from the two operands (adjusting for a carry if necessary). The resulting values, f and i, are then used to initialize a nameless Distance object, which is returned in the statement 
return Distance (f, i); 
This is similar to the arrangement used in COUNTPP3, except that the constructor takes two arguments instead of one. The statement
dist3 = dist1 + dist2; 
In main () then assigns the value of the nameless Distance object to dist3. Compare this intuitively obvious statement with the use of a function call to perform the same task, as in the ENGLCON example. Similar functions could be created to overload other operators in the Distance class, so you could subtract, multiply, and divide objects of this class in natural-looking ways.

6.5.3 Arithmetic Assignment Operators 
Let‘s finish up our exploration of overloaded binary operators with an arithmetic assignment operator: the += operator. Recall that this operator combines assignment and addition into one step. We‘ll use this operator to add one English distance to a second, leaving the result in the first. This is similar to the ENGLPLUS example shown earlier, but there is a subtle difference. 
 
#include <iostream.h> 
class Distance //English Distance class 
{private: 
int feet; 
float inches; 
public: 
Distance() : feet(0), inches(0.0) 
{ } 
Distance(int ft, float in) : feet(ft), inches(in) 
{ } 
void getdist() 
{
cout << “\nEnter feet: “; cin >> feet; 
cout << “Enter inches: “; cin >> inches; 
}
void showdist() const //display distance 
{ cout << feet << “  ” << inches << “  “; } 
void operator += ( Distance ); 
}; 
void Distance::operator += (Distance d2) 
{feet += d2.feet; 
inches += d2.inches; 
if(inches >= 12.0) 
{ 
inches -= 12.0; 
feet++; 
} 
}
void  main() 
{Distance dist1; 
dist1.getdist();
cout << “\ndist1 = “; dist1.showdist(); 
Distance dist2(11, 6.25); 
cout << “\ndist2 = “; dist2.showdist(); 
dist1 += dist2; 
cout << “\nAfter addition,”; 
cout << “\ndist1 = “; dist1.showdist(); 
cout << endl; 
;} 
In this program we obtain a distance from the user and add to it a second distance, initialized to 11'–6.25'' by the program. Here‘s a sample of interaction with the program: 
Enter feet: 3 
Enter inches: 5.75 
dist1 = 3‘-5.75‖ 
dist2 = 11‘-6.25‖ 
After addition, 
dist1 = 15 
In this program the addition is carried out in main() with the statement 
dist1 += dist2; 
This causes the sum of dist1 and dist2 to be placed in dist1. Notice the difference between the function used here, operator+=(), and that used in ENGLPLUS, operator+(). In the earlier operator+() function, a new object of type Distance had to be created and returned by the function so it could be assigned to a third Distance object, as in 
dist3 = dist1 + dist2; 
In the operator+=() function in ENGLPLEQ, the object that takes on the value of the sum is the object of which the function is a member. Thus it is feet and inches that are given values, not temporary variables used only to return an object. The operator+= () function has no return value; it returns type void. A return value is not necessary with arithmetic assignment operators such as +=, because the result of the assignment operator is not assigned to anything. The operator is used alone, in expressions like the one in the program. 
dist1 += dist2; 
Exercises 
1. To the Distance class in the ENGLPLUS program in this chapter, add an overloaded - operator that subtracts two distances. It should allow statements like dist3= dist1-dist2;. Assume that the operator will never be used to subtract a larger number from a smaller one (that is, negative distances are not allowed).
2. Modify the time class from Exercise 3 in Chapter 6 so that instead of a function add_time ( ) it uses the overloaded + operator to add two times. Write a program to test this class. 
3. Create a class Int Overload four integer arithmetic operators (+, -, *, and /) so that they operate on objects of type Int. If the result of any such arithmetic operation exceeds the normal range of ints (in a 32-bit environment)— from 2,147,483,648 to –2,147,483,647—have the operator print a warning and terminate the program. Such a data type might be useful where mistakes caused by arithmetic overflow are unacceptable. Hint: To facilitate checking for overflow, perform the calculations using type long double. Write a program to test this class. 
4. Augment the time class referred to in Exercise 3 to include overloaded increment (++) and decrement (--) operators that operate in both prefix and postfix notation and return values. Add statements to main() to test these operators. 
5. Add to the time class of Exercise 5 the ability to subtract two time values using the overloaded (-) operator, and to multiply a time value by a number of type float, using the overloaded (*) operator. 
Answers to Exercises 
1). 
// ex8_1.cpp 
// overloaded ‗-‘ operator subtracts two Distances 
#include <iostream.h> 
class Distance //English Distance class 
{ 
private: 
int feet; 
float inches; 
public: //constructor (no args) 
Distance() : feet(0), inches(0.0) 
{ } //constructor (two args) 
Distance(int ft, float in) : feet(ft), inches(in) { } 
void getdist() //get length from user 
{ 
cout << ―\nEnter feet: ―; cin >> feet; 
cout << ―Enter inches: ―; cin >> inches; 
} 
void showdist() //display distance 
{ cout << feet << ―\‘-‖ << inches << ‗\‖‘; } 
Distance operator + ( Distance ); //add two distances 
Distance operator - ( Distance ); //subtract two distances 
}; 
//add d2 to this distance 
Distance Distance::operator + (Distance d2) //return the sum 
{ 
1. int f = feet + d2.feet; //add the feet
float i = inches + d2.inches; //add the inches 
if(i >= 12.0) //if total exceeds 12.0, 
{ //then decrease inches 
i -= 12.0; //by 12.0 and 
f++; //increase feet by 1 
} //return a temporary Distance 
return Distance(f,i); //initialized to sum 
} 
//subtract d2 from this dist 
Distance Distance::operator - (Distance d2) //return the diff 
{ 
int f = feet - d2.feet; //subtract the feet 
float i = inches - d2.inches; //subtract the inches 
if(i < 0) //if inches less than 0, 
{ //then increase inches 
i += 12.0; //by 12.0 and 
f--; //decrease feet by 1 
} //return a temporary Distance 
return Distance(f,i); //initialized to difference 
} 
int main() 
{ 
Distance dist1, dist3; //define distances 
dist1.getdist(); //get dist1 from user 
Distance dist2(3, 6.25); //define, initialize dist2 
dist3 = dist1 - dist2; //subtract 
//display all lengths 
cout << ―\ndist1 = ―; dist1.showdist(); 
cout << ―\ndist2 = ―; dist2.showdist(); 
cout << ―\ndist3 = ―; dist3.showdist(); 
cout << endl; 
return 0; } 
2). 
// ex8_3.cpp 
// overloaded ‗+‘ operator adds two times 
#include <iostream.h> 
class time 
{ 
private: 
int hrs, mins, secs; 
public: 
time() : hrs(0), mins(0), secs(0) //no-arg constructor 
{ } //3-arg constructor 
time(int h, int m, int s) : hrs(h), mins(m), secs(s) 
{ } 
void display() //format 11:59:59 
{ cout << hrs << ―:‖ << mins << ―:‖ << secs; } 
time operator + (time t2) //add two times 
{int s = secs + t2.secs; //add seconds 
1. int m = mins + t2.mins; //add minutes
int h = hrs + t2.hrs; //add hours 
if( s > 59 ) //if secs overflow, 
{ s -= 60; m++; } // carry a minute 
if( m > 59 ) //if mins overflow, 
{ m -= 60; h++; } // carry an hour 
return time(h, m, s); //return temp value 
} 
}; 
int main() 
{time time1(5, 59, 59);                                                //create and initialize 
time time2(4, 30, 30);                                                      // two times 
time time3;                                                                  //create another time 
time3 = time1 + time2;                                                //add two times 
cout << “\ntime3 = “; time3.display(); 
cout << endl; 
return 0; 
}



[image: ]
[image: ]
#include <iostream.h>
class complex
{
  float X, Y;
  public:
  complex ()
  {   }
  complex (float a ,float b)
  { X=a  ; Y=b;}

  complex operator + (complex C)
  { complex  temp;
       temp.X =X+ C.X;
       temp.Y= Y+ C.Y;
       return (temp);
       }

void display ()
{  cout << X <<" + "<< Y<<endl;  }
};

void main ()
{
 complex C1 ,C2 ,C3;
  C1=complex (2.5,3.5);
  C2=complex (1.6, 2.7);

  C3=C1 + C2;

  cout<< "C1= ";  C1.display();      cout<< "C2= ";  C2.display();       cout<< "C3= ";  C3.display();   }















[image: ]




















[image: ]
[image: ]




	
[image: ]


[image: ]








[image: ]







[image: ]








[image: ]








Function Overloading
· C++ supports writing more than one function with the same name but different argument lists.  This could include:
· different data types
· different number of arguments
· The advantage is that the same apparent function can be called to perform similar but different tasks.  The following will show an example of this.


void swap (int *a, int *b) ;
void swap (float *c, float *d) ;
void swap (char *p, char *q) ;
int main ( ) 
{
	int a = 4, b = 6 ;
	float c = 16.7, d = -7.89 ;
	char p = 'M' , q = 'n' ;
	swap (&a, &b) ;
	swap (&c, &d) ;
	swap (&p, &q) ; 
void swap (int *a, int *b)
{ int temp;  temp = *a;  *a = *b;  *b = temp; }
void swap (float *c, float *d)
{ float temp;  temp = *c;  *c = *d;  *d = temp; }
void swap (char *p, char *q)
{ char temp;  temp = *p;  *p = *q;  *q = temp; }


class Complex {
public:
 // Constructor
 Complex (double r, double i);
friend Complex operator* 
(const Complex &, const Complex &);
// but not friend Complex operator^
// (const Complex &, const Complex &);
private:
  int real_;
  int imaginary_;
};
// multiplication works just fine
Complex operator* (const Complex &,
                   const Complex &);
// exponentiation operator unworkable
// Complex operator^ (const Complex &,
//                    const Complex &);

// declarations in .h file
class A {
public:
   friend bool operator<
    (const A &, const A &); 
   A operator++(); // prefix
   A operator++(int); // postfix
private:
	int m_;
};
bool operator==(const A &lhs,
                const A &rhs); 
// definitions in .cpp file
bool operator==(const A &lhs,
                const A &rhs) 
{return lhs.m_ == rhs.m_;}
A A::operator++() // prefix
{++m_; return *this;}
A A::operator++(int) // postfix
{A ret(*this); ++*this; return ret;}




Complex C1 (3, 5), C2 (5, 9), C3;
		C3 = C1 + C2;     // addition
		C2 = C3 * C1;      // subtraction
		C1 = -C2;            // negation

· For user-defined types, when you use an operator, you are making a function call.
· Consider the expression:  C2 + C1
· This is translated into a function call.
· The name of the function is “operator+”
· The call is:
C2.operator+(C1);
Declaring operator+ 
As a Member Function
class Complex {
	public:
	     const Complex
     	  operator+ (const Complex &rhs) const;
	…
};
· Note all of the const’s!
· const Complex 
· Complex :: operator+ (const Complex &rhs) const 
· {
· 	Complex sum;
· 	// accessor and mutators not required
· 	sum.imagine = imagine + rhs.imagine;
· 	// but preferred
· 	sum.setReal( getReal( ) + rhs.getReal ( ) ); 
· 	return sum;

· We can now write
     C3 = C2 + C1;
· We can also use cascading operators.
		C4 = C3 + C2 + C1;
· And we can write
          C3 = C2 + 7;	
· But  C3 = 7 + C2 is a compiler error.  (Why?)
Overloading Unary Operators

Complex C1(4, 5), C2;
	C2 = -C1;
is an example of a unary operator (minus).
· We can and should overload this operator as a member function.

· C++ operators that can be overloaded










· C++ Operators that cannot be overloaded





Restrictions on Operator Overloading
· Overloading restrictions
· Precedence of an operator cannot be changed
· Associativity of an operator cannot be changed
· Arity (number of operands) cannot be changed
· Unary operators remain unary, and binary operators remain binary
· Operators &, *, + and - each have unary and binary versions
· Unary and binary versions can be overloaded separately
· No new operators can be created
· Use only existing operators
· No overloading operators for built-in types
· Cannot change how two integers are added
· Produces a syntax error


Overloading ++ and --
· Pre/post incrementing/decrementing operators
· Allowed to be overloaded
· Distinguishing between pre and post operators
· prefix versions are overloaded the same as other prefix unary operators
d1.operator++();      // for ++d1
· convention adopted that when compiler sees postincrementing expression, it will generate the member-function call
d1.operator++( 0 );   // for d1++
· 0 is a dummy value to make the argument list of operator++ distinguishable from the argument list for ++operator

23

image4.emf

image5.emf

image6.emf

image7.emf

image8.png
A\Desktop\t\SPASE.exe

¥ -20 7 30
v20 Z-30





image9.emf

image10.emf

image11.png




image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf
Operators that can be overloaded  

+  -  *  /  %  ^  &  |  

~  !  =  <   >  +=  - =  *=  

/=  %=  ^=  &=  |=  <<  >>  >>=  

<<=  ==  !=  <=  >=  &&  ||  ++  

--  - >*  ,  - >  []  ()  new  delete  

new[]  delete[]        

 


Microsoft_Office_Word_97_-_2003_Document1.doc
		Operators that can be overloaded



		+

		-

		*

		/

		%

		^

		&

		|



		~

		!

		=

		< 

		>

		+=

		-=

		*=



		/=

		%=

		^=

		&=

		|=

		<<

		>>

		>>=



		<<=

		==

		!=

		<=

		>=

		&&

		||

		++



		--

		->*

		,

		->

		[]

		()

		new

		delete



		new[]

		delete[]

		

		

		

		

		

		






image21.emf
Operators that cannot be overloaded  

.  .*  ::  ?:  sizeof  

 


Microsoft_Office_Word_97_-_2003_Document2.doc
		Operators that cannot be overloaded



		.

		.*

		::

		?:

		sizeof






image1.emf

image2.emf

image3.emf

