Chapter Five

The Continuity

<u>Def.:</u>

Let (x,d) and (x',d') be metric spaces and let $f: x \to x'$ be a function. f is said to be continuous at $x_0 \in X$, if $\forall \epsilon > 0$, $\exists \delta = \delta(x_0, \epsilon)$ such that for any $x \in X$ if $d(x, x_0) < \delta$ then $d'(f(x), f(x_0) < \epsilon$.

i.e. $f: x \to x'$ is continuous at $x_0 \in X$, if for any ball (neigh.) in x' with center $f(x_0)$ and radius $\epsilon, B'_{\epsilon}(f(x_0))$, there exists a ball $B_{\delta}(x_0)$ in x with center x_0 and radius δ such that $f(B) \subseteq B'$.

If f is continuous at each $x_0 \in X$, then we say that f is continuous on x'.

Theorem 5.1:

Let $f: x \to x'$ be a function then f is continuous at x_0 iff for any open set v in X' with $f(x_0) \in v$, $f^{-1}(v)$ is open in Xwhere $f^{-1}(v) = \{x \in X: f(x) \in V\}$ **Proof:** (\Rightarrow) suppose that f is cont.

Let V be an open set in x' such that $f(x_0) \in V$.

T.P. $f^{-1}(v)$ is open in X.

 $f(x_0) \epsilon v$, V is open

 $\Rightarrow \exists$ a ball (neigh.) $B'(f(x_0)) \subseteq V$ (by def. of open set)

: f is cont.

∴ \exists a ball (neigh.) B in X such that $x_0 \in B$ and $f(B) \subseteq B'$ [by def. of cont.], $B' \subseteq V$

 $\therefore B \subseteq f^{-1}(v)$

(\Leftarrow) Suppose that every open V in X', $f^{-1}(v)$ is open in X T.P. f is cont.

Let $x_0 \in X$, $f(x_0) \in X'$, and $B'_{\epsilon}(f(x_0))$ be a ball (neigh.) in X' with center $f(x_0)$ and radius G.

T.P. \exists a ball $B(x_0)$ s.t. $f(B) \subseteq B'$.

B' is an open set in X', $f(x_0) \in B'$.

 \therefore by the assumption $f^{-1}(B')$ is open in X.

Clearly $x_0 \epsilon f^{-1}(B')$ [since $f(x_0) \epsilon B'$]

 $\therefore \exists$ a ball B in X s.t. $B(x_0) \subseteq f^{-1}(B')$

 $\therefore f(B(x_0)) \subseteq B'(f(x_0))$

Theorem 5.3:

Let (x, d) and (x', d') be two metric spaces, $f: x \to x'$ is a mapping, f is cont. at $x_0 \in X$, iff for every sequence $\langle x_n \rangle$ converges to $x_0 \in X$ the sequence $\langle f(x_n) \rangle$ converges to $f(x_0)$.

<u>Proof:</u> (\Rightarrow) suppose that f is cont. at x_0 and let $< x_n >$ be a sequence in X. that conv. to $x_0 \in X$.

T.P.
$$< f(x_n) >$$
converges to $f(x_0)$

$$\because f \colon x \to x'_{f(x_0)}$$

Let v be any open set in x' s.t. $f(x_0) \in v$

 $: f \text{ is cont. at } x_0$

 $f^{-1}(v)$ is open in x [th. 5.1]

$$x_0 \epsilon f^{-1}(v) \Rightarrow f(x_0) \epsilon v \quad [\because f(x_0) \epsilon v \Rightarrow x_0 \epsilon f^{-1}(v)]$$

$$x_n \to x_0$$

 $f^{-1}(v)$ contains most of the terms of the seq. $\langle x_n \rangle$.

i.e. v contains most of the terms of the seq. $\langle f(x_n) \rangle$.

open set هي open set وتحتوي x_0 والـ x_0 نقطة تقارب اذن open set معظم حدود المتتابعة).

$$: f(x_n) \to f(x_0)$$

Suppose that every seq. $\langle x_n \rangle$ conve. To $x_0 \in X$ the seq.

$$< f(x_n) > \text{conv. to } f(x_0).$$

T.P. f is cont.

Assume that f is not cont.

$$\therefore \exists \epsilon > 0 \text{ s.t. } \forall n \in \mathbb{N}, \quad \delta = \frac{1}{n}, \quad \exists x_n \in \mathbb{X}$$

s.t. if
$$d(x_n, x_0) < \frac{1}{n}$$
 then $d'(f(x_n), f(x_0)) \ge \epsilon$

i.e. \exists sequence $\langle x_n \rangle$ in x s.t. $x_n \rightarrow x_0 \epsilon X$

$$(: \epsilon > 0, \exists k \epsilon z^+ \text{ s. t.} \frac{1}{k} < \epsilon \Rightarrow d(x_n, x_0) < \frac{1}{n} < \frac{1}{k} < \epsilon, : n > k)$$

But $f(x_n) \nrightarrow f(x_0)$ contradiction (with assup.)

 $\therefore f$ is cont. at x_0

Example 1: let $f: \mathbb{R} \to \mathbb{R}$, f(x) = c, $c \in \mathbb{R}$, $\forall x \in \mathbb{R}$ f is cont.

Sol: let $x_0 \in \mathbb{R}$

T.P. f is cont. at x_0

Let $\langle x_n \rangle$ be a seq. in \mathbb{R} s.t. $x_n \to x_0$

T.P.
$$f(x_n) \to f(x_0)$$

$$c^{\prime\prime} \rightarrow c^{\prime\prime} = f(x_0)$$

 \therefore f is cont.

Example 2: let $f: \mathbb{R} \to \mathbb{R}$, $\overline{f(x) = x, \forall x \in \mathbb{R}}$

Sol: let $\langle x_n \rangle$ in \mathbb{R} s.t. $\langle x_n \rangle \rightarrow x_0, x_0 \in \mathbb{R}$

$$f(x_n) = x_n \to x_0 = f(x_0)$$

$$\therefore f(x_n) \to f(x_0)$$

 $\therefore f$ is cont.

Example 3: let $f: \mathbb{R}^+ \to \mathbb{R}$ be defined by $f(x) = \frac{1}{x}$, $\forall x \in \mathbb{R}^+$ then f is cont.

Sol: let $x_0 \in \mathbb{R}^+$, and let $\epsilon > 0$

T.P. $\exists \delta(\epsilon, x_0)$ s.t. if $|x - x_0| < \delta$ then $|f(x) - f(x_0)| < \epsilon$

$$|f(x) - f(x_0)| = \left| \frac{1}{x} - \frac{1}{x_0} \right| = \left| \frac{x - x_0}{x x_0} \right| = \frac{|x - x_0|}{x x_0}$$

$$\frac{|x-x_0|}{xx_0} < \frac{|x-x_0|}{x_0} < \epsilon$$

 $|x - x_0| < x_0 \epsilon$, choose $\delta = min. \{1, x_0 \epsilon\}$

Let
$$x_n \to x_0$$
, $f(x_n) = \frac{1}{x_n} \to \frac{1}{x_0} = f(x_0)$

$$x_0 \epsilon(0, \infty) = \mathbb{R}^+, x_0 \neq 0, x_0 \epsilon \mathbb{R}^+$$

Example 4: let $f: \mathbb{R} \to \mathbb{R}$ be defined by

 $f(x) \begin{cases} 2 & \text{if } x \text{ is rational} \\ 3 & \text{if } x \text{ is irrational} \end{cases}$

Theorem 5.4:

Let (x,d), (x',d') and (x'',d'') be metric spaces and let $f: x \to x'$ be continuous at x_0 , cont. at x_0 , $g: x' \to x''$ be cont. at $f(x_0)$ then $gof: x \to x''$ is cont. at x_0

$$x \xrightarrow{f} x' \xrightarrow{g} x''$$

Proof: let $\langle x_n \rangle$ be a seq. in x s.t. $x_n \to x_0$

T.P.
$$(gof)(x_n) \rightarrow (gof)(x_0)$$

 $x_n \rightarrow x_0$ and f is cont. at x_0

$$f(x_n) \to f(x_0), \quad \langle f(x_n) \rangle \quad \text{seq. in } x'$$

y g is cont. at $f(x_0)$

$$\therefore g(f(x_n)) \to g(f(x_0))$$

$$(gof)(x_n) \to (gof)(x_0)$$

∴ gof is cont.

Definition:

Let (x, d) be a metric space, the mapping $f: x \to \mathbb{R}$ is called real valued mapping.

Theorem 5.5:

Let $f, g: x \to \mathbb{R}$ be real valued mappings, if f and g cont. at x_0 , then

1) $f \mp g$ is cont. at x_0 .

2) f.g is cont. at x_0 .

3)
$$\frac{f}{g}$$
 is cont. at x_0 .

- 4) cf is cont. at x_0 , $\forall c \in \mathbb{R}$.
- 5) |f| is cont. at x_0 .

Proof: 3)
$$\frac{f}{g}$$
: $x \to \mathbb{R}$

Let $\langle x_n \rangle$ be a seq. in x s.t. $x_n \to x_0$

T.P.
$$\frac{f}{g}(x_n) \to \frac{f}{g}(x_0)$$

$$\frac{f}{g}(x_n) = \frac{f(x_n)}{g(x_n)}$$

f and g are cont. at $x_0 \Rightarrow f(x_n) \to f(x_0)$

And
$$g(x_n) \rightarrow$$

$$g(x_0) \qquad \qquad a_n \to a_0 \\ b_n \to b_0 \end{cases} \frac{a_n}{b_n} \to \frac{a_0}{b_0}$$

Hence
$$\frac{f(x_n)}{g(x_n)} \to \frac{f(x_0)}{g(x_0)}$$

Definition:

Let $f: x \to x'$ be a mapping we say that f is uniformly continuous, id $\forall x, y \in X$.

$$\forall \epsilon > 0$$
, $\exists \delta = \delta(\epsilon)$ s.t. if $d(x,y) < \delta$ then $d'\big(f(x),f(y)\big) < \epsilon$

 $\forall x, y \in X$.

Theorem 5.8:

Every uniformly continuous function on an interval is continuous on that interval.

Remark: the converse of theorem 5.8 in general is not true as shown by the following example:

Ex.: let f defined on (0,1] as follows

$$f(x) = \frac{1}{x}, x \in (0,1]$$

 $\therefore f$ is cont.

For any $\delta > 0$, $\exists n \in \mathbb{Z}^+$ s.t. $\frac{1}{n} < \delta$

Let
$$x = \frac{1}{n}$$
 and $y = \frac{1}{2n}$, $\Rightarrow x$, $y \in (0,1]$

$$|x - y| = \left| \frac{1}{n} - \frac{1}{2n} \right| = \left| \frac{1}{2n} \right| = \frac{1}{2n} < \frac{1}{n} < \delta$$

And

$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = |n - 2n| = |-n| = n > 1$$

Hence $\delta > 0$, $\exists x, y \in (0,1]$ s.t.

$$|f(x) - f(y)| > \epsilon \text{ whenever } |x - y| < \delta$$

Hence $f(x) = \frac{1}{x}$ is not uniform continuous in (0,1]

 $f(x) = \frac{1}{x}$ is cont. in (0,1] but not uniform cont. in (0,1]