Data Structures

 Dr. Sadiq A. Mehdi

[image: image1.wmf]

Types of Graphs

Graph :- A graph G={Vertex, Edge} consists of set of objects V={V1,V2,V3,……Vn} call Vertex and another set E={E1,E2,E3,……En} whose element called Edge such that each edge Ek is identified with an unordered where (Vi,Vj) of vertices. The vertices (Vi,Vj) associated with edge Ek are called the end vertices of Ek.

V=4; E=3

Direct Graph

A graph where directions of edge are given called Direct Graph.

Indirect Graph

A graph where directions of edge are not given called Direct Graph.

Degree

The number of connection or edges incident to a vertices or a node is called degree of a node. Here each node has 3 degree. Or all outgoing & incoming connections called degree.

Weighed Graph or Network

A graph is which each edge is having a value is called weighted graph. In real life these weight denotes the distance, duration or priority of any case.

Path

A way from reaching to one node to another node or a sequence of edges from reaching a node to another is called a path. The sum of weight in a path is called the length of the path.

Cycle

A path from a node to itself is called a cycle. A graph that contain a cycle is called Cyclic Graph otherwise is called Acyclic Graph.

Finite and Infinite Graph

A graph with a finite number of vertices as well as finite number of edge is called finite graph. Otherwise call infinite graph.

Isolated Vertex

A vertices having no incident edge or a vertices with 0 degree is called an Isolated Vertices. Here D is isolated vertex.

Pendant Vertex

A vertex of degree one is called pendant vertex. Here A,B,C,D is pendent vertex.

Null Graph

A graph having no edge is called Null Graph.

Sub Graph

A graph G1 is said to be sub graph of G if all of the vertices and all of the edge and directions and weight of G1 are in G.

Connected & Disconnected Graph

A graph G is said to be connected if there is at least one oath between every pair of vertices of G otherwise G is called disconnected graph. A disconnected graph consists of two or more connected sub graph and each of these connected sub graph is called a component.

Connected

Disconnected

Multi Graph

There graph is which there are more then one edge between node or an edge with same start and end point are called multi point graph.

Trival Graph

A finite graph with single node and no edge is called trival graph.

Complete Graph

A simple graph is which there exists an edge between every pair of vertices is called complete graph.

The number of edge is a complete graph is:

n*(n-1)

 2

Cut Point & Bridges

A edge which break a connected graph into two disconnected graph is called cut point. An edge, which converts two disconnected component in to a connected graph, is called bridge.

Hamiltonian Graph

It is a connected graph is can be define as a closed path that traverse every vertices of graph exactly one’s except the starting vertex at which the traversing also terminate.

Every connected graph is not always a Hamiltonian graph but every Hamiltonian graph is always connected graph. This graph first passed by famous Irish Mathematician Sir William Roaien Hamiltonian in 1859.

Planar Graph

A graph or multigraph, which can be drawn in a plain so that its edge do not cross any another edge is said to be a planer graph.

Map

A particular planer representation of a finite multigraph is called Map. The map is connected if the multigraph is connected a map divided the planer in various regions.

Regular Graph

A graph G whose each node has same degree is called regular graph.

Bipartite Graph

A graph G is said to be bipartite graph if its each edge is in one sub graph and that is edge in also in another sub graph if we divide that graph. This means for each edge starting edge in part one and ending edge in part two.

 Bipartite

No Bipartite

Euler Graph

Where each edge of a graph is traverse only one time and we reach again on first vertex.

Euler Graph

Computer Representation of Graph

There are 2 way of implementation of a graph in computer: -

1. By Matrix (Adjacency Matrix)
2. By List (Adjacency List)

1. By Matrix (For Above Graph)

	
	A
	B
	C
	D
	E

	A
	0
	1
	1
	0
	0

	B
	0
	0
	1
	0
	0

	C
	0
	0
	0
	1
	0

	D
	0
	0
	0
	0
	1

	E
	1
	0
	0
	0
	0

2. By List (For Above Graph)

	A

	B

	C

	D

	E

There are two standard ways of maintaining a graph G in the memory of a computer. One way called the sequential representation of G is by means of adjacency. Another way called the linked representation of G is by means of linked list of neighbors or by adjacency.

Adjacency Matrix: - Suppose G is a simple directed graph with n nodes and suppose the nodes of G have been ordered and are called b1, b2, b3…bn. Then adjacency matrix A=(adz) of the graph G is nXn matrix defined as follows: -

Adj {1 if VI is adjacent to VJ this means (vi->vj) 0 otherwise}

Such a matrix, A which contain entries of only zero and one, is called a bit matrix a Boolean matrix.

Adjacency List: - In this type of representation we take a array of pointers which contains the address of neighbors.

Traversing in Graph

There are 2 way to traversing in graph: -

1. DFS (Depth First Search) – Stack

2. BFS (Breadth First Search) – Queue

DFS Traversing

 Search begins from the starting node A, first process the starting vertex A, then process each vertex n along with the path P. Which begins at A. Then process neighbors of A and so on. After coming to a vertex with no more neighbors we back track on the path p until we continuous along another path P. Follow the steps for DFS Traversing.

1. Initialize all nodes to the ready state (State 1)

2. Push the starting node on to the stack and change its status to processing state. (Status 2)

3. Repeat step 4 and 5 until stack is not empty.

4. Pop the top node of stack process it and change the status to the processed state. (State 3)

5. Push on to the stack all neighbors of pop node that are still in the ready state and change their status to the waiting state. (Status 2)

6. Exit

BFS Traversing

1. Initialize all nodes to the ready state (State 1)

2. Push the starting node A in to the queue and change its status to processing state. (State 2)

3. Repeat step 4 and 5 until queue is not empty.

4. Remove the front node n of queue process n and change the status of n to the processed state. (State 3)

5. Add the neighbors of n to the rear of queue and change their status to tge waiting state. (State 3)

6. Exit
Tree

Tree is a Non-Liner-Data Structure. There are some trees in this section. Here we start now.

Binary Tree

The tree where every node have 0,1 or 2 leaf node is called as Binary tree.

2Tree or Extended Binary Tree or Strictly Binary Tree

A tree where on all level each node has 0 or 2 leaf node.

No. of Internal Node= No. of External Node - 1

Complete Binary Tree

A tree where all leaf node on the same level.

1

2

3

No. of Nodes = 2 (No of level + 1) – 1

= 2(3+1) –1

= 15

No of Levels = log2 (No. of Node +1) –1

Computer Implementation of Binary Tree

There are 2 methods for implementation.

1. By Array

2. By Link List

Traversing In Tree

There are 3 method of Traversing in Binary Tree

1. Inorder

2. Preorder

3. Postorder

	Inorder
	Preorder
	Postorder

	Left
	Root
	Left

	Root
	Left
	Right

	Right
	Right
	Root

Example: -

Inorder = BAC

Preorder = ABC

Postorder = BCA

A Program of Binary Tree

#include<stdio.h>

#include<conio.h>

typedef struct node

{

int data;

struct node *left, *right;

}node;

node *root=NULL;

node* CreateTree(node *ptr, int i, int k)

{

int ch;

if(ch==0)

cout<<“Wants to Create Root Node : “;

else if(i==1)

cout<<“Wants to Create Left Node of : “<< k;

else if(i==2)

cout<<“Wants to Create Right Node of %d : “<< k;

cin>>ch;

if(ch==0) break;

ptr=(node*)malloc(sizeof(node));

cout<<“\nEnter Data :”;

cin>>prt->data;

ptr->left=CreateTree(NULL,1,ptr->data);

ptr->left=CreateTree(NULL,2,ptr->data);

return ptr;

}

void Inorder(node *ptr)

{

if(ptr!=NULL)

{

inorder(ptr->left);

cout<<“\n” <<ptr->data;

inorder(ptr->right);

}

}

void preorder(node *ptr)

{

if(ptr!=NULL)

{

cout<<“\n”<< ptr->data;

preorder(ptr->left);

preorder(ptr->right);

}

}

void postorder(node *ptr)

{

if(ptr!=NULL)

{

postorder(ptr->left);

postorder(ptr->right);

cout<<“\n” <<ptr->data;

}

}

void main()

{

clrscr();

root=CreateTree(NULL,0,0);

cout<<“\nInorder : \n”;

inorder(root);

cout<<“\nPreorder : \n”;

preorder(root);

cout<<“\nPostorder : \n”;

postorder(root);

getch();

}

A

B

C

D

A

B

C

D

A�

B

C

D

A

B

D

C

A

B

C

A

B

C

D

A

B

C

D

D

C

B

A

E

F

G

A

B

C

D

E

F

G

Subgraph

A

B

C

D

B

D

C

B

C

D

C

B

C

D

A

A

B

C

D

A

B

C

D

A

E

C

B

F

D

A

C

D

A

C

D

A

B

C	C

D

E

A

B

C

D

E

B

C

C

D

E

A

A

B

C

13

