Lecture 1

Data Structure:
[bookmark: _GoBack]	A well-established logical & mathematical implementation of data is known as data structure. This structure is having an actual relationship with real world. This structure is quite simple. That one can effectively used & process. The Data when it may be required. Data Structure can be defined in two parts:-
1. Liner Data Structure
2. Non-Liner Data Structure
1. Liner Data Structure: The data structures in which accessing of data values are made in a sequential fashion are known as Liner Data Structure. Ex.- Array, Link List, Stack, Queue.
2. Non-Liner Data Structure: Here accessing of data element made in a non liner fashion or non continue fashion. Ex.- Tree, Graph

Data Structure Operations
	Liner performs various types of operations on the data. Some of these are as follows:-
1. Creation- Create any data structure.
2. Insertion- adding any data value in data structure.
3. Deletion- Delete any element from data structure.
4. Traversing & Visiting- read the data value of a data structure.
5. Sorting- Sort data structure in a particular fashion (Ascending & Descending).
6. Searching- Search any data value of a D.S.
7. Merging- Concatenate two D.S. in a single D.S.

Data Structure Applications
1. Design & Controlling OS.
2. Design & Controlling the File Management.
3. Design & Controlling DBMS
4. Design & Controlling Process Management
5. Design & Controlling Memory Management
6. Design & Controlling Computer Language
7. Animation & Video Games
8. Any Computer Graphics Animation

Stack
	Stack is based in first in Last out. We can take the example of storing books in a box. Our first inserted book will be come out at last when all other inserted books have been popped. See the graphics: -Now you can see that first we have to bring out first two books (3 and 2 book) then we can use book 1. This is the stack base. All function we will declare in the programs, they all will depend on this theory.

3 Book

2 Book

1 Book

A simple Stack Program
#include<stdio.h>
#define max 3
int stack[max];
int top=-1;
void push(int a)
{
 if(top==2)
		cout<<"\n Stack is Full";
	else
	{	top++;
		stack[top]=a;
	}
}

void pop()
{ int x;
 if(top==-1)
		cout<<"\n Stack is Empty";
	else
	{ x=stack[top];
		top--;
		cout<< "\n deleted "<<x ;
	}
}
void main()
{
push(1);
push(2);
push(3);
push(4);
pop();
pop();
pop();
pop();
}

Infix , Postfix & Prefix
Infix: -
	The notation which are we generally used is known as infix notation. In this type
of notation, we place the operator between operand.
Ex.- 1+2+4-3
Prefix: -
	Polish Notation. In this type of notation we type the operator before the operand.
Polish notation have serverl advantage over infix notation.
		Ex.- +-*abc
Postfix: -
	Reverse Polish Notation. In this type of notation we place the operator after the
operand.

Que.- Convert the following equation in prefix & postfix.
a+b*c/d+e
	 1
Answer
a+1/d+e
 2

a+2+e
 3

3+e
Prefix
+3e
++a2e
++a/1de
++a/*bcde
Postfix
3e+
a2+e+
a1d/+e+
abc*d/+e+

