

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

1

A block diagram of simple CPU.

Computer: An electronic device that accepts input, stores large quantities

of data, execute complex instructions which direct it to perform

mathematical and logical operations and outputs the answers in a human

readable form.

Processor: The part of a computer which controls all the other parts. The

CPU fetches instructions from memory, decodes and executes them. This

may cause it to transfer data to or from memory or to activate peripherals to

perform input or output.

Accumulators: are special classes of register which are closely connected

with the ALU such that arithmetic and logical operations can be easily

performed on their contents.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

2

Registers: are storage elements, some of which have specific functions

owing to the way in which they are implemented in hardware or the task they

have to perform.

CU: A control unit is circuitry that directs operations within a computer's

processor. It lets the computer's logic unit, memory, as well as both input and

output devices know how to respond to instructions received from a

program.

EU: The execution unit is responsible for decoding and executing

instructions.

BIU: Responsible of performing all bus operations such as (instruction

Fetching from memory, and data transfer between the processor and outside

world).

Interrupt: An interrupt is a signal to the processor which causes it to

discontinue the current program sequence and start running a different

program often called the interrupt service routine

Memory: A unit of a computer in which data is stored for later use, The

store of things learned and retained from an organism's activity or experience

as evidenced by modification of structure or behavior or by recall and

recognition.

Microcomputer Architecture

 A computer system has three main components: a Central processing

Unit (CPU) or processor, a Memory Unit and Input Output Unit: In any

microcomputer system, the component which actually processes data is

entirely contained on a single chip called Microprocessor (MPU). This MPU

can be programmed using assembly language. Writing a program in

assembly language requires a knowledge of the computer hardware (or

Architecture) and the details of its instruction set.

http://www.computerhope.com/jargon/c/cpu.htm
http://www.computerhope.com/jargon/a/alu.htm
http://www.computerhope.com/jargon/m/memory.htm
http://www.computerhope.com/jargon/i/inputdev.htm
http://www.computerhope.com/jargon/o/outputde.htm

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

3

The main internal hardware features of a computer are the processor,

memory and registers.

The external hardware features are the computer Input/output devices such

as keyboard, monitor…

Software consists of the operating system(O.S) and various programs and

data files stored on disk.

Processor: The CPU is divided into two general parts. Arithmetic Logic

Unit (ALU) and Control Unit (CU) .

- The ALU comprises circuitry to perform arithmetic and logical operations,

such a ADD, SUBTRACT, AND, OR, SHIFT.

- The CU fetches data and instruction, and decodes addresses for the ALU.

Processor has two speeds: -

1. Internal speed(internal clock) which is the speed of data exchange within

the processor and the greater the internal processor frequency increased the

amount of mutual orders within the processor and thus implement more

operations per second.

2 external speed (system bus), a speed exchange of data between the

processor and the memory card and the screen and the information passed on

by the front carrier FSB(front side bus).

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

4

Memory:

The memory of a computer system consist of tiny electronic switches, with

each switch set in one of two states: open or close. It is however more

convenient to think of these states as 0 and 1.Thus each switch can represent

a binary digit or bit, as it is known, the memory unit consists of millions of

such bits, bits are organized into groups of eight bits called byte.

Memory can be viewed as consisting of an ordered sequence of bytes.

Each byte in this memory can be identified by its sequence number

starting with 0. This is referred to as memory address of the byte. Such

memory is called byte addressable memory.

8086 can address up to 1 MB (220 bytes) of main memory this magic

number comes from the fact that the address bud of the 8086 has 20 address

lines. This number is referred to as the Memory Address Space (MAS).

The memory address space of a system is determined by the address bus

width of the CPU used in the system. The actual memory in a system is

always less than or equal to the MAS.

 Logical view of the system memory

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

5

Types of memory

The memory unit can be implemented using a variety of memory chips

different speeds, different manufacturing technology, and different sizes.

The two basic types are RAM and ROM.

1- Read Only Memories (ROM):

ROMs allow only read operation to be performed. This memory is non-

volatile. Most ROMs are programmed and cannot be altered.

This type of ROM is cheaper to manufacture than other types of ROM. The

program that controls the standard I/O functions (called BIOS) is kept in

ROM, configuration software.

Other types of ROM include:

- Programmable ROM (PROM).

- Erasable PROM (EPROM) is read only memory that can be reprogrammed

 using special equipment.

- EAPROM, Electrically Alterable Programmable ROM is a Read Only

 Memory that is electrically reprogrammable.

2- Read/Write Memory

Read/Write memory is commonly referred to as Random Access Memory

(RAM), it is divided into static and dynamic. Static RAM (SRAM): used for

implementing CPU registers and cache memories.

Dynamic RAM (DRAM), the bulk of main memory in a typical computer

system consists of dynamic ram.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

6

Dynamic RAM: main memory, or RAM is where program, data are kept

when a program is running. It must be refreshed with in less than a

millisecond or losses its contents.

Static RAM, used for special high speed memory called cache memory

which greatly improves system performance.

Static RAM keeps its value without having to be refreshed.

Two basic memory operations

The memory unit supports two fundamental operations: Read and Write. The

read operation read a previously stored data and the write operation stores a

value in memory.

Block diagram of system memory

Steps in a typical read cycle:

1- Place the address of the location to be read on the address bus.

2- Activate the memory read control signal on the control bus.

3- Wait for the memory to retrieve the data from the address memory

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

7

 location.

4- Read the data from the data bus.

5- Drop the memory read control signal to terminate the read cycle.

Steps in a typical write cycle:

1- Place the address of the location to be written on the address bus.

2- Place the data to be written on the data bus.

3- Activate the memory write control signal on the control bus.

4- Wait for the memory to store the data at the address location..

5-Drop the memory write control signal to terminate the write cycle.

 Intel 8086 Microprocessor

Processor deal with memory method:

Should be required program moves executed on the computer first,

from the storage unit where there to electronic computer memory to the

processor to implement the orders required within the program, when the

ends of the execution of an order and needs to move to execute the following

command, the processor sends a request to the charge of the control program

memory in order to provide him the next order as processor also be

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

8

performed in the memory control program by providing it with data that may

be needed and also asked to run an example:

If the program is a request from the processor to collect the number in the

field is a with the number in the field b must be transferred from electronic

memory to the processor first is the combination and then transferred to him

the contents of the contents of the field a B to be carried out which program

he wants and the process of transition These are called access time It is

Atstgrq more than 1on 1000 of a second, and the speed of the processor to

get a big effect on the results of instruction and measured its speed MHZ,

GHZ .

Operations of a CPU:

The CPU or processor acts as the controller of all actions or services

provided by the system. The operations of a CPU can be reduced to three

basic steps: fetch, decode, and execute. Each step includes intermediate

steps, some of which are:

1- Fetch the next struction:

- Place it in a holding area called a queue.

- Decode the instruction.

2- Decode the instruction

- Perform address translation.

- Fetch operand from memory.

3- Execute the instruction.

- Perform the required calculation.

- Store results in memory or register.

- Set status flag attached to the CPU.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

9

 The fetch and Execute Cycle:

 The organization of the processor into a separate BIU and EU allows

the fetch and execute cycle to overlap. To see this, consider what happens

when the 8086 is first started.

1- The BIU outputs the contents of the instruction pointer (IP)onto the

address bus, causing the selected byte or word in memory to be read

into the BIU.

2- Register IP is incremented by one to prepare for the next instruction

fetch.

3- Once inside the BIU, the instruction is passed to the queue: a first-

in/first-out storage register sometimes likened to a pipeline.

4- Assuming that the queue is initially empty, the EU immediately draws

this instruction from the queue and begins execution.

5- While the EU is executing this instruction , BIU proceeds to fetch a

new instruction. Depending on the execution time of the first

instruction, the BIU may fill the queue with several new instructions

before the EU is ready to draw its next instruction.

6- The cycle continues, with the BIU filling the queue with instructions

and the EU fetching and executing these instructions.

The BIU is programmed to fetch anew instruction whenever the queue

has room for two additional bytes. The advantage to this pipelined

architecture is that the EU can execute instructions (almost)

continually instead of having to wait for the BIU to fetch anew

instruction.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

10

System Bus:

A Bus is a bunch of wires, and electrical path on the printed IC to

which everything in the system is connected.

The registers and ALU are not permanently connected together, but are

joined by a DATA BUS. This bus allows data to be passed from a register to

the ALU at one instant and from the ALU to a register at another instant.

More generally, any device which needs to read or write data will be

connected to the data bus. The timing and control circuitry ensures that only

one pair of devices is using the data bus at any time (one writing data and the

other reading it).

The amount of data storage provided internally in the microprocessor is

limited. Only a few operands can be stored in the internal registers. If the

required program steps were to be stored internally in registers, this would

place an unacceptable limit on the size of program allowed.

So some means of extending the available storage is provided. External

storage elements, or memory, can be read or written to using an extension of

the internal data bus. Buffers are provided to interface with external memory

chips over an external data bus. These memory chips allow program

instructions to be stored, which can be read into the microprocessor at the

appropriate time. Results of calculations and data to be input to the ALU can

also be stored in this external memory. The arrows on the diagram show that

the data bus is bidirectional, that is, data must be able to pass to and from

external memory as the microprocessor writes or reads it. Clearly, a control

signal is provided to indicate in which direction the data is travelling. This

line is called READ/NOT-WRITE or R/W for short. When HIGH, a memory

read operation is taking place; when LOW, a memory write (ie. the

microprocessor is transferring data to external memory).

Since there will be a large number of external memory locations, we need to

specify which one is to be used for transferring data to or from the

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

11

microprocessor. This is achieved by the address bus. The address bus carries

a 16-bit code which uniquely identifies the external memory location we

require. Each memory location will only respond to its own code (called its

address) and, according to the setting of the R/W line, will take data from the

data bus or place data on the data bus. The address bus is unidirectional since

it only makes sense for the microprocessor to generate addresses as it is the

system controller.

There are three types of Bus:

1- Address Buss (AB): the width of AB determines the amount of

physical memory addressable by the processor.

2- Data Bus (DB): the width of DB indicates the size of the data

transferred between the processor and memory or I/O device.

3- Control Bus (CB): consists of a set of control signals, typical control

signals includes memory read, memory write, I/O read, I/O write,

interrupt acknowledge, bus request. These control signals indicates the

type of action taking place on the system bus.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

12

Addresses:

group of bits which are arranged sequentially in memory ,to enable direct

access, a number called address is associated with each group. Addresses

start at 0 and increase for successive groups. The term location refers to a

group of bits with a unique address.

Table represents Bit,Byte,and Larger units.

Segmented memory:

The memory of 8086 microprocessor is divided into sixteen parts or

segments. In the given diagram we will take or use only four segments that

are:

1- Code segment

2- Data segment

3- Stack segment

4- Extra segment

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

13

These segments store the specific data. Four segments registers are used to

store or hold the initial address or base address. Each of the segment stores

64KB. Which means that another register is required in which the memory

locations address change. We know that basically there is no change in the

base address so, the address on the special purpose registers are added with

the base address of the segment register.

CS 64K 4000H

DS 64K 3000H

SS 64K 2000H

ES 64K 1000H

So in this manner the actual address is made the segment register are special

in 8086 microprocessor. They were designed to solve the problem that is

index register and pointer register are 16 bit and the memory in 8086

microprocessor is 1 MB which requires a 20 bit address, the index and

pointer register are not wide enough to address directly any memory location

a segment of memory is a block of 64 KB of memory addresses by special

registers called segment register.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

14

The data are pointed in a segment by the index register, pointer register, base

register and instruction register. Each segment register holds or stores the 16

bit portion of the 20 bit address of a64 KB segment of memory.

The 20 bit address is made by adding the segment register with a 0H or

0000. That is placed on the least significant end of the number in the

segment register.

Code Segment

The code segment is that section of memory that stores the different codes

used by the microprocessor. The code segment register is used for this

segment to store the starting address off the code segment. Its length is 64

KB.

Data segment

This is the section of memory that stores the general data used by

programmers. The data are usedor accessed in the data segment by an offset

address of other register that hold the offset address. It is limited to 64KB.

Extra segment

This segment is used to store the data which is extra for.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

15

Stacksegment:

This segment stores the data in such a manner which is in successive form

and its capacity is 64 KB.

 Physical address = Segment address + offset address

 Physical address = [Segment address*10H] + [offset address]

Example :

If the data segment register contain 1000H and the offset register contain

2000H . findbellow:

1- Start address of this segment

2- End address.

3- Physical address.

Sol:

DS=1000H

Start address of the segment = 1000H*10H = 10000H

End address of the segment = 10000H+FFFFH= 1FFFFH.

Physical address=Start address(segment address)+offset address

 10000H + 2000H= 12000H

Example:

If the code Segment register contain 1400H and the IP register contain

1200H,find :

 - ths start address?

- the end address?

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

16

- the address of the next instruction to be feched by the microprocessor?

 Sol:

The start address of the code segment = CS*10H=1400H*10H=14000H

The end address of the code segment = start address + FFFFH

 14000H + FFFFH = 23FFFH.

Physical address = start address = offset address = 14000H +

1200H=14200H

Example:

If SS:SP=1234:4267 H find the start , end and the physical address?

Sol:

SS mean Stack segment register = 1234H.

SP mean stack pointer register = 4267H.

The start address of SS = SS * 10H = 1234H * 10H = 12340H

The end address of SS = start address + FFFFH =12340 + FFFF = 2233FH

The physical address = Start address + offset address

 = 12340 H + 4267H = 165A7H.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

17

INPUT/OUTPUT:

Input/output (I/O) devices provide the means by which the computer system

can interact with the outside world. Computers use I/O devices (also called

peripheral devices) for two major purposes:

1- To communicate with the outside world and,

2- Store data.

Devices that are used to communicate like, printer, keyboard, modem,

Devices that are used to store data like disk drive. I/O devices are connected

to the system bus through I/O controller (interface) – which acts as interface

between the system bus and I/O devices.

There are two main reasons for using I/O controllers:

1- I/O devices exhibit different characteristics and if these devices are

Connected directly, the CPU would have to understand and respond

appropriately to each I/O device.

 This would cause the CPU to spend a lot of time interacting with I/O

 devices and spend less time executing user programs.

2- The amount of electrical power used to send signals on the system bus

is very low. This means that the cable connecting the I/O device has

to be very short (a few centimeters at most). I/O controllers typically

contain driver hardware to send current over long cable that connects

I/O devices.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

18

 Block diagram of a generic I / O device interface.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

19

Interfaces:

It is the device that manages the connection between two devices in the

digital computer system. And its way of management is differ and depend on

which devices is connected. Therefore we can simply classified it into:

1- Interface between CPU and Main Memory

In this case the interface is a simple device offers these jobs:

a- Specified the type of operation with Main Memory if it read or

write.

b- Specified the location which will consider to execute the

operation.

2- Interface between CPU and Mass Storage Memory

In this case the interface is a more complicated device offers these

jobs:

a- Specified the type of operation with Mass Storage Memory if it

read or write.

b- Specified the location which will consider to execute the

operation.

c- Synchronize the CPU with Mass Storage device.

d- Present a temporally storage for transferred information.

3- Interface between CPU and I/O Sub System

In this case the interface is a very complicated device offers these

jobs:

a- Specified the type of operation with I/O sub system if it read or

write.

b- Specified the device which will consider to execute the

operation.

c- Synchronize the CPU with I/O sub system.

d- Present a temporally storage for transferred information.

e- Convert the information in suitable form that match the required

task.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

20

Registers:

Small memories and very fast exist within the processor in order to

save the digits to be processed from the unit of arithmetic and logic as it are

not taken to implement any process in the register, without saves its data in

registers until the implementation and the register have memories RAM of a

temporary type SRAM This is the secret of being very fast and when we say

that the processor 8086 supports 16Bit it means that the main recorders

length equal to 16 Bit.

Registers are not part of the main memory, but a special temporary data store

central processing unit and because the recorders are on-chip electronic

processor During addressed the central processing unit will be accelerated

much memory to use in obtaining the required data as the access to the

memory location may require a cycle one time or more while access to the

recorders may take the zero of the number of cycles of time and for this

reason it must always try to keep variables in registers rather than using

memory locations and more mathematical and logical operations is carried

out by these recorders.

Registers types:

1- General purpose registers:

Despite the name of a register, it's the programmer who determines the

usage for each general purpose register. The main purpose of a register is to

keep a number (variable). The size of the above registers is 16 bit, 4 general

purpose registers (AX, BX, CX, DX) are made of two separate 8 bit

registers. Therefore, when you modify any of the 8 bit registers 16 bit

register is also updated, and vice-versa. Because registers are located inside

the CPU, they are much faster than memory

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

21

1- AX : Called the Accumulator register. It is used for arithmetic and

logic, I/O port access, interrupt (divided into AH / AL).

2- BX : Called the Base register It is used to To carry not directly titles in

memory and can be used for private purposes (divided into BH / BL).

3- CX: Called the Counter register It is used as a loop counter and for

shifts Gets some interrupt values (divided into CH / CL).

4- DX: Called the Data register It is used for I/O port access, arithmetic,

some interrupt calls (divided into DH / DL).

2-Segment registers :

The segment registers have a very special purpose pointing at

accessible blocks of memory. Segment registers work together with general

purpose register to access any memory value.

CS : Holds the Code segment It contains a primary site to instruct the

 executable.

DS : Holds the Data segment that your program accesses. Changing its

 value might give erroneous data.

ES : Extra piece contains a memory where additional data and contain

 variables BL exist

SS : Holds the Stack segment your program uses. Sometimes has the

 Same value as DS. Changing its value can give unpredictable

 results, mostly data related.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

22

3- Pointer and index Registers

 These registers are four general-purpose registers: two pointer

registers and two index registers. They store what are called offset

addresses. An offset address selects any location within 64 k byte memory

segment.

1- SP: Stack poiter

2- BP: Base poiter

3- DI: destination index

4- SI: Source index

4-Special Purpose Registers:

They recorders that are connected to the address bus and can not access to

these registers as in the rest of the other types, but that the only processor

deals with these recorders directly and there are two types of which are: -

1. Registered instruct pointer (IP):

The job as containing instruct currently being implemented and contains on

offset of the next instruction to be executed that’s mean amendment next,

which will be implemented where it can refer to any position in the memory

blade containing many memory different location and connects with CS

segment register to get to the data that cannot be accessed directly you need

to clip starting address.

2. Flags register :

It is a special recorder deals with 16-bit and every bit is a reference to a

particular subject and 16-bit simply selective group of bits and these bits are

working to determine the current state of the processor and despite the fact

that the number of these bits is 16-bit, but we use the 9 bit only , 4 It is

commonly used zero case (ZF) and pregnancy (CF) and the status of the

signal (SF) and the case of pregnancy surplus (OF).

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

23

X X X X O D I T S Z X A X P X C

O → over flow T → trap A → axulary

D → direction S → sign P → parity

I → interrupt Z → zero C → carry

DF Direction flag : Controls incr. direction in string ops (0=inc, 1=dec)

IF Interrupt flag : Controls whether interrupts are enabled

TF Trap flag : Controls debug interrupt generation after instructions

SF Sign flag : Indicates a negative result or comparison

ZF Zero flag : Indicates a zero result or an equal comparison

AF Auxiliary flag : Indicates adjustment is needed after BCD arithmetic

PF Parity flag : Indicates an even number of 1 bits

CF Carry flag : Indicates an arithmetic carry occurred

OF The overflow flag : indicates that the signed result is out of

 range. If the result is not out of range, OF remains reset.

The other three flags are control flags. These three flags provide

control functions of the 8086 as follows:

1. The Trap flag(TF)

2. The interrupt flag(IF)

3. The direction flag(DF)

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

24

The Trap Flag:

 Setting TF puts the processor into single step mode for debugging, In

single stepping microprocessor executes a instruction and enters into

single step ISR.

 If TF=1, the CPU automatically generates an internal interrupt after

each instruction, allowing a program to be inspected as it executes

instruction by instruction.

The Interrupt Flag:-

 If IF=1, the CPU will recognize external interrupt request (Interrupt

Disabled). If IF=0, then interrupt disabled.

 Clearing IF disables these interrupts.

 IF has no effect on either non-maskable external or internally

generated interrupt.

The Direction Flag:-

 This bit is specially for string instructions.

 If DF=1, the string instruction will automatically decrement the

pointer. If DF=0,the string instruction will automatically increment the

pointer.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

25

Programming languages:

The program is written in sequence of statements in form that people prefer

to think in when solving a problem. The program which is written by high

level language is not understand by PC directly.

Languages are systems of communication. When a person speaks English

meet person speak Arabic, both cannot understand each other unless one of

them speak with the second's language.

Programming languages allow the programmer to communicate with

computers. Programming languages can be categorized as

- Low level languages

- High level languages

Computer PC understand Machine language(0,1) to that we use Translator

between HLL and LLL or machine language such as (compiler, interpreter

and assembler).

Low level languages (LLL) High level languages (HLL)

1.oriented toward the computer

2.easier and faster for the computer

 to Execute.

3.the programmer must be familiar

 With H/W (microprocessor) for

 Which the program is being

 written.

4.programs written in many forms

 like(Binary, Hexadecimal and

 Assembly)

5.it is difficult to programmer to

 work With it.

1.oriented toward the programmer.

 2.Easier for people to use and

 Understand.

3.the programmer must be familiar

 With high level languages to write

 his/her program.

4.programs writen in (Basic, pascal,

 C, C++)

5. it is easy to programmer to work

 With it.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

26

 Assembly Code Programming:

Until now we have been writing programs in Machine Code - that is the

actual binary codes which the computer can understand and execute directly.

Actually we have been using the hexadecimal equivalent of the instructions

to save typing long strings of ones and zeros. In the lab when we type in a

hex instruction there is a program running which converts the hex code into

the appropriate binary and stores it in memory. Thus we have been using a

very simple translation program to make life easier for ourselves. Early

computers did not even have that and programming was done on a row of

switches, one for each bit.

If we can get the computer to do a simple translation like hex to binary then

we can get it to do a slightly more useful translation of mnemonics to

machine code. The mnemonics are easily remembered shorthand versions of

the instructions which we have already met LDA, LSR, ADDA etc. A

program which converts mnemonics to machine code is called an Assembler

and the language based on these mnemonics is known as Assembly

Code.The Assembler uses a look-up table to convert each mnemonic into the

appropriate code, The assembler works by reading the source code program

and building up a symbol table which lists all the labels and their equivalent

values.

Assembly Code Programming is basically written in four columns. It's

easiest to use 'tab' to move to these columns:

• First column: labels. Labels are used instead of memory addresses. When

 Your program is compiled, the labels are replaced with the actual memory

 address – the assembler calculates these for you.

• Second column: instructions. The symbolic instructions that the assemble

 Will translate into opcodes.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

27

• Third column: operands. The data or registers that the instructions

 Operate on.

• Fourth column: comments. You do comment your code, don't you?

Assembler Instruction format:

Label: Mnemonic operand, operand ; Remarks

 (Destination),(Source)

 MOV A,M ; ADD element of location 0f Memory to A

 MOV B,D ; Register to Register transfer

 MVI E,06H ; transfer of immediate operand to register

Example Assembly Programs

Some simple arithmetic:

Source program Generated assembly

b = 4 .begin

c = 10 load FOUR

a = b + c - 7 store b

 load TEN

 store c

 load b

 add c

 subtract SEVEN

 store a

 halt

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

28

Advantages of Assembly language:

- It is easier to anderstand and use compared to machine language.

- It is easy to locate and correct errors.

- It is easy to modified.

Disadvantages of Assembly language:

- Like machine language it is also machine dependent.

- Since it is machine dependent therefore programmer should have the

knowledge of the hardware also.

There is a relationship between the offset register and the segment register

must pay attention to this relationship

Seg register CS DS SS

Offset register IP SI , DI , BX SP , BP

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

29

Addressing Mode:

 The term addressing modes refers to the way in which the operand of

an instruction is specified. Information contained in the instruction code is

the value of the operand or the address of the result/operand. Following are

the main addressing modes that are used on various platforms and

architectures.

1) Register Addressing Modes:

By specifying the name of the register as an operand to the instruction

You may access the contents of that register. Consider the 8086 mov

instruction.

 mov destination, source

this instruction copies the data from the source operand to the

destination operand.

 mov Ax, bx ; copies the value from bx into Ax

 mov dl, al ; copies the value from al into dl

2) Immediate Addressing Mode:

This addressing mode transfers the source-immediate byte or word of

data into the destination register or memory location.

 mov Al, 22H

This instruction copies a byte size 22H into register Al.

 mov ESI, 12345678H

this instruction copies a double-word sized 12345678H into register

ESI.

3) Displacement Mode:

This mode consists of a 16 bit constant that specifies the address of the

target location. The instruction mov al, ds:[8088h] load the al

register with a copy of the byte at memory location 8088h.

Likewise, the instruction mov ds:[1234h],dl

stores the value in the dl register to memory location 1234h:

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

30

Example: statement memory condition after implementation of this instruct

when DS = 1512

 MOV AL,99H

 MOV [3518H],AL

Sol /

1- Ph =1512 * 10 =15120

2- 15120 +3518 =18638 99H put in this location

4) Indirect Mode:

The 80x86 CPUs let you access memory indirectly through a register

using the register indirect addressing modes. There are four forms of

this addressing mode on the 8086, best demonstrated by the following

instructions:

mov al, [bx]

mov al, [bp]

mov al, [si]

mov al, [di]

As with the x86 [bx] addressing mode, these four addressing modes

reference the byte at the offset found in the bx, bp, si, or di register,

Example: statement memory condition after implementation of this

instruct when DS = 1120 , SI = 2498 , AX = 17FE ,

 MOV [SI],AX

Sol /

1- Log DS = 1120

2- Ph .A = 1120 * 10 = 11200

3- 11200 + 2498 =13698

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

31

4- FE put in 13698 location but 17 put in 13698 +1=13699loc.

5) Indexed Addressing Mode:

The indexed addressing modes use the following syntax:

mov al, disp[bx]

mov al, disp[bp]

mov al, disp[si]

mov al, disp[di]

If bx contains 1000h, then the instruction mov cl,20h[bx]will load cl

from memory location ds:1020h. Likewise, if bp contains 2020h,

mov dh,1000h[bp] will load dh from location ss:3020.

The offsets generated by these addressing modes are the sum of the

constant and the specified register. The addressing modes involving

bx, si, and di all use the data segment, the disp[bp] addressing mode

uses the stack segment by default. As with the register indirect

addressing modes, you can use the segment override prefixes to

specify a different segment:

mov al, ss:disp[bx]

mov al, es:disp[bp]

mov al, cs:disp[si]

mov al, ss:disp[di]

6) Based Indexed Addressing Mode:

The based indexed addressing modes are simply combinations of the

register indirect addressing modes. These addressing modes form the

offset by adding together a base register (bx or bp) and an index

register (si or di). The allowable forms for these addressing modes are

mov al, [bx][si]

mov al, [bx][di]

mov al, [bp][si]

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

32

mov al, [bp][di]

Example: statement memory condition after implementation of this instruct

when DS = 4500 , SS = 2000 , BX =2100 , SI = 1486 , DI = 8500 ,

BD = 7814 , AX = 1512.

 a) MOV [BX] +20,AX

sol /

1- Ph.A = 4500*10=45000

2- 45000 + 2100 =47100

3- 47100 + 20 = 47120

AX = 15 12

 Put 12 in location 47120

 Put 25 in location 47121

b) MOV [SI]+10,AX

sol /

1- Ph.A= 4500*10=45000

2- 45000+1486 = 46486

3- 46486+10 = 46496 this location for 12

46496+1=46497 this location for 25

c) MOV CL,[BX][DI]+8

sol /

1- Ph.A=4500*10=45000

2- 45000+2100+8500+8= 4F608 this location for 12 and 4F609 for 25

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

33

 8086 Address Modes

Type Instruction Source Address Generation Destination

1-Register MOV AX,BX register BX register AX

 2-Immediate MOV CH3,3AH Data 3AH register CH

3-Direct MOV [1234], AX register AX (DS*10H)+Displacement Memory 11234H

 10000H + 1234

4-Indirect MOV [BX],CL register CL (DS*10H)+BX Memory 10300H

 10000+0300H

5-Index MOV [BX+SI],BP register BP (DS*10H)+BX+SI Memory 10500H

 10000H+0300H+0200H

6-Relative MOV CL, [BX+4] memory 10304H (DS*10H)+BX+4 Register CL

 10000H+0300H+4

 ASSUME BX= 0300H, SI= 0200H, ARRAY= 1000H, DS= 1000H

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

34

Number of Operands

Operands specify the value an instruction is to operate on, and where

the result is to be stored. Instruction sets are classified by the number of

operands used. An instruction may have no, one, two, or three operands.

1. three-Operand instruction:

In instruction that have three operands, one of the operand specifies the

destination as an address where the result is to be saved. The other two

operands specify the source either as addresses of memory location or

constants.

 ADD destination, source1, source2

EX: A=B+C

 ADD A,B,C

EX: Y=(X+D)* (N+1)

 ADD T1, X, D

 ADD T2, N, 1

 Mul Y, T1, T2

2. Two operand instruction

In this type both operands specify sources. The first operand also

specifies the destination address after the result is to be saved. The first

operand must be an address in memory, but the second may be an address or

a constant.

 ADD destination, source

EX: A=B+C EX: Y=(X+D)* (N+1)

MOV AX, BX MOV AX, X

ADD AX, CX ADD AX, D

 MOV BX, N

 ADD BX, 1

 MUL BX

 MOV Y,AX

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

35

3. One Operand instruction

Some computer have only one general purpose register, usually called

on Acc. It is implied as one of the source operands and the destination

operand in memory instruction the other source operand is specified in the

instruction as location in memory.

 ADD source

LDA source; copy value from memory to ACC.

STA destination; copy value from Acc into memory.

EX: A=B+C EX: Y=(X+D)* (N+1)

LDA B LDA X

ADD C ADD D

STA A STA T1

 LDA N

 ADD 1

 MUL T1

 STA Y

4. Zero Operand instruction

Some computers have arithmetic instruction in which all operands are

implied, these zero operand instruction use a stack, a stack is a list structure

in which all insertion and deletion occur at one end, the element on a stack

may be removed only in the reverse of the order in which they were entered.

The process of inserting an item is called Pushing, removing an item is

called Popping.

Computers that use Zero operand instruction for arithmetic operations

also use one operand PUSH and POP instruction to copy value between

memory and the stack.

PUSH source; Push the value of the memory operand onto the Top

 Of the stack.

POP destination; POP value from the Top of the stack and copy it into

 The memory operand.

EX: A=B+C EX: Y=(X+D)* (N+1)

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

36

PUSH B PUSH X

PUSH C PUSH D

ADD ADD

POP A PUSH N

 PUSH 1

 ADD

 MUL

 POP Y

NOTE IN ADD Pop the two value of the stack, add them, and then push the

sum back into the stack.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

37

Instructions set:

8086 has 117 instructions, these instructions divided into groups:

1. Data Transfer Instructions

The microprocessor has a group of data transfer instructions that are

provided to move data either between its internal registers or between an

internal register and a storage location in memory. Some of these

instructions are:

MOV

MOV use to transfer a byte or a word of data from a source operand to

a destination operand. It’s more useful data transfer instruction because it

transfers the data from one memory location to another. These operands can

be internal registers and storage locations in memory. Notice that the MOV

instruction cannot transfer data directly between a source and a destination

that both reside in external memory. For instance, flag bits within the

microprocessors are not modified by execution of a MOV instruction.

EXAMPLES:

1. MOV DX, CS Where CX=0100H DX=CS=0100H CS DX
2. MOV AX, 05H Transform the value 05 to AX
3. MOV BX, [0ABCD] Transform the value that saved in location 0ABCD to BX

XCHG

In MOV instruction the original contents of the source location are

preserved and the original contents of the destination are destroyed. But

XCHG (exchange) instruction can be used to swap data between two

general purpose register or between a general purpose register and storage

location in memory.

EXAMPLES:

XCHG AL, DL Exchanges the contents of AL with DL.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

38

Load Effective Address LEA, LDS, LES, LFS, LGS, and LSS

There are several load-effective address instructions in the

microprocessor instruction set. The LES instruction loads any 16 bit register

with the offset address of the data specified by the operands, as determined

by the addressing mode selected for the instruction.

EXAMPLES:

LED BX,[DI] MOV BX,[DI]

The LDS, LES, LCS and LSS instructions load any 16 bit or 32 bit register

with an offset address and the DS, ES, CS or SS segment register with a

segment address.

EXAMPLES:

LDS BX,[DI] ,This instruction transfers the 32bit number addressed by DI in

the data segment into BX and DS register.

Push and POP Instruction

It is necessary to save the contents of certain registers or some other

main program parameters. These values are saved by pushing them onto the

stack. Typically, these data correspond to registers and memory locations

that are used by the subroutine. The instruction that is used to save

parameters on the stack is the push (PUSH) instruction and that used to

retrieve them back is the pop (POP) instruction. Notice a general-purpose

register, a segment register (excluding CS), or a storage location in memory

as their operand.

Execution of a PUSH instruction causes the data corresponding to the

operand to be pushed onto the top of the stack. For instance, if the instruction

is PUSH AX the result is as follows:

((SP)-1) (AH)

((SP)-2) (AL)

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

39

This shows that the two bytes of the AX are saved in the stack part of

memory and the stack pointer is decrement by 2 such that it points to the

new top of the stack.

On the other hand, if the instruction is POP AX Its execution results in

(AL) ((SP))

(AH) ((SP) + 1)

The saved contents of AX are restored back into the register.

We also can save the contents of the flag register and if saved we will later

have to restore them. These operations can be accomplished with the push

flags (PUSHF) and pop flags (POPF) instructions, respectively. Notice the

PUSHF save the contents of the flag register on the top of the stack. On the

other hand, POPF returns the flags from the top of the stack to the flag

register.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

40

2. Arithmetic Instructions

Arithmetic instructions include instructions for the addition,

subtractions, multiplication and division can be performed on numbers

expressed in a variety of numeric data formats. The status that results from

the execution of an arithmetic instruction is recoded in the flags of the

microprocessor. The flags that are affected by arithmetic instructions are CF,

OF, SF, AF, ZF, and PF.

Addition: ADD, ADC, and INC

Addition (ADD) appears in many forms in the microprocessor, which

may be come as add-with-carry instruction (ADC) and Increment instruction

(INC) that add 1 to a register or a memory location.

Format:

ADD AX,BX AX= AX+BX

ADC AX, BX AX=AX+BX+CF

INC AH AH= AH +1

EXAMPLES:

ADD BX,044H BX=BX+44H

ADD AX,[1234H] AX add with the contents of the address [1234]

ADD AX, BX AX= 1100H, BX=0ABCH

 AX= 1100H+ 0ABCH = 1BBCH

EXAMPLES:

The original contents of AX, BL, memory location SUM, and CF are

AX=1234H, BL= ABH, Sum=00CDH and CF=0 respectively, describe the

result of execution the following sequence of instruction:

ADD AX, SUM

ADC BL, 05H

INC SUM

1. AX= 1234H + 00CDH = 1301H CF=0

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

41

2. BL= ABH +05H +0=B0H CF=0

3. SUM=00CDH + 1=00CEH CF=0

Instructions AX BL SUM CF

Initial state 1234H ABH 00CDH 0

ADD AX, SUM 1301H ABH 00CDH 0

ADC BL, 05H 1301H B0H 00CDH 0

INC SUM 1301H B0H 00CEH 0

Subtraction: SUB, SBB, DEC, and NEG

Many forms of subtraction (SUB) appear in the instruction set, which

may be come as subtract-with-borrow instruction (SBB) and decrement

instruction (DEC) that subtracts 1 from a register or a memory location.

Format:

SUB AX, BX AX=AX - BX

SBB AX, BX AX= AX - BX - CF

DEC AH AH= AH -1

EXAMPLES:

SUB DH,06FH DH=DH-6FH

SUB AX,[1234H] AX sub value equal to contents the address [1234]

SBB BX, CX BX=1234H, CX=0123H, CF=0

 BX=1234H-0123H-0 =1111H

NEG BX BX= 3A H 0011 1010

 1111 1111 1100 0101+1= 1111 1111 1100 0110

 = FFC6H

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

42

Multiplication and Division MUL, DIV
Format:

MUL CX (AX) = AX * CX
DIV CL (AH), (AL) = AX/CL
 AL contain the quotient, AH is the reminder
DIV CX DX, AX= (DX,AX)/CX
 AX contain the quotient, DX is the reminder
EXAMPLES:

MUL CL where AL=-1, CL= -2
 AX = FF H * FE H
 = FD02H

Comparison

The comparison instruction (CMP) is a subtraction that changes only

the flag bits, the destination operands never changes. A comparison is useful

for checking the entire contents of register or a memory location against

another value.

EXAMPLES:

CMP CX, BX CX – BX

CMP [DI], CX CX subtracts from the byte contents of the data

 segment memory location by DI
The compare and exchange instruction (CMPXCHG) compares the
destination operand with the accumulator. If they are equal, the source
operand is copied into the destination, if they are not equal, the destination
operand is copied into the accumulator.

EXAMPLES:

CMPXCHG CX, DX CX compare with AX, if equal DX copied into
 AX, else CX copied into AX.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

43

3. Logical Instructions (AND, OR, XOR, NOT)
The basic logic instructions include AND, OR, Exclusive-OR and NOT.

Logic operations always clear the carry and overflow flags, while the other
flags change to reflect the condition of the result.
The AND operation performs logical multiplication. The OR operation
performs logical addition and is often called the Inclusive-OR function. The
Exclusive-OR instruction refers to XOR. NOT is one complement.
EXAMPLES:

AND AL,BL AL=AL and BL
OR AH,BH AH=AH or BH
XOR CH,DL CH=CH xor DL
NOT CX

4. Shift and Rotate Instructions

Shift and rotate instructions manipulate binary numbers at the binary
bit level. Shift and rotate instructions find their most common applications
in lowlevel software used to control I/O devices. The microprocessor
contains a complete set of shift and rotate instruction that are used to shift
or rotate any memory data or register.
Shift instructions position or move number to the left or right within
register or memory location. They also perform simple arithmetic such as
multiplication by powers of 2+2 (left shift) and division by powers of 2-2. The
four types of shift instructions can perform two basic types of shift
operations. They are the logical shift and arithmetic shift. Each of these
operations can be performed to the right or to the left.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

44

Instructions Meaning Format Operation Flags affected

SAL Shift SAL/SHL D, Count Shift the D left by the OF, CF

 Arithmetic left number of bit positions

SHL shift equal to count and fill the

 logical left vacated bits positions on

 the right with zeros

SHR Shift SHR D, Count Shift the D right by the OF, CF

 logical number of bit position

 Right equal to count and fill

 the vacated bit positions on

 the left with zeros

SAR Shift SAR D, Count Shift the D right by the OF,SF, ZF, AF,

 arithmetic number of bit positions PF, CF

 right equal to count and fill

 the vacated bit positions on

 the left with the original

 most significant bit

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

45

Rotate instruction position binary data by rotating the information in a
register or memory location, either from one end to another or through the carry
flag. They are often used to shift or position numbers.

5. Program and Control Instruction
In this section many of instructions that can be executed by the 8086
microprocessor are described, furthermore, these instructions use to write
simple programs. The following topics are discussed in this section:

A. Flag control instructions
B. Compare instruction
C. Jump instructions
D. String instruction

A. Flag Control Instruction
The 8086 microprocessor has a set of flags which either monitor the status
of executing instruction or control options available in its operation. The

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

46

instruction set includes a group of instructions which when execute directly
affect the setting of the flags. The instructions are:

LAHF: load AH from flags
SAHF: store AH into flags
CLC: clear carry, CF=0
STC: set carry, CF=1
CMC: complement carry, CF= CF
CLI: clear interrupt, IF=0
STI: set interrupt, IF=1

EXAMPLE:
Write an instruction to save the current content of the flags in memory
location MEM1 and then reload the flags with the contents of memory
location
MEM2.
Solution:
 LAHF
 MOV MEM1, AH
 MOV AH, MEM2
 SAHF

B. Compare Instruction
There is an instruction included instruction set which can be used to
compare two 8-bit number or 16-bit numbers. It is the compare (CMP)
instruction. The operands can reside in a storage location in memory, a
register within the MPU.
Instruction Meaning Format Operation Flag affected

CMP Compare CMP D,S D-S CF,AF,OF,PF,SF,ZF

The process of comparison performed by the CMP instruction is basically a
subtraction operation. The source operand is subtracted from the
destination operand. However the result of this subtraction is not saved.
Instead, based on the result the appropriate flags are set or reset.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

47

EXAMPLE: lets the destination operand equals 10011001 and that the
source operand equals 00011011. Subtraction the source from the
destination,
we get
 10011001
 00011011-
Replacing the destination operand with its 2's complement and adding
 10011001
 11100101+
 01111110

1. No carry is generated from bit 3 to bit 4, therefore, the auxiliary carry
 flag AF is at logic 0.
2. There is a carry out from bit 7. Thus carry flag CF is set.
3. Even through a carry out of bit 7 is generated; there is no carry from
 bit 6 to bit
4. There is an even number of 1s, therefore, this makes parity flag PF
 equal to 1.
5. Bit 7 is zero and therefore signs flag SF is at logic 0.
6. The result that is produced is nonzero, which makes zero flag ZF logic
 0.
7. This is an overflow condition and the OF flag is set.

C. JUMP Instruction
The purpose of a jump instruction is to alter the execution path of

instructions in the program. The code segment register and instruction
pointer keep track of the next instruction to be executed. Thus a jump
instruction involves altering the contents of these registers. In this way,
execution continues at an address other than that of the next sequential
instruction. That is, a jump occurs to another part of the program. There
two type of jump instructions:

a. Unconditional jump.
b. Conditional jump.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

48

In an unconditional jump, no status requirements are imposed for the jump
to occur. That is, as the instruction is executed, the jump always takes place
to change the execution sequence. See Figure 34.

Instruction Meaning Format Operation Flag affected

 JMP Unconditional JMP operand Jump is to the None

 jump address specified

 by operand

On the other hand, for a conditional jump instruction, status conditions
that exist at the moment the jump instruction is executed decide whether
or not the jump will occur. If this condition or conditions are met, the jump
takes place, otherwise execution continues with the next sequential
instruction of the program. The conditions that can be referenced by a
conditional jump instruction are status flags such as carry (CF), parity (PF),
and overflow (OF).

Instruction Meaning Format Operation Flag affected

JCC Conditional Jcc operand If the specific condition cc is None

 jump true, the jump to the address

 specified by the operand is

 initiated, otherwise the next

 instruction is executed

The following table lists some of the conditional jump instructions:
 Instruction Meaning

 JC Jump if carry

 JNC Jump if not carry

 JCXZ Jump if CX is zero

 JE/JZ Jump if equal / jump if zero

 JNE/JNZ Jump if not equal / jump if not zero

 JNO Jump if not overflow

 JO Jump if overflow

 JP/JPE Jump if parity / jump if parity Even

 JNP/JPO Jump if parity / jump if parity odd

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

49

 JNS Jump if not sign

 JS Jump if sign

D. String Instructions
The microprocessor is equipped with special instructions to handle string
operations. By "string" we mean a series of data words or bytes that reside
in consecutive memory locations. There are five basic string instructions in
the instruction set of the 8086, these instruction are:

a. Move byte or work string (MOVS, MOVSB, and MOVSW).
b. Compare string (CMPS).
c. Scan string (SCAS).
d. Load string (LODS)
e. Store string (STOS).

They are called the basic string instructions because each defines and
operations for one element of a string.

Move String

The instructions MOVS, MOVSB, and MOVSW all perform the same
basic operation. An element of the string specified by the source index (SI)
register with respect to the current data segment (DS) register is moved to
the location specified by the destination index (DI) register with respect to
the current extra segment (ES) register.
After the move is complete, the contents of both SI and DI are
automatically incremented or decremented by 1 for a byte move and by 2
for aword move. Remember the fact that the address pointers in SI and DI
increment or decrement depends on how the direction flag DF is set.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

50

Compare Strings and Scan Strings
The CMPS instruction can be used to compare two elements in the same or
different strings. It subtracts the destination operand from the source
operand and adjusts flags CF, PF, AF, ZF, SF, and OF accordingly. The result
of subtraction is not saved; therefore, the operation does not affect the
operands in any way
 CMPS BYTE

The source element is pointed to by the address in SI with respect to the
current value in DS and the destination element is specified by the contents
of DI relative to the contents of ES. Both SI and DI are updated such that
they point to the next elements in their respective string.
The scan string (SCAS) instruction is similar to CMPS, however, it compares
the byte or word element of the destination string at the physical address
derived from DI and ES to the contents of AL or AX, respectively. The flags
are adjusted based on this result and DI incremented or decremented.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

51

Interrupts (INTs)
Interrupt is a mechanism by which a program's flow of control can be

altered. When an INT occurs, the CPU suspends its execution of the current

program and transfer control to an interrupt service routine (ISR). That will

provide the requested service by the interrupt. When the ISR is completed,

the original program resumes execution as if it were not interrupted.

This mechanism is similar to that of a procedure call however, while

procedure can be invoked only by a procedure call in software. INT can be

invoked by both hardware and software. For instance, when an interrupt

signal occurs indicating that an external device, such as a printer, requires

service. The microprocessor must suspend what it is doing in the main part

of the program and pass control to a special routine that performs the

function required by the device.

The section of program to which control is passed is called the interrupt

service routine (ISR). When the microprocessor terminates execution in the

main program, it remembers the location where it left off and then picks up

execution with the first instruction in the service routine. After this routine

has run to completion, program control is returned to the point where the

microprocessor originally left the main body of the program.

The interrupts of the microprocessors include two hardware that request

interrupts (INTR and NMI), and one hardware (INTA) that acknowledges

the interrupt requested through INTR. The microprocessor also has software

interrupts INT, INTO, INT3 and BOUND. Two flag bits IF and TF are also

used with the interrupt structure and a special return instruction.

Interrupts vs Procedures
Although the behavior of interrupts is analogous to procedures, there

are some basic differences that make interrupts almost indispensable. These

differences are highlighted below:-

Interrupts can be initiated by both software and hardware. However,

 procedures can be initiated only by software.

Interrupts mechanism provides an efficient way to handle

 unanticipated events. For example, if the program goes into an

 infinite loop, ctrl-break could cause an interrupt to suspend the

 program execution.

 Interrupt service routines are memory resident while procedures are

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

52

 loaded with application programs.
Interrupts are identified by numbers while procedures are identified

 by names.

Interrupt Processing

The Interrupt Vector Table (IVT) is located at address 0, each vector takes 4

bytes. Each vector consist of a (CS:IP) pointer to the associated ISR, 2 byte

for specifying the CS, and 2 byte for the offset (IP) within the CS.

The IVT layout in the memory since each entry in the IVT is 4 byte

long, INT type is multiplied by 4 to get the corresponding ISR pointer in the

table. For example , INT 2 can find the ISR pointer at memory address 2*4

=0008H, the first 2 byte at the specified address are taken as the offset value,

and the next 2 byte as the CS value. Thus executing INT 2 causes the CPU to

suspend its current program and calculate the address in the IVT (which is

2*4=8) and read CS:IP value and transfer control to that memory location.

Just like procedure ISR, should end with a (RET) instruction to send control

back to the INT program. The interrupt return (IRET) is used for this

purpose. On receiving an INT, flag register is automatically saved on the

stack. The INT enable flag is clear. This disable attending further INT until

this flag is set. Usually, this flag is set in ISR unless there is a special reason

to disable other INT.

The current CS and IP values are pushed onto the stack. In most cases,

these value CS and IP point to the instruction following the current

instruction the CS and IP register are loaded with the address of ISR from

the IVI. When an interrupt occur, the following action are taken:

1. Push flag register on the stack

2. Clear IF and TF

3. Push CS and IP register, on the stack

4. Load CS with the 16-bit data at memory address (INT-type *4+2)

5. Load IP with the 16 bit data at memory address (INT-type *4).

The last instruction of ISR is (IRET) instruction, it actions are:

1. POP the 16-value on top of stack into IP register

2. POP the 16-value on top of stack into CS register

3. POP the 16-value on top of stack into flag register.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

53

Interrupt Type

The 8086 microcomputer is capable of implementing any combination of up

to 256 interrupts. They are divided into five groups: external hardware

interrupts, software interrupts, internal interrupts, the non maskable interrupt,

and the reset interrupt. The function of the external hardware, software, and

non-maskable interrupt and the reset interrupts can be defined by the user.

On the other hand, the internal and reset interrupts have dedicated system

functions.

Software Interrupt (SW INT)

Software interrupts are initiated by executing the interrupt instruction INT in

a program. Software interrupts are mainly used in accessing I/O devices such

as the keyboard, printer, screen, disk drive. Software interrupts can be

classified into system-defined or user-defined. System-defined software

interrupts are those whose interrupt service routines are supported by BIOS

and DOS. User-defined interrupts are those whose interrupt service routines

are provided by the user. The format of the interrupt instruction is INT

interrupt type, where INT Type is an integer number in the range 0-255, thus

a total of 256 different types are possible. The following table shows which

of the 256 interrupt types:-

 Interrupts Type Allocation

 0-1Fh BIOS Interrupts

 20h-3Fh DOS Interrupts

 40h-7Fh Reserved

 80h-F0h ROM Basic

 F1h-FFh User Defined

Hardware Interrupt (HW INT)

This type is generated by hardware devices to get the attention of the CPU.

Is usually use by peripheral I/O devices such as KB to alter CPU that they

require its attention.

For example, when a key is pressed the keyboard generates an

interrupt causing the CPU to suspend its present activity and execute the

keyboard interrupt service routine to process the key.

HW INT can be divided into Maskable and Non-Maskable (NMI). Maskable

interrupts are initiated through the INTR while non-maskable interrupts are

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

54

initiated through the NMI. The non-maskable interrupt are serviced by the

CPU immediately after completing the execution of the current instruction.

One example of non maskable interrupts is the RAM parity error indicating

memory malfunction.

However, Maskable interrupts can be delayed until execution reaches a

convenient point. As an example, let us assume that the CPU is execution

main program , an INT occur, as a result, the CPU suspend the main as soon

as it finish the current instruction of main and then control is transfer to the

ISR. If ISR has to be executed without any interrupt, the CPU can mask

further INT until ISR is complete. Suppose that, while executing ISR another

mskable INT occurs, service to this INT would have to wait until ISR is

completed.

A NMI can be generated by applying an electronic signal on the NMI pin

this INT is called NMI because the CPU always respond to this signal. In

other word, this INT cannot be disabling under program control, the NMI

cussed by INT2.

Most HW INT are Maskable type, and electronic signal should be applied to

the INTR (interrupt request) input pin of 8086, 8086 recognize the INTR

only if IF=1, thus this INT can be masked or disable by clear IF(IF=0).

How can more than one device interrupt?

Computer typically have more than one I/O device requesting

interrupt service, like keyboard, hard disk, floppy disk, printer all generate

an INT when they required the attention to CPU. When more than one

device INT CPU, we need a mechanism to priority these INT (if they come

at the same time) and forward only one INT request at a time to the CPU

while keeping other INT request pending for their service.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

55

STACK

There are many situations in which a program needs to temporarily

store information and then retrieve it in reverse order. One example of such a

situation is saving and restoring the counters when using loops. On the 8086

the CX register and the loop instructions can be conveniently used to provide

the counting, testing, but because the loop instructions are designed to use

only the CX register a problem arises when loops are nested. However, if as

shown in Figure (36) there were an efficient means of saving the loop

counters in order and then restoring them by retrieving the last stored counter

first, at least part of the problem would be alleviated.

Figure (). Storing and retrieving counters for nested loop.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

56

We can define the stack is an area of memory identified by the

programmer for temporary storage of information. Most often a data storage

situation such as the one mentioned above is resolved by designing into the

computer last-inputfirst- output (LIFO) stack structure, which the stack itself

is simply a part of memory.

The stack normally grows backwards into memory. In other words, the

programmer defines the bottom of the stack and the stack grows up into

reducing address range. Given that the stack grows backwards into memory,

it is customary to place the bottom of the stack at the end of memory to keep

it as far away from user programs as possible. In the 8086, the stack is

defined by setting the SP (Stack Pointer) register. The Size of the stack is

limited only by the available memory. The 8086 provides four instructions:

PUSH, POP, CALL and RET for

storing information on the stack and retrieving it back.

Figure (). The Stack.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

57

Stack facilities normally involve the use of indirect addressing through a

special register, the stack pointer, that is automatically decrement as items

are put on the stack and incremented as they are retrieved. Putting something

on the stack is called a push and taking it off is called a pop. The address of

the last element pushed onto the stack is known as the top of the stack

(TOS). Only words can be pushed or popped and the data cannot be

immediate, but the pushed and pop instructions can use all of the other

addressing modes.

Figure (). The Stack Pointer.

During pushing, the stack operates in a “decrement then store” style. The

stack pointer is decremented first, and then the information is placed on the

stack. During popping, the stack operates in a “use then increment” style.

The information is retrieved from the top of the stack and then the pointer is

incremented. The SP pointer always points to “the top of the stack”. The

order of PUSHs and POPs must be opposite of each other in order to retrieve

information back into its original location.
 PUSH A
 PUSH B

 ...
 POP B
 POP A

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

58

Input and Output

Input & Output (I/O) devices provide the means by which a computer system

can interact with the outside world. An I/O device can be a purely input

device (e.g. KB, Mouse), a purely output device (printer, screen), or both

input and output device like (e.g. disk). Regardless of the intended purpose

of I/O devices, all communication with these devices must involve the

system bus. However, I/O devices are not directly connected to the system

bus. Instead, there is usually, On I/O controller that acts as an interface

between the system and the I/O devices.

Accessing I/O devices

As programmer, you can have direct control to any of the I/O devices

(through their associated I/O controller). It is a waste of time and effort if

everyone had to develop their own routines to access I/O devices. In addition

system resource could be abused either intentionally or accidentally. For

instance, and improper disk drive could erase the content of a disk due to a

bug in the driver routine.

To avoid this problem and to provide a standard way of accessing I/O

devices, OS provide routine to convent all access I/O devices. Typically,

access to I/O devices can be obtain from two layer of system software, the

basic I/O system (BIOS) and the OS,BIOS is ROM resident and is a

collection of routine that control the I/O devices. Both provide access to

routine that control I/O devices through a mechanism called INT (interrupt).

I/O Address Space and Data Transfer

As we know I/O ports in the 8086 MPU can be either byte wide or

word wide. The port that is accessed for input or output of data is selected by

an I/O address. The address is specified as port of the instruction that

performs the I/O operation.

I/O addresses are 16 bit in length and are output by the 8086 to the I/O

interface over bus lines AD0 through AD15, the most significant bit A16-

A19 of the memory address are held at the 0 logic (not used).

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

59

Below Figure (39) show a map of I/O address space of the 8086 system. This

is an independent 64-KB address space that is dedicated for I/O devices.

Notice that its address range is from 000016-FFFF16. Moreover, notice that

the eight ports located from address 00F8 to 00FF are specified as reserved.

These port addresses are reserved by Intel for use in their future HW and SW

products.

 Figure (). I/O Address Space.

Data transfer between the MPU and I/O devices are performed over

the data bus. Word transfer take place over the complete data bus D0 to D15,

and can required either one or two bus cycle.

Ports: a port is a device that connects the processor to the external world

through a port processor, receive a signal from an input device and send a

signal to an output device.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

60

Input / Output Instruction

The instruction set contains one type of instruction that transfer

information to an I/O device (OUT) and another to read information from an

I/O device (IN).

Where ACC = AL or AX

Example 1: write a sequence of instructions that will output FF16 to a byte

wide output port at address AB16 of the I/O addresses space.

Solution: first the AL register is loaded with FF16 as an immediate operand

in the instruction

 MOV AL, 0FFH

Now the data in AL can be output to the byte wide output port with the

instruction

 OUT 0ABH, AL

Example2: write a series of instruction that will output FF16 to an output

port located at address B00016 of the I/O address space.

Solution: the DX register must first be loaded with the address of the output

port

 MOV DX, 0B000H

Next, the data that is to be output must be loaded into AL

 MOV AL, 0FFH

Finally, the data are output with the instruction

 OUT DX, AL

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

61

Example 3: data are to be read in from two byte wide input port at address

AA16 and A916 respectively, and then output to a word wide output port at

address B00016. Write a sequence of instruction to perform this I/O

operation:

Solution: we first read in a byte from the port at address AA16 into AL and

move it to AH

 IN AL, 0AAH

 MOV AH, AL

The other byte can be read into AL

 IN AL, 0A9H

To writhe out the word of data in AX, we can load DX with the address

B00016 and

use a variable output instruction

 MOV DX, 0B000H

 OUT DX, AX

Isolated and Memory I/O

There are two different method of interfacing I/O to the MPU. In the

isolated I/O scheme, the IN, OUT instruction transfer data between the MPU

(ACC or memory) and the I/O device.

Isolated I/O: it is the most common I/O transfer techniques. The addressed

for insolated I/O device, called ports, are separate from the memory. Because

the ports are separate from the memory, because the ports are separate. The

user can expand the memory to its full size without using any of memory

space for I/O device. A disadvantage of isolated I/O is that, the data

transferred between I/O and the MPU must be accessed by the IN, OUT

instruction. See the Figure

 Figure (). Isolated I/O.

College of education
Microprocessor
Computer Science Department
Lecturer. Ameen Abdulzahra
 2016– 2017

62

Memory- Map I/O

Unlike isolated I/O, memory mapped I/O does not use the IN or OUT

instruction. Instead, it uses any instruction that transfer data between the

MPU and memory. A memory mapped I/O device is treated as a memory

location in memory map.

The main advantage of memory-mapped I/O is that any memory

transfer instruction can be used to access the I/O. The main disadvantage is

that a portion of the memory systems used as the I/O map. This reduced the

amount of memory available to application. See Figure

 Figure (). Memory-Mapped I/O.

