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Computer Graphics 

 
Introduction 

Computer graphics can be defined as the creation and 

manipulation of graphic image by means of computer. Computer 

graphic started as a technique to enhance the display of 

information generated by a computer. This ability to interpret 

and represent numerical data in pictures has significantly 

increased the computer's ability to represent information to the 

user in a clear and understandable form. Large amounts of data 

are rapidly converted into bar charts, pie charts, and graphs. 

Graphics displays have also improved our understanding of 

complex system such as molecular biology; reaffirming the 

saying that one picture is worth a thousand words. 

 

Display Screens 

Display screens are output devices that show programming 

instructions and data as they are being and information after it is 

processed, display screens are either CRT (Cathode-Ray-Tube) 

or flat-panel display. 

CRT Displays: use vacuum tube like that in a TV set. 

Flat-panel displays: are thinner, weightless, and consume 

less power than CRT displays but are not as clear. Principal flat-

panel displays are liquid-crystal displays (LCD) and gas-plasma 

display.  

The size of screen is measured diagonally from corner to 

corner in inches. 
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The Cathode Ray Tube (CRT) Display: 

The CRT display screens consist of three components: 

1- Cathode Ray Tube (CRT). 

2- Frame buffer. 

3- Display controller. 

 

Cathode Ray Tube (CRT): 

Consists of electron gun that contains a cathode that when 

heated emits a beam of negatively charged electrons towards a 

positively charged phosphor coated screen. The electron beam 

passes through the focusing and deflection system, which 

consist of an electrostatic or magnetic field. A color CRT has 

three electron guns, one for each of three primary colors: red, 

green, and blue.  

The focusing system concentrates the beam so that by the 

time the electrons reach the screen, they have converted to 

small dot. The deflection system, which consists of two pairs of 

deflection plates (horizontal and vertical) directs the electron 

beam to any point on the screen. 

When the electron beam strikes the screen, the phosphor 

emits a spot of visible light that intensity depends on the number 

of electrons on the beam. The duration of this light, called 

persistence, depends on the type of phosphor that coats the 

screen. In order to give the viewer the appearance of continuous 

flicker-free image, each dot on the screen must be intensified 

many times per second. This type of CRT is called a refresh 

CRT. Two types of refresh CRTs are available: raster-scan and 

random vector. 
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Frame Buffer:  

Each screen pixel corresponds to a particular entry in a two 

dimensional array residing in memory. This memory is called a 

frame buffer or a bit map. The number of rows in the frame buffer 

array equals the number of raster lines on the display screen.  

The number of columns in this array equals the number of pixels 

on each raster line.  

The term pixel (picture element) is also used to describe the 

row and column location in the frame buffer arrays that 

corresponds to the screen location. A 512×512 display screen 

requires 262,144 pixel memory location. Whenever we wish to 

display a pixel on the screen, a specific value is placed into the 

corresponding memory location in the frame buffer array. Each 

screen location pixel and corresponding memory location in the 

frame buffer is accessed by an (X,Y) integer coordinate pair. The 

x value refers to the columns, the y value to the row position.  

Each pixel in the frame buffer array is composed of a 

number of bits. A black and white image that has only two 

intensity levels, on-off, has single bit plane frame buffer. In order 

to display a color or a black and white quality image with shades 

of gray, additional bit planes are needed.  

 

Display Controller: 

The hardware device that read the contents of the frame 

buffer into video buffer, which then converts the digital 

representation of a string of pixel values into analogue voltage 

signals that are sent serially to the video display screen (CRT). 
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 The Flat Panel Display: 

Compared to CRT displays, flat panel displays are much 

thinner, weightless, and consuming less power. Thus they are 

better for portable computers. Flat panel displays are made up of 

two plates of glass with a substance between them, which is 

activating in different ways. Flat panel displays are distinguished 

in two ways: 

1- By the substance between the plates of glass. 

2- By the arrangement of the transistors in the screens. 

Two common types of technology used in flat panel display 

screens are: 

a\ Liquid Crystal display (LCD): 

It consists of a substance called liquid crystal, the molecules 

of which line up in a way that alter their optical properties. As a 
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result, light usually backlighting behind the screen is blocked or 

allowed through to create an image. 

 

b\ Gas Plasma Display: 

It is like a neon bulb, in which the display uses a gas that 

emits light in the presence of an electric current. That is, the 

technology uses neon gas and electrodes above and below the 

gas. When electric current passes between the electrodes, the 

gas glows. Although gas plasma technology has better 

resolution than LCD technology, it is more expensive and thus is 

not used as often as a LCD. On the other hand, LCDs are not 

practical for screens larger than 20 inches and so are not 

practical for TV size screen. 
 

Video Display Card: 

To display graphics, a display screen must have a video 

display adapter. A video display adapter also called a graphics 

adapter card, which is a circuit board that determines the 

resolution, number of colors, and how fast images appear on the 

display screen. Video display adapter come with their own 

memory chips, which determine how the card process the image 

and how many colors it can display. A video display adapter with 

256 kb of memory will provide 16 colors; one with megabyte will 

support 16.7 million colors. 

The video display adapter is often built into the motherboard 

although it may also be an expensive card that plugs into an 

expensive slot. 
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Screen Clarity: 

The screen clarity depends on three qualities: 

1- Resolution: 

The clarity or sharpness of display screen is called 

resolution. The more pixels per square inch, and the 

better of resolution. Resolution is expressed in terms of 

the formula (horizontal pixels×vertical pixels). Each pixel 

can be assigned a color or particular shade of gray. A 

screen with 640×480 pixels multiplied together equals 

307200 pixels. This screen will be less clear and sharp 

Monitor Type Remarks 

EGA (Enhanced Graphics 

Array) 

Support 16 colors in 640-by-350 

pixel resolution introduced by IBM 

in 1984.superseded CGA 

VGA (Video Graphics Array) Displays 16 colors in 640-by-480 

pixel resolution and 256 colors at 

320 by 200 pixels. This color 

bitmapped graphics display 

standard was introduced in 1987 for 

IBM PS/2 computers 

SVGA (Super Graphics Array) Supports 256 colors with 800 by 600 

pixel resolution and a 1024 by 768 

resolutions. This is a higher version 

of VGA. 

XGA (Extended Graphics 

Array) 

Displays up to 16,777,216 colors at 

resolutions up to 1024 by 768 

pixels. 



  

8 

 

than a screen with 800×600 (equals 480000) 0r 1024×768 

(equals 786432) pixels. 

 

2- Dot Pitch: 

It is the amount of space between the center of adjacent 

pixels, the closer the dots, the crisper the image. For crisp 

images, dot pitch should be less than 0.31 millimeter.  

 

3- Refresh Rate: 

It is the number of times per second that the pixels are 

recharged so that their glow remains bright. In general, 

displays are refreshed 45 to 100 times per second. 

 

Graphics versus text: 

Compare with the graphic mode, the PC's text mode is easy 

to use. Displaying information on the screen is a simple as 

placing ASCII char in specific memory location. The text screen 

is divided into 80 column and 25 rows. The graphic mode 

requires a completely different orientation instead of character; 

you have pixels, the smallest picture element on your computer 

display. Today most screens can display text and graphics.  
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Elementary Figures 

Plotting Points 

In order to draw a picture on a raster display, we must 

determine the corresponding points in the frame buffer that 

make up the picture. To perform this task we must write scan 

conversion point plotting algorithms. 

Both the frame buffer and the display screen are given a 

two-dimensional coordinates system with the origin at the lower 

left corner.  

        

             Y                                   (3,5)   

      

     

      

            

      

      

                      0                                                     X 

                                                               (4,2) 

 

Each pixel is accessed by a non negative integer (x , y) 

coordinate pair. The (x) values start at the origin 0, and increase 

from left to right; the (y) values start at 0, and increase from 

bottom to top as shown in previous figure. In fact hardware 

engineers prefer to replace the origin at upper left corner since 

this corresponds to the scanning operation of the CRT display 

controller. 

               0                                                      X 
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                     Y 

To draw a point on the display screen, a point plotting 

procedure is required. We assume the availability of the 

command:   Putpixel (x , y , color). 

 

The drawing on the screen starts from top to down, and from 

left to right. The pixel coordinates on the screen (VGA 640×480) 

is shown in figure below: 

 

                                   x 

  (0,0)                             

                      

           

    y 

 

 

                                                                      (639 , 479) 
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Line Drawing 

Many computer pictures are composed of straight line 

segments. A line segment is displayed by turning on a string of 

adjacent pixels. In order to draw a line, it is necessary to 

determine which pixels lie nearest the line and provide the best 

approximation to the desired line. 

 

 

       

  

 

 

 

 

                 (a) Low resolution                   (b) High resolution 

 

Above figure illustrates a line drawn on a raster display. 

Observe that the accuracy and quality of the displayed line 

depends on the resolution of the display device. High resolution 

displays (1024 ×  1024) draw lines that look straight and 

continuous, and that start and end accurately. Lower resolution 

displays may draw lines with gaps. Line drawing routines in high 

performance graphics systems are implemented in hardware 

that rapidly generates the pixels comprising the line when it is 

given the two end points. Most low cost display systems still 

relay on slower software routines to accomplish line drawing. In 

either case, the line drawing routine should be accurate, fast, 

and easy to implement. 
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Horizontal and Vertical Lines: 

The simplest lines to draw are horizontal and vertical lines. 

Horizontal Lines: 

The screen coordinates of the points on a horizontal line are 

obtained by keeping the value of (y) constant and repeatedly 

incrementing the (x) value by one unit as in algorithm (1). 

 

 

 

 

 

 

 

If Xstart > Xend then replace Xend by Xstart and vice versa in for loop 

at algorithm(1). 

H.W.: Write complete program in order to draw horizontal line? 

 

Vertical Lines: 

The screen coordinates of the points on a vertical line are 

obtained by keeping the value of (x) constant and repeatedly 

incrementing the (y) value by one unit as in algorithm (2). 

 

 

 

 

 

 

Algorithm (1):  

Input: Xstart, Xend, Yspecified. 

Output: Horizontal line. 

{    for x= Xstart  to   Xend 

         putpixel (x , yspecified , color); 

} 

Algorithm (2):  

Input: Ystart,Yend, Xspecified. 

Output: Vertical line. 

{  

   for y= Ystart  to  Yend 

         putpixel (xspecified , y , color);  } 
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If Ystart > Yend then replace Yend by Ystart and vice versa in for loop 

at algorithm (2). 

 

H.W.: Write complete program in order to draw vertical line? 

 

Diagonal Lines: 

 To draw a diagonal line with a slope equal to (+1), we need 

only repeatedly increment by one unit both x and y values from 

the start to end pixels as shown in algorithm (3). 

  

  

 

 

 

 

 

 

 

 

 

 

 

To draw a line with slop equals to (-1), replace (ystart+i) by (ystart-i) 

in algorithm (3). 

 

H.W.: Write complete program in order to draw diagonal line 

using algorithm (3) with slope (+1) and slope (-1)? 

 

Algorithm (3):  

Input: Xstart,Ystart, Xend, Yend. 

          i=0 

Output: Diagonal line. 

{  

   while (xstart + i) ≤  Xend ) 

        { 

           putpixel (xstart + i, ystart + i, color); 

           i= i+1; 

        } 

} 
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      .    .        
                 

B 

A 

Arbitrary Lines: 

 Drawing lines with arbitrary slope creates several problems, 

such as: 

1- The display screen can be illuminated only at pixels 

locations; therefore a raster scan display has a staircase 

effect that only approximates the actual line as shown in 

figure below: 

                  

    

 

 

 

         

 

 

Although it may not be possible to choose pixels that lie 

on the actual line, we want to turn on pixels lying closest 

to it. For example, in previous figure, the pixel at location 

B is a better choice than the one at location A. 

2- Determining the closest (best) pixels is not easy.  
 

Different algorithms calculate different pixels to make up the 

approximating line. The choice of algorithm depends on: 

1- The speed of line generation. 

2- The appearance of the line. 

Therefore, to understand these criteria better let's look at several 

different line generating algorithms. 

a- Direct method: 
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In this method, we learn how to draw a line between two 

points by drawing a group of pixels using the command putpixel 

(x , y , color), with substituting in straight line equation: 

Y = a ×  X + b 

Where (a) is the slope and (b) is a constant which represents 

the clipping from y-axis (y-intercept). 

a=
start
x

end
x

start
y

end
y

−

−
  ,    b=ystart – a ×  xstart  

Note: start may be 1, and end may be 2. 

Direct method for drawing lines can be shown in algorithm (4). 

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H.W.: Write complete program in order to draw arbitrary line 

using direct method? 

 

Algorithm (4):  

Input: Xstart,Ystart, Xend, Yend. 

Output: Arbitrary line. 

{  

a=
start
x

end
x

start
y

end
y

−

−
 ;  

     b= ystart – a ×  xstart ; 

     for x= Xstart  to   Xend 

         { 

             Y=a ×  x + b + 0.5; 

                   putpixel (x , y , color); 

         } 

} 
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b- DDA (Digital Differential Analyzer) Line Algorithm: 

One technique for obtaining a straight line is to solve the 

differential equation for straight line. 

y= a ×  x + b      ZZ. straight line equation 

 

∴ 
x

y

∂

∂
= a = constant         or       

x

y

∆

∆
= 

12

12

xx

yy

−

−
   x

xx

yy
y ∆

−

−
=∆∴

12

12  

where:  a=slope, y2=yend, y1=ystart, x2=xend, x1=xstart 

But:  yi+1 = yi + y∆  

Where: yi is the initial value for a given step along the line. 

yi+1 is the second value along the line (after yi). 

Therefore: yi+1 = yi +  
12

12

xx

yy

−

−
 x∆  

Where: (x1,y1) and (x2,y2) are the end points of the required 

straight line. 

 

In fact the last equation represents a recursion relation for 

successive values of y along the required line, which is called 

DDA. 

 

A simple algorithm for DDA is clarified in algorithm (5), 

assuming that: 

1- Sign is a function returns (-1,0,+1) as it's argument is 

(<0,=0,>0). 

2- Round is a function approximates float (real) numbers to 

nearest larger number. 
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H.W.: Write complete program in order to draw arbitrary line 

using DDA algorithm? 

 

Algorithm (5):  

Input: x1, y1, x 2, y2. 

         i=1 

Output: Arbitrary line. 

{  

If (abs(x2-x1)≥abs(y2-y1))                                         

      length= abs(x2-x1); 

else 

      length= abs(y2-y1);  

x∆ = 
length

xx )( 12 − ;  

length

yy
y

)( 12 −=∆ ; 

x=x1+0.5 ×  sign ( x∆ ); 

y=y1+0.5 ×  sign ( y∆ ); 

     while (i≤ length) 

         { 

      putpixel(round(x),round(y),color); 

      x=x+ x∆ ; 

      y=y+ y∆ ; 

      i=i+1; 

         } 

} 
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Example: Consider the line from (0,0) to (5,5). Use the simple 

DDA to draw this line? 

Initial calculations: 

x1=0, y1=0, x2=5, y2=5. 

abs(x2 - x1)=5,  abs(y2 - y1)=5. 

Length=5.   

x∆ = 
length

xx )( 12 − =
5

5
 =1 

length

yy
y

)( 12 −=∆ =
5

5
 =1 

x=x1+0.5 ×  sign ( x∆ )=0+0.5×sign(1)=0.5 

y=y1+0.5 ×  sign ( y∆ )=0+0.5×sign(1)=0.5 

Incrementing through the main loop yields: 

 

i Plot x y 

  0.5 0.5 

1 (1,1)   

  1.5 1.5 

2 (2,2)   

  2.5 2.5 

3 (3,3)   

  3.5 3.5 

4 (4,4)   

  4.5 4.5 

5 (5,5)   

  5.5 5.5 

6 Stop   
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        0      1    2    3     4     5     6                      x 

        1 

        2 

        3 

        4 

        5 

        6    y  

NOTE: 

The DDA algorithm is faster than the direct use of the line 

equation since it calculates points on the line without any 

floating point multiplication. However, a floating point addition is 

still needed in determining each successive point. Furthermore, 

cumulative error due to limited precision in the floating point 

representation may cause calculated points to drift away from 

their true position when the line relatively long. 
 

c- Bresenham's Line Algorithm: 

This algorithm seeks to select the optimum screen locations 

to represent a straight line. To accomplish this algorithm take, 

as an example, a line in the first quadrant (i.e. a line with slope 

between 0 and 1).  

                 y                                                                                   

                                  (1,1)                  line with slope 1    

    (y=1) (0,1)                           }e1          line with slope between (0-1)    

            3θ                      1θ            e2 
                (0,0)   2θ             (1,0)(x=1)                 x        line with slope 0 
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slope= 
12

12

xx

yy

−

−
= 

x

y

∆

∆
= tan(θ ) 

e=e+ 
x

y

∆

∆
, where: e=error  

if we initialize the value  (e = -
2

1
)  

Then we have two cases: 

1-              tan( 2θ ) ≤   
x

y

∆

∆
(slope)  ≤  tan( 1θ ) 

 tan(26o)  ≤  
x

y

∆

∆
(slope)  ≤  tan(45o) 

  
2

1
    ≤  

x

y

∆

∆
(slope)  ≤  1 

  e=e+ 
x

y

∆

∆
,  e= -

2

1
 + (

2

1
→1), ∴ e ≥  0,   plot (1,1) 

2-            tan( 3θ ) ≤   
x

y

∆

∆
(slope)  < tan( 2θ ) 

 tan(0o)  ≤  
x

y

∆

∆
(slope)  < tan(26o) 

  0   ≤  
x

y

∆

∆
(slope) < 

2

1
 

  e=e+ 
x

y

∆

∆
,  e= -

2

1
 + (0→

2

1
), ∴ e < 0,   plot (1,0) 

Conclusion: 

1- If the slope of the required line through (0,0) > 
2

1
, then 

it is intercept with line x=1, and will be closer to the 

line y=1 than to the line y=0. Hence, the screen point 

at (1,1) is better to represent the path of the line than 

that at (1,0).  

2- If the slope of the required line through (0,0) < 
2

1
 , 

then the opposite is true. 
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3- For the slope=
2

1
, the algorithm chooses point (1,1) to 

plot. 

Bresenham's line algorithm is shown in algorithm (6). 

 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

H.W.: Write complete program in order to draw arbitrary line 

using Bresenham's algorithm? 
 

Example: Consider the line from (0,0) to (5,5). Use Bresenham's 

algorithm to draw this line? 

Initial calculations: 

x=0, y=0.  x∆ = x2-x1=5, y∆ = y2-y1=5, 
x

y

∆

∆
=1. 

   e=
x

y

∆

∆
-

2

1
=1-

2

1
=

2

1
.  

Incrementing through the main loop yields: 

Algorithm (6):  

Input: x1, y1, x 2, y2. 

Output: Arbitrary line. 

{     x= x1; y= y1; x∆ = x2-x1; y∆ = y2-y1; 

  e=
x

y

∆

∆
-

2

1
; 

  for i=1 to x∆   

  {    putpixel(x,y,color); 

       while(e≥0) 

       { y=y+1; e=e-1; } 

       x=x+1; 

       e=e+ 
x

y

∆

∆
;     }  

} 
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 i plot e x y notes 

  0.5 0 0  

1 (0,0)     

  -0.5 0 1 e=e-1 

y=y+1 

  0.5 1 1 e=e+1 

x=x+1 

2 (1,1)     

  -0.5 1 2 e=e-1 

y=y+1 

  0.5 2 2 e=e+1 

x=x+1 

3 (2,2)     

  -0.5 2 3 e=e-1 

y=y+1 

  0.5 3 3 e=e+1 

x=x+1 

4 (3,3)     

   

-0.5 

 

3 

 

4 

 

e=e-1 

y=y+1 

  0.5 4 4 e=e+1 

x=x+1 

5 (4,4)     

  -0.5 4 5 e=e-1 

y=y+1 

  0.5 5 5 e=e+1 

x=x+1 
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        0      1    2    3     4     5     6                      x 

        1 

        2 

        3 

        4 

        5 

        6 

            y  

 

Note that the point (5,5) is not activated, and it may be activated 

by changing the for loop to (0→ x∆ ) or (1→ x∆ +1).   

 

 

Note: 

The command ( line(x1,y1,x2,y2) ) can draw a straight line 

between two points (x1,y1) and (x2,y2). 

 

 

H.W.: Write complete program in order to draw a line with 

different colors using the commands (line(x1,y1,x2,y2)) and 

(setcolor(color))? 
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Circle Drawing 

The circle is a special kind of curves. The circle is a closed 

curve with same starting and ending point. Circles are probably 

the most used curves in elementary graphics.  

 

 

 

 

 

A circle is specified by the coordinates of its center (xc,yc) 

and its radius r as shown above. The most familiar equation of 

the circle is:  (x - xc)
2 + (y - yc)

2=r2 , y= yc ±
22 )( cxxr −−   

If the center of the circle is at the origin (0,0) the above 

equation reduces to: X2+y2=r2 , y= 22 xr −  for y≥0. 

Where: x,y →are coordinates of the circle center point. 

r →  is the radius of the circle. 

 

Circle may be drawn using the command putpixel() and the 

command circle(x,y,r). To draw a circle, increment the x values 

by one unit from (-r) to (+r) and use circle equation to solve y 

values at each step. This method of drawing a circle is inefficient 

for the following reasons:  

1- The large amount of processing time required to perform 

squaring and square root operations repeatedly. 

2- The resulted circle is dense and flat near the y-axis, and 

has large gaps near x-axis. 

 

 r  

 
xc,yc 
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H.W.: Write complete program in order to draw a circle using the 

command putpixel() by substituting in circle equation? 

 

H.W.: Write complete program in order to draw a circle using the 

command circle()? 

H.W.: Write complete program in order to draw a group of 

circles, that have same center point, using the command 

circle()? 

H.W.: Write complete program in order to draw a group of 

circles, that have different center points but with same 

radius, using the command circle()? 

Several algorithms are proposed for drawing circles as 

clarified below. 
 

Incremental Polar Circle Algorithm:  

One method of eliminating the problem of plotting points 

evenly spaced around the circle is to use polar representation of 

a circle:      x= xc+ r cosθ ,     y = yc + r sinθ .  

Where: θ  →  is measured in radians from 0 to 2π  

arc length= r θ× , r=radius (constant) 

                                      (x3,y3) 

                                               (x2,y2) 

                                                                                           

                                                   (x1,y1) 

 

 

 

 

                                           

                               r 

                        dθ  

                           dθ   
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Equal increments of θ  =dθ  which is result in equal spacing 

(arc length) between successively plotted points as shown 

above. 

One problem of using polar representation to draw a circle is 

that, on most computers, the repeated calculation of values for 

cosθ  and sinθ  consumes a significant amount of processing 

time. We can speed up the computation by using an incremental 

method that calculates the points on a circle from the 

coordinates of the previously calculated points. This technique 

requires only an initial calculation of the sin and cos. For clarity 

of explanation, the center of the circle is placed at the origin. 

Two consecutive points (x1,y1) and (x2,y2) on a circle are related 

by: 

x1= r cosθ ,     y1 = r sinθ .  

x2= r cos(θ +dθ ),     y2 = r sin(θ +dθ ).  

Where dθ →  is a fixed angular step size. 

Using trigonometry, we get: 

x2=r cosθ   cos dθ  - r sinθ  sin dθ  

y2=r sinθ   cos dθ  + r  cosθ  sin dθ  

Substituting x1 and y1 at last two equations we get: 

 

x2=  x1 cos dθ  -  y1 sin dθ     

y2=  y1 cos dθ  +   x1 sin dθ  

 

These equations are the incremental equations. 

To generate a circle we start at x1=0, y1=r, and fixed angle 

increment dθ , we can compute all points on the circle by 

calculating  cos dθ  and  sin dθ  only once. Before using these 

equations to draw a circle, let's discuss symmetry, if a point (a,b) 
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lies on the circle   X2+y2=r2  centered at the origin, then so do 

seven other points: (-a,b), (a,-b), (-a,-b), (b,a), (-b,a), (b,-a), (-b,-a) 

as shown in following figure: 

 

                       (b,-a)                                  (b,a) 

                     

                 (-a,b)                                              (a,b) 

           

                (-a,-b)                                             (a,-b) 

 

                       (-b,-a)                               (-b,a) 

 

To verify this, substitute all eight points into the circle equation. 

To find the symmetric points on a circle centered at (xc,yc) add xc 

to the first coordinate and yc to the second coordinate for each 

of the eight points. 

Incremental polar circle algorithm is shown in algorithm (7). 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm (7):  

Input: xc, yc, r. 

Output: circle. 

{   dθ =
r

1
; ct=cos(dθ ); st=sin(dθ ); 

x=0; y=r; 

while ( y ≥  x) 

{ 

putpixel(floor(xc+x),floor(yc+y),color); 

putpixel(floor(xc-x),floor(yc+y),color); 

putpixel(floor(xc+x),floor(yc-y),color); 

putpixel(floor(xc-x),floor(yc-y),color); 
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H.W.: Write complete program in order to draw a circle using 

Incremental polar circle algorithm? 

 

Bresenham's Circle Algorithm:  

If a circle is to be plotted efficiently, the use of trigonometric 

and power functions must be avoided. And, as with generation 

of a straight line, it is desirable to perform the calculations 

necessary to find the scan converted points with only integer 

addition, subtraction, and multiplication. Bresenham's circle 

algorithm allows these goals to be met. 

Scan converting a circle using Bresenham's algorithm works 

as follows. If the eight way symmetry of a circle is used to 

generate a circle, points will only have to be generated through a 

450 angle. And if points are generated from 900 to 450, moves will 

be made only in the (+x) and (–y) directions.  

900 

Continue of Algorithm (7):  

 

putpixel(floor(xc+y),floor(yc+x),color)

; 

putpixel(floor(xc-y),floor(yc+x),color); 

putpixel(floor(xc+y),floor(yc-x),color); 

putpixel(floor(xc-y),floor(yc-x),color); 

xtemp=x; 

x= x ×  ct – y ×  st; 

y= y ×  ct + xtemp ×st; 

} 

} 
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             -y       450
 

 

 

 

                            + x  

   

                                                             450 

                                             

                   

                              

                                      

                        

                  

                 

                    

The best approximation of the true will be described by those 

pixels in the raster that fall the least distance from the true 

circle. Examin the following figure: 

                                            y    

                            T  (xi +1,yi) 

                       22)1( ii yx ++                 S (xi +1,Yi -1) 

            22 )1()1( −++ ii yx  

       r 

                                                                                            x 
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Notice That, if points are generated from 900 to 450 each new 

point closest to the true circle can be found by taking either of 

two actions: 

1- Move in the x-direction one unit. 

Or  

2- Move in the x-direction one unit and move in the y-direction 

one unit. 

Therefore, a method of selecting between these two choices is 

all that necessary to find points closest to the true circle. 

Assume that: 

D(T)=The distance from the origin to pixel (T) squared minus 

the distance to the true circle squared. 

D(S)= The distance from the origin to pixel (S) squared 

minus the distance to the true circle squared. 

As the coordinates of (T) are (xi +1,yi) and those of (S) are 

(xi+1,Yi -1 ), following expressions can be developed: 

D(T)= (xi +1)2 + yi
2 - r2 

D(S)= (xi+1)2 + (yi -1 )2 – r2 

 Since D(T) will always be positive (T is outside the true 

circle) and D(S) will always be negative  (S is inside the true 

circle), a decision variable (di) may be defined as follows: 

di= D(T)+D(S) 

Therefore: 

di= (xi +1)2 + yi
2 - r2+(xi+1)2 + (yi -1 )2 – r2 

di= 2 (xi +1)2+ yi
2+(yi -1 )2 – 2 r2 

when (di < 0) we have |D(T)| < |D(S)| and pixel T is chosen. 

When (di ≥  0), we have  |D(T)| ≥  |D(S)|  and pixel S is 

selected. 

We can also write decision variable di+1 for the next step: 
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di+1 = 2 (xi+1 +1)2+ y2
i+1+(yi+1 -1 )2 – 2 r2 

Hence: 

di+1- di=2(xi+1 +1)2+ y2
i+1+(yi+1-1)2 – 2 r2-2(xi +1)2- yi

2-(yi -1)2+ 2r2 

di+1- di=2(xi+1 +1)2+ y2
i+1+(yi+1-1)2-2(xi +1)2- yi

2-(yi -1)2 

Since: xi+1= xi + 1   then 

di+1- di=2x2
i+1 +4 xi+1+ 2+ y2

i+1+(yi+1-1)2-2(xi +1)2- yi
2-(yi -1)2 

 

di+1- di=   4 xi+4  +2+ y2
i+1+(yi+1-1)2- yi

2-(yi -1)2 

di+1-di=4xi+6+y2
i+1+y2

i+1-2yi+1+1-yi
2-y2

i+2yi-1 

di+1 =di+4xi+2(y2
i+1-yi

2)-2(yi+1-yi)+6 

If T is the chosen pixel (di<0) then: (yi+1 = yi ) therefore: 

di+1 =di+4xi+2(y2
i+1-yi

2)-2(yi+1-yi)+6 = di+4xi+2(0)-2(0)+6 

di+1 = di+4xi+6 

On the other hand, if S is the chosen pixel (di ≥  0) then :(yi+1= yi -1) 

Therefore: 

di+1 =di+4xi+2(y2
i+1-yi

2)-2(yi+1-yi)+6  

di+1 =di+4xi+2((yi-1)2-yi
2)- 2(yi-1-yi)+6  

di+1 =di+4xi+2((yi
2-2yi+1)-yi

2)+2+6 

di+1 =di+4xi-4yi+2+2+6 

 di+1 =di+4(xi-yi)+10 

Hence we have: 

                           di+4xi+6        if   (di<0) 

 

di+1 = 

                           

                            di+4(xi-yi)+10   if  (di ≥  0)      

Finally, we set (0,r) to be the starting pixel coordinates and 

compute the base case value d1, we have: 

d1= 2 (xi +1)2+ yi
2+(yi -1 )2 – 2 r2 
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d1= 2 (0 +1)2+ r2+(r -1 )2 – 2 r2 

d1= 2+ r2+r2-2r+1– 2 r2 

d1= 3 - 2 r 

We can now summarize the algorithm for generating all the pixel 

coordinates in the 900 to 450 that are needed when scan 

converting a circle of radius r as shown in algorithm (8): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H.W.: Write complete program in order to draw a circle using 

Bresenham's circle algorithm? 

H.W.:  Trace and draw a circle using Bresenham's circle 

algorithm for circle of r=10? 

 

 

 

Algorithm (8):  

Input: r. 

Output: circle. 

{   x=0; y=r;d=3-2r; 

while ( x ≤  y) 

{  putpixel(x,y,color); 

    if (d<0) 

         d=d+4x+6; 

   else 

      {  d=d+4(x-y)+10; y--;} 

    x++ 

} 

} 
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Geometric Transformations 

Two-Dimensional Transformations 

A graphic system should allow the programer to define 

pictures that include a variety of transformations. For example, 

he should be able to magnify a picture so that detail appears 

more clearly, or reduce it so that more of the picture is visible.  

Transformation: is a single mathematical entity and as such 

can be denoted by a single name or symbol (translation, 

rotation, or scaling). Each of these transformations is used to 

generate a new point ( x , y ) from the coordinates of a point (x,y) 

in the original picture description. If the original definition 

includes a line, it suffices to apply the transformation to the 

endpoints of the line and display the line between the two 

transformed endpoints. 
 

1- Translation: 

The form of translation transformation is: 

x =x+Tx ,  y =y+Ty 

Translation transformation can be represented in a uniform 

way by a 3×3 matrix as shown below: 

[ ]1yx = [ ]1yx

















1

010

001

TyTx

 

Example: 

Consider  triangle defined by its three vertices (20,0), (60,0), 

(40,100) being translated 100 units to the right and 10 units up. 

What are the new vertices? 

Tx=100, Ty=10 
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The new vertices are: 

(20,0)→ (20+100,0+10) → (120,10) 

(60,0) → (60+100,0+10)→ (160,10) 

(40,100) → (40+100,100+10) → (140,110) 

or: 

[ ]1yx = [ ]1020

















110100

010

001

= [ ]110120  

[ ]1yx = [ ]1060

















110100

010

001

= [ ]110160  

[ ]1yx = [ ]110040

















110100

010

001

= [ ]1110140  

H.W.: Draw the vertices of the above example before and after 

the translation?  
 

2- Rotation: 

To rotate a point (x,y) through a clockwise angle θ about 

the origin of the coordinate system, we write: 

x =x cosθ + y sinθ  ,  y = -x sinθ + y cosθ  

Rotation transformation can be represented in a uniform way 

by a 3×3 matrix as shown below: 

[ ]1yx = [ ]1yx















 −

100

0cossin

0sincos

θθ

θθ

 

Example: 

Consider  triangle defined by its three vertices (20,0), (60,0), 

(40,100) being rotated 450 clockwise about the origin. What are 

the new vertices? 
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The new vertices are: 

(20,0)→ x =20cos45+0 sin45=14.14 

          →   y =-20sin45+ 0 cos45=-14.14 

          →  (14.14, -14.14) 

(60,0) → x =60cos45+0 sin45=42.43 

          →   y =-60sin45+ 0 cos45=-42.43 

          →  (42.43, -42.43) 

(40,100) → x =40cos45+100 sin45=98.99 

               →   y =-40sin45+ 100 cos45=42.43 

               →  (98.99, 42.43) 

or: 

[ ]1yx = [ ]1020















 −

100

045cos45sin

045sin45cos

= [ ]114.1414.14 −  

[ ]1yx = [ ]1060















 −

100

045cos45sin

045sin45cos

= [ ]143.4243.42 −  

[ ]1yx = [ ]110040















 −

100

045cos45sin

045sin45cos

= [ ]143.4299.98  

H.W.: Draw the vertices of the above example before and after 

the rotation?  
 

3- Scaling: 

The form of the scaling transformation is: 

x =xSx ,  y =ySy 

The scaling transformation can be used for a variety of 

purposes. If the picture is to be enlarged to twice it's original 

size we might choose Sx=Sy=2. Notice that the elargement is 

relative to the origin of the coordinate system. 
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scaling transformation can be represented in a uniform way 

by a 3×3 matrix as shown below: 

[ ]1yx = [ ]1yx

















100

00

00

Sy

Sx

 

Example: 

Consider  triangle defined by it's three vertices (20,0), (60,0), 

(40,100) being twice enlarged.. What are the new vertices? 

          Sx=Sy=2 

The new vertices are: 

(20,0)→ (20×2,0×2) → (40,0) 

(60,0) → (60×2,0×2)→ (120,0) 

(40,100) → (40×2,100×2) → (80,200) 

or: 

[ ]1yx = [ ]1020

















100

020

002

= [ ]1040  

[ ]1yx = [ ]1060

















100

020

002

= [ ]10120  

[ ]1yx = [ ]110040

















100

020

002

= [ ]120080  

H.W.: Draw the vertices of the above example before and after 

the scaling?  

Note: If  Sx and Sy are not equal, they have the effect of distorting 

pictures by elongating or shrinking them along the 

directions parallel to the coordinate axes. For instance the 

foolowing figure: 
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Can be distorted as shown in figures below: 

 

 

 

 

 

 

 

 

4- Reflection (Mirroring): 

Reflection transformation can be considered as a special 

case of scaling, because the mirror image of an object can be 

generated using negative values of Sx or Sy. Mirror images of 

figure below: 

 

 

 

 

Can be generated as shown below: 

 

x =x(-Sx) ,  y =ySy                              [ ]1yx = [ ]1yx















−

100

00

00

Sy

Sx
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  x =xSx ,  y =y(-Sy)                            [ ]1yx = [ ]1yx

















−

100

00

00

Sy

Sx

 

 

 

 

   

x =x(-Sx) ,  y =y(-Sy)                        [ ]1yx = [ ]1yx

















−

−

100

00

00

Sy

Sx

 

 

 

H.W.: Write complete program in order to perform all types of 

transformations on a line between (0,1) and (5,6)? 

 

Example: 

The triangle with vertices ((20,0),(60,0),(40,100)) is rotated 

through 900, and then translated with Tx=-80,Ty=0. What is the 

new vertices of the resulted figure? 

Rotation: 

x =x cosθ  + y sinθ  = x cos90 + y sin90= y 

y = - x sinθ  + y cosθ  = - sin90 + y sin90= -x  

Translation: 

x  = x + Tx = y – 80 

y  = y  + Ty = -x       

then:  

(20,0): x  = y – 80 =0-80=-80, y  = -x = -20 →  (-80,-20) 

(60,0): x  = y – 80 =0-80=-80, y  = -x = -60 →  (-80,-60) 
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(40,100): x  = y – 80 =100-80=20, y  = -x = -40 →  (20,-40) 

 

H.W.: Draw the vertices of the above example before and after 

the scaling? 

 

Example:  

Perform a (450) rotation of triangle A(0,0), B(1,1), C(5,2) about 

the origin using matrix representation? 

Representation of triangle:  
















111

210

510

 

Rotation matrix= R45 = 














 −

100

045cos45sin

045sin45cos

= 
























−

100

0
2

2

2

2

0
2

2

2

2

 

Then: 

[ ] [ ] =×= CBARCBA 45  
























−

100

0
2

2

2

2

0
2

2

2

2

 ×
















111

210

510

 = 

























111
2

27
20

2

23
00

 

Thus: ),0,0(=A )
2

27
,

2

23
(),2,0( == CB  

 

 

H.W.: Draw the vertices of the above example before and after 

the scaling? 
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Display File Segmentation 

(Writing and Reading Graphics Data Files) 

Dynamically changing displayed pictures are attractive 

because they are so unlike the static pictures we draw on paper. 

But, it is not possible to change the dislayed picture fast enough 

to produce a smooth transition from one picture to the next. The 

dynamic graphics demands speed of regenration of successive 

pictures. Before achieving  this speed, we should consider what 

else is needed. Applications of computer graphics sometimes  

require that the complete  picture  be redrawn at each change, 

more frequently only a small part of the picture changes and the 

rest remains unchanged. The second requirement for dynamic 

computer graphics is the ability to make selective modifications 

to the picture, i.e., to add new parts, move them around, and 

delete them without disturbing the rest.  

Three basic functions are required for dynamic graphics: 

(addition, replacement, and deletion of information). 

Display file:     

An image is described by a sequence of primitive graphics 

commands. The collection of graphics commands that represent 

the image is called a display file, as shown in figure below: 

                 y                                                   

                           (1,7)                          (6,7)  

                            7 

                            6 

                            5                                                  Square Object and it's coordinates  
                            4 

                            3 

                            2 

                            1        (1,2)                          (6,2)                               

                                    1    2    3    4    5    6                                         x  
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In order to draw the square in previous figure using line 

procedures: 

 

Command 

 

  

Line (1,2) (1,7) 

Line (1,7) (6,7) 

Line  (6,7) (6,2) 

Line (6,2) (1,2) 

Type(A) 

 

Command  

Moveto (1,2) 

Linerel (0,5) 

Linerel (5,0) 

Linerel (0,-5) 

Linerel (-5,0) 

Type(B) 

 

Command  

Moveto (1,2) 

Linerel (1,7) 

Linerel (6,7) 

Linerel (6,2) 

Linerel (1,2) 

Type(C) 
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Segmented Display File: 

Since the display file consists of the graphics commands 

necessary to construct an image, dividing the display file into 

distinct logical units, or segments, partitions the image into 

distinct parts. Each display file segment consists of a sequence 

of graphics commands treated as one unit. The portion of the 

image represented by a segment can be translated, rotated, 

scaled or transformed in any other manner without effecting any 

other segment as shown below: 

Y 

 

 

 

 

 

                Segment1      Segment2     Segment3 

  

                              Display File Segments                                 x 

The segment is a unit of the display file; thus the use of 

segments by the programmer requires also to recogonize the 

existance of the display file as a stored representation of the 

displayed image.  
 

Functions for the Segmenting the Display File: 

In sequentail disk files, we open a file before we add data to 

it, and we close the file when have added the last item and the 

file is complete. To change the contents of a file, we open it 
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again, add the new data to replace the old, and close the new 

file. To get a rid of a file, we delete it.  

The very same operations are ideal for manipulating display 

file segments. To create a new segment, we open it and then call 

graphic primitives to add to the segment the lines and and the 

text to be displayed; then we close the segment. The same 

sequence of operations applied to an existing segment will 

cause that segment to be replaced by a new one. To remove a 

segment from the display file, we delete it. Thus we need only 

three basic functions: 

1- Open Segment (n): open a display file segment named n. 

2- Close Segment (n): close the opened segment. 

3- Delete Segment (n): remove from the display file the 

segment named n. 

To illustrate the use of these functions, suppose we wish to 

display a triangle as shown in figure below: 

 

 

 

 

 

We may use the following statements: 

 

 

 

 

 

  

  

  
    (150,150) 

 

 

 
(100,100)      (200,100) 

initGraphics;    0   0   400    400     0 
setviewport(left,top,right,bottom,clip); 
opensegment(t); 
moveto(100,100); 
linerel(150,150); 
linerel(200,100); 
linerel(100,100); 
closesegment; 
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Now the display file contains the single segment (t), if it is 

originally empty, as shown in following figure: 

 

 

 

 

 

We can add a square as shown in figure below: 

 

 

 

 

 

 

The following statements are used for adding square: 

 

 

 

 

 

 

 

 

 

 

t 

 

opensegment(s); 
moveto(300,100); 
linerel(300,200); 
linerel(400,200); 
linerel(400,100); 
linerel(300,100); 
closesegment; 
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Now the display file contains the two segments (s) and (t) as 

shown in figure below: 

 

 

 

 

 

 

 

We can redefine the triangle as follows, to achieve the 

following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t 

 

 

 

S 

 

opensegment(t); 
moveto(100,100); 
linerel(150,300); 
linerel(200,100); 
linerel(100,100); 
closesegment; 
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The original segment (t) has been replaced by a new one, as 

shown in following figure: 

 

 

 

 

 

 

 

 

Finally we can erase the triangle using (deletesegment(t)) as 

shown in figure below: 

 

 

 

 

 

 

The display file now contains only the single segment (s), as 

shown in figure below: 

 

 

 

 

 

 

 

 

 
t 

 

 

 

S 

 

 

 

S 
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Segment Table: 

The display file is usually composed of several segments. In 

order to reference the correct segment, a unique name is 

assigend to each. Once we have the name of the segment, we 

must find the segment's location in the display file. We also need 

to know the number of display files entries for this segment, 

otherwise we would not know where a particular segment ends. 

The location and the length of a segment are two additional 

attributes of a segment. It is convenient to store the names of 

the segments and their corresponding attributes in a data 

structure called a segment table. We can reference and 

manipulate a segment by locating its entry in the segment table.    

Example: 

Construct display file and segment table for the image 

below: 
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Display File 

 Command Op1 Op2 

1 Moveto 2 3 

2 Linerel 3 3 

3 Linerel 3 6 

4 Linerel 4 6 

5 Linerel 4 7 

6 Linerel 1 7 

7 Linerel 1 6 

8 Linerel 2 6 

9 Linerel 2 3 

10 Moveto 6 3 

11 Linerel 7 3 

12 Linerel 7 7 

13 Linerel 6 7 

14 Linerel 6 3 

15 Moveto 9 3 

16 Linerel 11 3 

17 Linerel 11 4 

18 Linerel 10 4 

19 Linerel 10 7 

20 Linerel 9 7 

21 Linerel 9 3 
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Segment Table 

Sn 

Segment 

Name 

Ss 

Segment 

Start 

SL 

Segment 

Length 

Visible Trans-

X 

Trans-

Y 

Sx Sy R 

1 1 9 True 0 0 1 1 0 

2 10 5 True 0 0 1 1 0 

3 15 7 True 0 0 1 1 0 
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Some Drawings related to Circle 

1- Ellipse: 

An ellipse is a variation of a circle. Stretching a circle in one 

direction produces an ellipse. The polar equations for this type 

of ellipse centered at (Xc,Yc) are: 

X=Xc + a  cos θ   ZZZ..(1) 

Y=Yc + b sin θ   ZZZZ.(2) 

Where the angle θ  assumes values between 0 and 2π  

radians as shown in figure: 

  

  

  

   

 

 

 

 

The values of a and b affect the shape of the ellipse. If (b>a), 

the ellipse is longer in the y direction. If (b<a) the ellipse is 

longer in the x direction.  

 The ellipse can be drawn using four points symmetry: if 

(c,d) lies on the ellipse, so do the points ((-c,d), (c,-d), and (-c,-

d)). 

From equations (1 and 2), the incremental equations for an 

ellipse are derived as follows: 

X1= a  cos θ  ;  Y1= b sin θ   

X2=a cos(θ +dθ )=a [cosθ  . cos dθ  - sinθ  . sin dθ ] 

= a cosθ  . cos dθ  - a sinθ  . sin dθ  

=X1 cos dθ  - a  
b

b
 sinθ  . sin dθ =  

∴ X2=X1 cos dθ  - 
b

a
 Y1 sin dθ   ZZ.(3) 

                     b 

                                       θ  

                (Xc,Yc)             a                        
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Y2= b sin(θ +dθ )=b [sinθ . cos dθ  + cosθ . sin dθ ] 

= b sinθ . cos dθ  + b cosθ . sin dθ  

= Y1 cos dθ  + b cosθ . sin dθ  

= Y1 cos dθ  + b 
a

a
 cosθ . sin dθ  

∴Y2 = Y1 cos dθ  +  
a

b
 X1. sin dθ  ZZZ.(4) 

Equations (3 and 4) are the incremental equations for ellipse.  

             

Note: To draw an ellipse using (C or C++) you can use the 

function: ellipse(XE,YE,Stangle,Endangle,Xrad,Yrad) 

Where XE,YE: are coordinates of the ellipse center. 

Stangle: is starting angle. 

Endangle: is ending angle. 

Xrad,Yrad: are the two radii of the ellipse. 

  

 

H.W.: Write complete (C or C++) program in order to draw the 

following figure using the function ellipse()? 
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2- Spiral: 

A spiral is another variation of a circle. Spirals can be 

plotted by gradually increasing the radius when plotting a circle. 

The spiral shown in following figure can be produced using 

parametric equations of the circle.                                                                             

 

 

It does this by incrementing the radius while incrementing 

the polar angle. The initial and final values of the radius are 

arbitrary and affect the size and the number of loops in the 

spiral. The algorithm of the spiral using polar equations can be 

shown in the algorithm (10).  
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H.W.: Write complete (C or C++) program in order to draw a 

spiral using polar Algorithm? 

 

 

3- Arcs: 

The arc is part of a circle. But, the arc has starting point 

differs from its ending point. (C or C++) compiler has three 

functions to draw the arcs: 

 

a- Arc(Xa,Ya,Stangle,Endangle,Radius) 

Where Xa, Ya: are coordinates of the arc center. 

Stangle: starting angle for the arc. 

Endangle: ending angle for the arc. 

Radius: radius of the arc. 

Algorithm (10):  

Input: Xc,Yc, initial radius, final radius. 

Output: spiral. 

{  

radius=initial radius; theta=0; 

Xinit=initial radius ×cos (theta); 

Yinit=initail radius ×sin(theta); 

moveto(ceil(Xc+Xinit),ceil(Yc+Yinit)); 

while(initial radius<final radius) 

{ 

theta=theta+0.1; 

initial radias=initial radius+0.1; 

X=initial radius ×  cos(theta); 

Y=initial radius ×  sin(theta); 

Putpixel(ceil(Xc+X),ceil(Yc+Y),color);   

  } 

} 
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b- Pieslice(Xp,Yp,Stangle,Endangle,Radius) 

Where Xp,Yp: are coordinates of arc center. 

Stangle: starting angle for the arc. 

Endangle: ending angle for the arc. 

Radius: radius of the arc. 

 

The function piesliece() draws an arc, with ability to fill the 

space inside the arc by color and pattern. This function is 

commonly used with business graphics in order to draw 

pie chart. 

 

 

 

c- Sector (X,Y,M,N,a,b)  

Where X,Y: are coordinates of arc center. 

M: starting angle for the arc. 

N: ending angle for the arc. 

A,b: are radii of the arc. 

The arc that is drawn by the function sector() contains 

two radii, which is similar to ellipse. Therefore, the 

function draws an arc which is a part of ellipse.  
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H.W.: Write complete (C or C++) program in order to draw the 

following figure using the function arc()?Repeat with 

function pieslice()? 

       

                                                                M=30o 

  
 
                                                                 N=330o 
 
 

 

H.W.: Write complete (C or C++) program in order to draw the 

following figure using the function sector()? 
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Some Drawings related to Line 

 

Polygons: 

Polygons are figures consist of certain number of straight 

lines, as triangles, rectangles, parallelograms, pentagons, 

and..etc.. In (c or c++) compiler the function 

drawpoly(number,addresslist) is used to draw polygons.  

Where number: is the number of points in a list. 

Addresslist: are the addresses of points in a list. This 

list contains the starting and ending points 

(for every line at the polygon).  

  

However, The command rectangle (left,top,right,bottom) is used 

to draw the rectangle. This command has four variables: 

Left: specify the horizontal coordinate (x) for upper point. 

TOP: specify the vertical coordinate (y) for upper point. 

Right: specify: the horizontal coordinate (x) for lower point. 

Bottom: specify the vertical coordinate (y) for lower point.   

 

                       (left,top) 

 

 

 

                                                                              (right,bottom) 

 

 

H.W.: Write complete (C or C++) program in order to draw the 

following figures using the function drawpoly()? 
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Clipping and Windowing 

Many graphics application programs give the user the 

impression of looking through a window at a very large picture. 

To display an enlarged portion of a picture we must  

not only apply the appropriate scaling and translation but 

identify the visible parts of the picture for inclusion in the 

displayed image. The correct way to select visible information 

for display is to use clipping, a process which divides each 

element of the picture into its visible and invisible portions, 

allowing the invisible portion to be discarded. Clipping can be 

applied to a variety of different types of picture elements: 

vectors, curves of various kinds, and even polygons. The  

basis for these clipping opertions is a simple pair of inequalities 

that determine whether a point (x,y) is visible or not:  

xleft ≤  x ≤  xright  ,  ybottom ≤  y  ≤  ytop 

Where xleft, xright, ybottom, ytop are the positions of the edges of the 

screen. These inequalities provide us with a very simple method 

of clipping pictures on a point by point basis; we substitute the 

coordinates of each point for x and y and if the point fails to 

satisfy either inequality; it is invisible. It would be quite 

inappropriate to clip pictures by converting all picture elements 

into points and using these inequalities; the clipping process 

would take far too long and would leave the picture in a form no 

longer suitable for a line drawing display. We must attempt to 

clip larger elements of the picture. This involves developing 

more powerful clipping algorithms that can be determine the 

visible and invisible portions of such picture elements.  

Window to Viewport Mapping: 
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     (wx,wy) 

     (vx,vy) 

A window is specifiied by four world coordinates: wxmax, 

wxmin, wymax, and wymin as shown in figure below: 

         Y                                  window 

  wymax     

 

 

  wymin 

 

 

 

   

                                      wxmin                   wxmax                 x        

 

         Y                                  viewport 

  vymax     

 

 

  vymin 

 

 

 

   

                                      vxmin                   vxmax                 x        

 

Similarly, a viewport is described by four normalized device 

coordinates: vxmax, vxmin, vymax, and vymin. The objective of 

window to viewport mapping is to convert the world coordinates 

(wx,wy) of an arbitrary point to its corresponding normalized 
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device coordinates (vx,vy). In order to maintain the same relative 

placement of the point in the viewport as in the window, we 

require: 
minmax

min

minmax

min

vxvx

vxvx

wxwx

wxwx

−

−
=

−

−
 and 

minmax

min

minmax

min

vyvy

vyvy

wywy

wywy

−

−
=

−

−
 

Thus: 

minminmax

minmax

min )( vxvxvx
wxwx

wxwx
vx +−

−

−
=  

=vy minminmax

minmax

min )( vyvyvy
wywy

wywy
+−

−

−
 

Note that geometric distortion occur (e.g. squares in the window 

become rectangles in the viewport) whenever the two scaling 

constant differ.  

In (C and C++) there is a function to draw in a part of screen 

which is: setviewport(left,top,right,bottom,clip) 

Where left, top, right, bottom are coordinates of the 

viewport. 

Clip is the possibility of clipping: 

Clip=0→no clipping. 

clip≠ 0→ there is clipping (only the drawing inside the 

viewport is present).   

 

 

Clipping 

Is the possibility to draw part of drawing on the screen. This 

part is inside the area viewport, whereas the rest of the drawing 

which is outside viewport is clipped (is not appear on the 

screen). Note that clipping takes a part of time when we use it 

with any program, because it needs a group of tests in order to 

specify what part to display and what part to delete. 
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H.W. Use setviewport function to draw figure(1) from figure(2)? 

 

        Figure(1)                                                        figure(2) 

 

 

Line Clipping: 

Lines that do not intersect the clipping window are either 

completely inside the window or completely outside the window. 

On the other hand a line that intersects the clipping window is 

divided by the intersection point (s) into segments that are either 

inside or outside the window. The following algorithm provide 

efficient way to dicide the relationship between an arbitrary line 

and the clipping window to find intersection point (s). 

 

 

The Cohen-Sutherland Algorithm for line clipping: 

In this algorithm we divide the line clipping into two phases: 

1- Identify those lines which intersect the clipping window 

and so need to be clipped.  

2- Perform the clipping. 

All lines fall into one of the following clipping categories: 

1- Visible: both end points of the line lie within the window. 

2- Not visible: the line lies outside the window. This will occur 

if the line from (x1,y1) to (x2,y2) satisfies any one of the 

following four inequalities: 
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min

max

min

max

2,1

2,1

2,1

2,1

yyy

yyy

xxx

xxx

<

>

<

>

 

3- Clipping candidate: the line is in neither 1 or 2. 

                         

                                                              D         F 

                                     C 

Ymax                               B                          L 

                                                            K  

                   J          A                   K                   E 

                            J  

      Ymin                              I  

                                                                 I 

 

 

                                      Xmin                                           Xmax     Figure (1) 
 

  

In figure (1), line AB is in category 1 (visible); lines CD and EF 

are in category 2 (not visible); and lines IJ and KL are in 

category 3 (clipping candidate). 

The algorithm employs an efficient procedure for finding the 

category of a line. It proceeds in two steps: 

1- Assign a (4 bit) region code to each endpoint of the line. 

The code is determined according to which of the following 

nine regions of the plane the end point lies in: 
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  Ymax            1001            1000              1010 

 

                       0001             0000               0010 

   Ymin 

                       0101            0100               0110 

                                 Xmin                  Xmax 

  

2- The line is visible if both region codes are (0000), and not 

visible if the bitwise logical AND of the codes is not (0000), 

and a candidate for clipping if the bitwise logical AND of 

the region is (0000).  

For a line in category 3 we proceed to find the intersection point 

of the line with one of the boundaries of the clipping window, or 

to be exact, with the infinite extension of one of the boundaries.  

 

 

                                                B                      D 

  Ymax            1001         B         1000               1010 

                       0001                                     D  

                                   A      0000        D              0010 

   Ymin                   A                      C  

                       0101       0100     C                     0110 

                                 Xmin                  Xmax                   Figure (2) 

 

We choose an endpoint of the line say(x1,y1), that is outside the 

window, i.e., whose region code is not (0000). We then select an 

extended boundary line by observing that those boundary lines 

that are candidates for intersection are the ones for which the 
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chosen endpoint must be (pushed across) so as to change a (1) 

to a (0). This means:  

If bit 1 is 1: intersect with line Y=Ymax. 

If bit 2 is 1: intersect with line Y=Ymin. 

If bit 3 is 1: intersect with line X=Xmax. 

If bit 4 is 1: intersect with line X=Xmin. 

Consider line CD in figure (2). If endpoint C is chosen, then the 

bottom boundary line Y=Ymin is selected for computing 

intersection. On the other hand, if endpoint D is chosen, then 

either the top boundary line Y=Ymax or the right boundary line 

X=Xmax is used. The coordinates of the intersection point are: 

                                      Xi=Xmin or Xmax           if the boundary 

                                      Yi=Y1+m(Xi-X1)            line is vertical 

Or:                                      
m

YY
XX i

i
1

1

−
+=             if the boundary 

                                       Yi=Ymin or Ymax         line is horizontal 

Where ( 
12

12

xx

yy
m

−

−
= ) is the slope of the line. Now we replace 

endpoint (x1,y1) with the intersection point (xi,yi), effectively 

eliminating the portion of the original line that is on the outside 

of the selected window boundary. The new endpoint is then 

assigned an updated region code and the clipped line re-

categorized and handled in the same way. This iterative process 

terminates when we finally reach a clipped line that belongs to 

either category 1 (visible) or category 2 (not visible).  

Example:  Let R be the rectangular window which lower left 

corner is at L(-3,1) and upper right corner is at R(2,6). Use 

Cohen-Sutherland algorithm to clip the line segments at figure 

(3)? 
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    1001                                J(-2,10)        Y               1010 

                                    1000                                D(3,8)  

            I(-4,7)                             B(-1,7)   I3                                                                                                                                      

Ymax=6                                     I2                  R(2,6)                             

      0001                              C(-1,5)                                   0010               

                        I1              E(-2,3)                            figure (3) 

           A(-4,2)                   0000               F(1,2) 

      Ymin=1     L(-3,1)                

                                                            

                                      Xmin=-3       0100                     Xmax=2                             X 

                                                                             0110 

 

 

We place the line segments in their appropriate categories by 

testing the region codes: 

Category 1 (visible): EF  since the region code for both endpoints 

is 0000. 

Category 2 (not visible): IJ  since 1001 AND 1000= 1000 (which is 

not 0000. 

Category 3 (candidates for clipping): AB  since 0001 AND 1000= 

0000, and CD  since 0100 AND 0010= 0000. 

Clipping AB :  

The code for A is 0001. To push the 1 to 0, we clip against 

the boundary line Xmin=-3. Then: 

Xi=Xmin=-3.   

Yi=Y1+m(Xi-X1), m=
12

12

xx

yy

−

−
= 6667.1

3

5

)4(1

27
==

−−−

−
.  

Yi=2+(1.6667)(-3-(-4))=2+1.6667=3.6667. 

The resulting intersection point is I1 (-3,3.6667). We clip (do 

not display) 1AI  and work on BI1 . 
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The code for I1 is 0000. The clipping category for BI1 is 3 since 

0000 AND 1000= 0000.  

Now B is outside the window (i.e. its code is 1000), so we 

push the 1 to 0 by clipping against the line Ymax=6. Then: 

Yi=Ymin or Ymax= Ymax=6. 

m

yy
xx i

i
1

1

−
+= ,  6667.1

)3(1

6667.37

12

12 =
−−−

−
=

−

−
=

xx

yy
m . 

6.1
6667.1

6667.36
3 −=

−
+−=ix   

The resulting intersection point is I2 (-1.6,6). Thus BI2 is 

clipped. The code for I2 is 0000. The remaining segment 21II is 

display since both end points lie in the window (i.e. their codes 

are 0000). 

ClippingCD :  

We start with D since it is outside the window. Its code is 

1010. We push the first 1 to 0 by clipping against the line 

Ymax=6. Then: 

Yi=Ymin or Ymax= Ymax=6. 

m

yy
xx i

i
1

1

−
+= ,  75.0

)1(3

58

12

12 =
−−

−
=

−

−
=

xx

yy
m . 

333.0
75.0

56
1 =

−
+−=ix   

The resulting intersection point I3 is (0.333,6). Its code is 

0000. Thus DI3  is clipped and the remaining segment 3CI has 

both end points coded 0000 and so it is displayed.  
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Polygon Clipping 

In this clipping we consider the case of using a polygonal 

clipping window to clip a polygon. 

 

Convex Polygonal Clipping Window: 

A polygon is called convex if the line joining any two interior 

points of the polygon lies completely inside the polygon as 

shown in following figure: 

 

                                           

                             B                                              B                                                         

                     A                                            A 

 

                 Convex Polygon                    Concave Polygon            

 

A non convex polygon is said to be concave. By 

convention, a polygon with vertices P1,Z.., Pn and edges Pi-1 Pi 

and Pn P1 is said to be positively oriented if a tour of the vertices 

in the given order produces a counter clockwise circuit, as 

shown in the following figure: 

      D                     C                      C                    D 

                                    R            L       R 

E                         L      B           B                                E 

 

                 A                                                     A 

       Positive Orientation             Negative Orientation 
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Equivalently, the left hand of a person standing along any 

direction edge  ii PP 1−  or 1PPn  would be pointing inside the 

polygon. 

Let A(x1,y1) and B(x2,y2) be the endpoints of a directed 

line segment. A point P(x,y) will be to the left of the line segment 

if the expression: C=(X2-X1)(Y-Y1)-(Y2-Y1)(X-X1) is positive.  

We say that the point is to the right of the line segment if this 

quantity is negative. If a point (P) is to the left of every edge of a 

positively oriented, convex polygon, it is inside the polygon. If it 

is to the right of every edge of the polygon, it is outside the 

polygon. This observation forms the basis for clipping any 

polygon, convex or concave, against a convex polygonal 

clipping window. 

 

 

 

The Sutherland-Hodgman Algorithm for clipping Polygons: 

Let P1,Z.., Pn be the vertex list of the polygon to be clipped. 

Let edge E, determined by endpoints A and B, be any edge of the 

positively oriented, convex clipping polygon. We clip each edge 

of the polygon in turn against the edge E of the clipping polygon, 

forming a new polygon whose vertices are determined as 

follows:  

Consider the edge ii PP 1−  : 

1- If both Pi-1 and Pi are to the left of the edge, vertex Pi is placed 

on the vertex output list of the clipped polygon. 
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E 

 

                                  Pi             B 

 

 

                       Pi-1                         A 

                                            L      R 

 

 

 

2- If Pi-1 is to the right and Pi is to the left of edge E, the 

intersection point I of the line segment ii PP 1− with the 

extended edge E is calculated. Both I and Pi are placed on 

the vertex output list. 

 

                                                     E 

 

                                                  B 

 

 

                                                    A       Pi-1    

                                              I               output 

                                         Pi   

                                           L        R     

The Algorithm proceeds in stages by passing each clipped 

polygon to the next edge of the window and clipping.  
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Special attention is necessary in using the Sutherland-

Hodgman algorithm in order to avoid unwanted effects. Consider 

the example in following figure:  

  

Polygon 

                            P8                                    P7 

                                         P5 

 

                                                                P6 

 

                                      P4      P3   

                                                        Clipping Window 

 

 

                                 

                                P1                  P2 

The correct result should consist of two disconnected 

parts, a square in lower left corner of the clipping window and a 

triangle at the top. 

 

 

 

 

 

 

However, the algorithm produces a list of vertices that forms a 

figure with the two parts connected by extra edges. 
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                 Extra edges 

 

 

 

 

 

 

The fact that these edges are drawn twice in opposite direction 

can be used to devise a post processing step to eliminate them. 

 

Example: Clip the polygon P1,ZZ..,P9 in the following figure 

against the window ABCD using the Sutherland-Hodgman 

algorithm? 

                                     P9                 

                                                                         P7 

 

                        D                                          C 

                                            P8 

    P1                            P3                                P6           

                                                                   P5                                              

                       A                                       B              

                           P2             P4         
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At each stage the new output polygon, whose vertices are 

determined by applying the Sutherland Hodgman algorithm, is 

passed on to the next clipping edge of the window ABCD. The 

results are illustrated in figures: 

 

                                    Q11                 

                                                                          Q9 

 

                       D                                           C 

                                          Q10 

    Q1                           Q4                             Q8           

L                                                                   Q7                                              

                Q2   A    Q3     Q5         Q6        B              

R                                     

                                        Clip against AB  

 

 

                                     R10                 

                                                                            

                                                               R8 

                       D                                           C 

                                          R9 

   R1                            R4                                        

                                                                     R7                                                                   

                R2   A     R3     R5          R6        B              

                                    

                   Clip against BC              L      R 
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                                       S11            S9  S8           R 

                       D                                           C  

                                          S10                                     L 

   S1                             S4                                        

                                                                       S7                                                                   

                S2   A     S3     S5           S6       B              

                                    

                   Clip against CD                   

 

 

 

                     R      L 

                                                                            

                        T11          T10            T8  T7                

                        D                                           C  

                                           T9                                         

                                    T3                                        

                      T1                                          T6                                                                   

                        A   T2    T4           T5          B              

                                    

                   Clip against DA     
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Three-Dimensional (3-D)  

Graphics Coordinates systems 

Our world is composed of the 3-dimensional images. 

Objects not only have height and width but also depth. 

Displaying 3-D objects on a 2-D display screen seem to be a 

hard task. If height and width are represented by (x,y) 

coordinates, how the third dimensional (depth) be displayed? 

The techniques used in computer graphics to display this 3-D 

world are based on the same principles an artist or a 

photographer employs in producing a realistic image on paper 

or film, the difference is that the computer uses a mathematical 

model instead of lens to create the image. 

 

Coordinates Systems: 

There are three types of coordinates systems to locate any 

point in the space: Cartesian, Cylindrical, Spherical coordinates. 

 

1- Cartesian Coordinates System: 

 This coordinates have three axes: x, y, and z. When you 

enter coordinates values, you indicate a point's distance (in 

units) and its direction (+ or -) along the x, y, and z axes 

relative to the coordinates system origin (0,0,0) or relative to 

the previous point. 

 

2- Cylindrical Coordinates System: 

2-D polar coordinates system uses a distance and an angle 

to locate a point. When you enter polar coordinates values, you 

indicate a point's distance from the origin or from the previous 
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point and its angle along the (x,y) plane of the current 

coordinates system. Cylindrical coordinates entry is similar to 2-

D polar coordinates entry, but with an additional distance from 

the polar coordinates perpendicular to the (x,y) plane. You locate 

a point by specifying its distance along relative to the x-axis and 

its z value perpendicular to the (x,y) plane as shown in  following 

figure.  

          

    (5<60,6)                              Y 

 

                                                                                                X 

                                                                             60o                                                      

 

                                                                         5 

        

Z  

                      6   

 

The point coordinate (5<60,6) or (r, θ, z) indicates a point 5 

units from the origin, 60 degrees from the x-axis in the (X,Y) 

plane, and 6 units along the z-axis. The coordinate (8<30,1) 

indicates a point 8 units from the origin in the (X,Y) plane, 30 

degrees from the x-axis in the (X,Y) plane and 1 unit along the z-

axis. 

 

 3- Spherical Coordinates System: 

Spherical coordinate entry in 3-D is also similar to polar 

coordinate entry in 2-D. You can locate a point by specifying its 

distance from the origin, its angle from x-axis in the (x,y) plane, 
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and its angle from the (x,y) plane. The coordinate (8<60<30) 

indicates a point 8 units from the origin, 60 degrees from the x-

axis in the (x,y) plane, and 30 degrees up from the (x,y) plane as 

shown in figure below. 

 

                          (x,y)plane                    

 

 

                                          30o          

                   (8<60<30)                Y 

 

                                                                                                X 

                                                                           60o                                                      

 

                                                                         8 

        

  

              

           

Example: Convert the Cartesian coordinates of the point (1,2,3) 

to cylindrical coordinates?  

 tan(θ )=
1

2
 →  θ =63.4                                                     1                  

 r= 22 21 + →  r=2.24 , z=3                                                   2 

Cylindrical coordinates = (2.24<63.4,3)                        θ           

  

Example: Convert the Cartesian coordinates of the point (1,2,3) 

to spherical coordinates?  
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 tan(θ )=
1

2
 →  θ =63.4 (from x-axis)                              1                  

 tan(θ )=
22 21

3

+
→ θ =53.3(from xy-plane)                              2 

r= 222 321 ++ →r=3.74                                                     θ   

Spherical coordinates = (3.74<63.4<53.3). 

 

Vectors: 

Vector is the difference between two points which the vector 

passes through these points as shown in the following example. 

 

Example: Find the vector which pass through the point p1(1,1,1) 

and the point p2(1,2,3)?  

V(1-1,2-1,3-1)=(0,1,2) 

 

- Let V1=(x1,y1,z1) and V2=(x2,y2,z2) be two three dimensional 

vectors. The dot product of these two vectors is defined as:   

V1.V2=x1x2+y1y2+z1z2 

The dot product of two vectors is not a vectors but a real number 

(scalar). 

 

Example:  

If V1=(1,2,3) and V2=(-2,1,-4) then:  

V1.V2=1(-2)+2(1)+3(-4)=-12 

 

- The cosine angle θ  between two vectors V1 and V2 is defined 

as: 

21

2.1

VV

VV
Cos

×
=θ  
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Where 1V  is the length of the vector V1 and  2V  is the length of 

the vector V2, and V = 222 zyx ++ . 

 

Example:  

Find the angle between the vector V1(1,0,0) and the vector 

V2(1,1,0)?  

V = 222 zyx ++ , 222 0011 ++=V =1, 222 0112 ++=V =1.414. 

21

2.1

VV

VV
Cos

×
=θ = 7072.0

414.11

)00()10()11(
=

×

×+×+×
, o45=∴θ . 

 

- The cross product of the two vectors V1(x1,y1,z1) and 

V2(x2,y2,z2) is another vector: 

)2121,2121,2121(21 xyyxzxxzyzzyVV −−−=×  

- Normalization (unit vector): the normalization of vector 

V1(x1,y1,z1) is (
1

1
,

1

1
,

1

1

V

z

V

y

V

x
). 

Example: Normalize the vector V1(1,2,3)? 

V = 222 zyx ++ , 222 3211 ++=V =3.742.  

The normalized vector V1(x1,y1,z1) = (
1

1
,

1

1
,

1

1

V

z

V

y

V

x
)= 

(
742.3

3
,

742.3

2
,

742.3

1
)= (0.267,0.534,0.801). 

 

 

 

Transforming Coordinates Systems 
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Object that is defined in one coordinates system may have 

to be expressed in terms of another coordinates system. In 

general, if an object is defined in terms of coordinates system1, 

it can be defined in terms of another coordinates system2 by 

transforming the axis of coordinates system2 into the axis of 

coordinates system1. This transformation, when applied to the 

representation of the object in coordinates system2, gives the 

object's representation in coordinates system2. For example: 

Y                                                                Y 

                                       Y1 

                                                                                          Y1       

                                         . (8,6)                

                 (5,3)         45                                                  . (3,3) 

                                                                            45                                         

                                          X               (0,0)                                X   

 

                                              X1 

         a- Original figure                                                     Y1                                                

                                                             b-First step (translation)                        

                                                    Y  
 
 
                                                     Y1 
                                                         .  
 
 
 
                                              (0,0)                   X1              X 
                                                     c- second step (rotation) 
   
Where the second coordinates system, denoted by (x1,y1) is at 

clockwise angle 45o with the original coordinates system (x,y). 
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The steps of transforming coordinates system for the point (8,6) 

at figure (a) above in 2-D are: 

First step (shown at figure (b) above): is 2-D translation of 

second coordinates system (x1,y1) to first coordinates system 

(x,y) by: 

Translate (-5,-3)=
















−− 135

010

001

  

Second step (shown at figure (c) above): is 2-D rotation of 

second coordinates system (X1,Y1) counterclockwise 45o by: 

Rotate(45)=
















−

100

045cos45sin

045sin45cos

 

The above example can be extended to 3-D. Let a coordinates 

system (x1,y1,z1) be defined in terms of the standard (x,y, and z) 

coordinates by the unit vector: 

u=(ux,uy,uz), v=(vx,vy,vz), w=(wx,wy,wz) 

also assume the origin of the (x1,y1,z1) coordinates system is at 

(a,b,c) with respect to the (x,y,z) coordinates system as shown in 

figure below: 

                              Z                             Z1                               Y1   

                                                                   W                       V    

 

                                                                                    U 

  

            X                                 Y                               X1 

The transformation sends the (x1,y1,z1) coordinates system to 

the (x,y,z) system (with u going to x, v going to y, and w going to 

z) by using the product of translation followed by a rotation: 



  

81 

 

 

                            x1 

            (5,5,0) 

                                            

Tr×R=





































−−− 1000

0

0

0

1

0100

0010

0001

wzwywx

vzvyvx

uzuyux

cba

 

A point P defined in the (x,y,z) coordinates system has 

representation P1 in (x1,y1,z1) coordinates system given by: 

P1=P×Tr×R 

Example: The coordinates of point P in terms of (x,y,z) is (0,0,-5), 

find the coordinates of the same point in terms of (x1,y1,z1) 

using transforming coordinates system with center at (5,5,-5) as 

shown in figure below: 

 

                                                                      (5,5,-5)    z1     (10,5,-5) 

 

                                                           y1 

 

 

                           

              y                                                                (5,0,-5) 

 

                                   x 

     z       

 

 

 

 

                             

 P1 P2 Vector 

(P2-P1) 

Normalized 

 

 

 

 

 

                       P(0,0,-5) 
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Vx1 (5,5,-5) (5,5,0) (0,0,5) (0,0,1) 

Vy1 (5,5,-5) (5,0,-5) (0,-5,0) (0,-1,0) 

Vz1 (5,5,-5) (10,5,-5) (5,0,0) (1,0,0) 

 

 

 

P in terms of (x1,y1,z1)=P1= 

=P ×Tr ×R= [ ]


















−



















−−

−

1000

0001

0010

0100

1555

0100

0010

0001

1500 = [ ]1550 −  

Coordinates of (P1) is (0,5,-5). 

 

 

 

Geometric Transformation 

(3-D) Three Dimensional Transformations  

 A 3-D geometric transformations are extensions of the two 

dimensional transformations techniques as shown below: 

1-  3-D Translation: 

A 3-D object can be translated from one place to another by 

translating every point of the 3-D object to the new place as 

follows: 

x =x+Tx ,  y =y+Ty , z =z+Tz 

3-D Translation transformation can be represented in a 

uniform way by a 4×4 matrix as shown below: 
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[ ] [ ]


















=

1

0100

0010

0001

 11

TzTyTx

zyxzyx  

As shown in following figure: 

                                                Y 

  

  

  

  

                                                                  T=(Tx,Ty,Tz) 

  

                        z                                                         x  

 

2-  3-D Scaling: 

A 3-D object can be scaled as follows: 

x =xSx ,  y =ySy , z =zSz 

Where Sx, Sy, and Sz are scaling factors.  

3-D scaling transformation can be represented in a uniform 

way by a 4×4 matrix as shown below: 

[ ] [ ]


















=

1000

000

000

000

 11
Sz

Sy

Sx

zyxzyx  

 

3-  3-D Rotation: 

In order to rotate an object in 3-D world, the rotation axis and 

rotation angle must be specified firstly. Any of the three axes 

(x,y,z) may be the rotation axis. Rotation of a point (x,y,z) 
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through a counterclockwise angle θ  about the positive part of 

the axis, can be shown in following figures: 

          y                                    y                                  y 

 

 

   x                                     x                                       x 

                     z                                       z                                z  

  

Rotation about z-axis: 

Rotation transformation equations: 

x =x cosθ + y sinθ  ,  y = -x sinθ + y cosθ  , z =z 

Rotation transformation can be done using a 4×4 matrix:: 

[ ] [ ]
















 −

=

1000

0100

00cossin

00sincos

11
θθ

θθ

zyxzyx  

Rotation about x-axis: 

Rotation transformation equations: 

y =y cosθ + z sinθ  ,  z = -y sinθ + z cosθ  , x =x 

Rotation transformation can be done using a 4×4 matrix:: 

[ ] [ ]


















−
=

1000

0cossin0

0sincos0

0001

 11
θθ

θθ
zyxzyx  

Rotation about y-axis: 

Rotation transformation equations: 

z = - x sinθ  + z cosθ ,  x = x cosθ  + z sinθ , y =y 

Rotation transformation can be done using a 4×4 matrix:: 
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[ ] [ ]
















 −

=

1000

0cos0sin

0010

0sin0cos

 11
θθ

θθ

zyxzyx  

 

 

H.W.:  

Write complete (C or C++) program in order to perform all types 

of 3-D transformations on a cubic object (Use suitable vertices 

for the cubic object)? 

 

 

 

Projections 

 

 

It is easy to see a group of points in 2-D world and convert 

them onto computer screen. This is can be done by putting 

these points in a viewport with clipping processing for 

enhancement.  

In 3-D world the subject is different. In order to see 3-D 

object, there are different views such as: top view, side view, or 

front view. In addition, 3-D object must be processed with 

projections techniques in order to see it as a flat object on a 2-D 

screen. There are two methods for projecting 3-D object on 2-D 

plane: 
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1- Parallel Projection: 

 

Parallel projection represents the 3-D object relatively; 

therefore this type is used with quick drawing (draft drawing). 

Parallel projection can give different views from the 3-D object 

from different sides as shown in figure below: 

 

 

 

       

                     Top view         

     

  

  

  

                                                                                            Side view 

  

  

  

  

  

  

  

        Front view 

 

Note: parallel projection cannot give a realistic representation for 

3-D object. 
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Parallel Orthographic Projection 

The simplest of the parallel projections is the orthographic 

projection, commonly used for engineering drawings. They 

accurately show correct size and shape of a single plane face of an 

object. Orthographic projections are projections onto one of the 

coordinate planes x=0, y=0, or z=0. The matrix for projection onto 

the z=0 plane is: 

[ ]


















=

1000

0000

0010

0001

Pz  

Similarly, the matrices for projection onto the x=0 and y=0 planes 

are: 

[ ]


















=

1000

0100

0010

0000

Px  

[ ]


















=

1000

0100

0000

0001

Py  
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Orthographic projections of the object in figure below: 

                               

                                                  y 

 

 

 

                          

 

 

                        Z                                                                 x 

                            x                y                                                           y                                                          

 

 

 

   z                                                                 x               z 

 

A single orthographic projection does not provide sufficient 

information to visually and practically reconstruct the shape of an 

object. Consequently, multiple orthographic projections are 

necessary.  
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2- Perspective Projection: 

 

Perspective projection gives a realistic representation for 3-D 

object, but without real dimensions values. 

 

 

 

                                                                                           Center of  

                                                                                           Projection 

 

 

                                                                        Projection plane 

 

 

 

 

In above figure, there are two equal length lines, but with 

different perspective projections. The closer line to the projection 

plane is the larger projection length. 

To calculate the perspective projection lengths, the following 

equations are used: 

0

)(

)(

=
+

=

+
=

Zp

Zd

d
YYp

Zd

d
XXp

 

Where x,y,and z: represent coordinates of a point in 3-D world 

P(x,y,z). 

Xp,Yp, and Zp: represent coordinates of a point in projection plane 

(Xp,Yp,0). 
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d: the distance between 3-D coordinates of a point, and projection 

plane.   

 

H.W.:  

Find Perspective Projection of cubic object :((0,0,0), (5,0,0), (5,5,0), 

(0,5,0), (0,5,5), (0,0,5), (5,0,5), (5,5,5)).  Note that d=5 units? 

 

 

 

Three-Dimensional (3-D)  

Graphics Coordinates systems 

Our world is composed of the 3-dimensional images. 

Objects not only have height and width but also depth. 

Displaying 3-D objects on a 2-D display screen seem to be a 

hard task. If height and width are represented by (x,y) 

coordinates, how the third dimensional (depth) be displayed? 

The techniques used in computer graphics to display this 3-D 

world are based on the same principles an artist or a 

photographer employs in producing a realistic image on paper 

or film, the difference is that the computer uses a mathematical 

model instead of lens to create the image. 

 

Coordinates Systems: 

There are three types of coordinates systems to locate any 

point in the space: Cartesian, Cylindrical, Spherical coordinates. 

 

2- Cartesian Coordinates System: 
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 This coordinates have three axes: x, y, and z. When you 

enter coordinates values, you indicate a point's distance (in 

units) and its direction (+ or -) along the x, y, and z axes 

relative to the coordinates system origin (0,0,0) or relative to 

the previous point. 

 

2- Cylindrical Coordinates System: 

2-D polar coordinates system uses a distance and an angle 

to locate a point. When you enter polar coordinates values, you 

indicate a point's distance from the origin or from the previous 

point and its angle along the (x,y) plane of the current 

coordinates system. Cylindrical coordinates entry is similar to 2-

D polar coordinates entry, but with an additional distance from 

the polar coordinates perpendicular to the (x,y) plane. You locate 

a point by specifying its distance along relative to the x-axis and 

its z value perpendicular to the (x,y) plane as shown in  following 

figure.  

          

    (5<60,6)                              Y 

 

                                                                                                X 

                                                                             60o                                                      

 

                                                                         5 

        

Z  

                      6   
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The point coordinate (5<60,6) or (r, θ, z) indicates a point 5 

units from the origin, 60 degrees from the x-axis in the (X,Y) 

plane, and 6 units along the z-axis. The coordinate (8<30,1) 

indicates a point 8 units from the origin in the (X,Y) plane, 30 

degrees from the x-axis in the (X,Y) plane and 1 unit along the z-

axis. 

 

 3- Spherical Coordinates System: 

Spherical coordinate entry in 3-D is also similar to polar 

coordinate entry in 2-D. You can locate a point by specifying its 

distance from the origin, its angle from x-axis in the (x,y) plane, 

and its angle from the (x,y) plane. The coordinate (8<60<30) 

indicates a point 8 units from the origin, 60 degrees from the x-

axis in the (x,y) plane, and 30 degrees up from the (x,y) plane as 

shown in figure below. 

 

                          (x,y)plane                    

 

 

                                          30o          

                   (8<60<30)                Y 

 

                                                                                                X 

                                                                           60o                                                      

 

                                                                         8 
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Example: Convert the Cartesian coordinates of the point (1,2,3) 

to cylindrical coordinates?  

 tan(θ )=
1

2
 →  θ =63.4                                                     1                  

 r= 22 21 + →  r=2.24 , z=3                                                   2 

Cylindrical coordinates = (2.24<63.4,3)                        θ           

  

Example: Convert the Cartesian coordinates of the point (1,2,3) 

to spherical coordinates?  

 tan(θ )=
1

2
 →  θ =63.4 (from x-axis)                              1                  

 tan(θ )=
22 21

3

+
→ θ =53.3(from xy-plane)                              2 

r= 222 321 ++ →r=3.74                                                     θ   

Spherical coordinates = (3.74<63.4<53.3). 

 

Vectors: 

Vector is the difference between two points which the vector 

passes through these points as shown in the following example. 

 

Example: Find the vector which pass through the point p1(1,1,1) 

and the point p2(1,2,3)?  

V(1-1,2-1,3-1)=(0,1,2) 

 

- Let V1=(x1,y1,z1) and V2=(x2,y2,z2) be two three dimensional 

vectors. The dot product of these two vectors is defined as:   

V1.V2=x1x2+y1y2+z1z2 



  

94 

 

The dot product of two vectors is not a vectors but a real number 

(scalar). 

 

Example:  

If V1=(1,2,3) and V2=(-2,1,-4) then:  

V1.V2=1(-2)+2(1)+3(-4)=-12 

 

- The cosine angle θ  between two vectors V1 and V2 is defined 

as: 

21

2.1

VV

VV
Cos

×
=θ  

                                     

Where 1V  is the length of the vector V1 and  2V  is the length of 

the vector V2, and V = 222 zyx ++ . 

 

Example:  

Find the angle between the vector V1(1,0,0) and the vector 

V2(1,1,0)?  

V = 222 zyx ++ , 222 0011 ++=V =1, 222 0112 ++=V =1.414. 

21

2.1

VV

VV
Cos

×
=θ = 7072.0

414.11

)00()10()11(
=

×

×+×+×
, o45=∴θ . 

 

- The cross product of the two vectors V1(x1,y1,z1) and 

V2(x2,y2,z2) is another vector: 

)2121,2121,2121(21 xyyxzxxzyzzyVV −−−=×  

- Normalization (unit vector): the normalization of vector 

V1(x1,y1,z1) is (
1

1
,

1

1
,

1

1

V

z

V

y

V

x
). 

Example: Normalize the vector V1(1,2,3)? 
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V = 222 zyx ++ , 222 3211 ++=V =3.742.  

The normalized vector V1(x1,y1,z1) = (
1

1
,

1

1
,

1

1

V

z

V

y

V

x
)= 

(
742.3

3
,

742.3

2
,

742.3

1
)= (0.267,0.534,0.801). 

 

Transforming Coordinates Systems 

Object that is defined in one coordinates system may have 

to be expressed in terms of another coordinates system. In 

general, if an object is defined in terms of coordinates system1, 

it can be defined in terms of another coordinates system2 by 

transforming the axis of coordinates system2 into the axis of 

coordinates system1. This transformation, when applied to the 

representation of the object in coordinates system2, gives the 

object's representation in coordinates system2. For example: 

Y                                                                Y 

                                       Y1 

                                                                                          Y1       

                                         . (8,6)                

                 (5,3)         45                                                  . (3,3) 

                                                                            45                                         

                                          X               (0,0)                                X   

 

                                              X1 

         a- Original figure                                                     Y1                                                

                                                             b-First step (translation)   
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                                                    Y  
 
 
                                                     Y1 
                                                         .  
 
 
 
                                              (0,0)                   X1              X 
                                                     c- second step (rotation) 
   
Where the second coordinates system, denoted by (x1,y1) is at 

clockwise angle 45o with the original coordinates system (x,y). 

The steps of transforming coordinates system for the point (8,6) 

at figure (a) above in 2-D are: 

First step (shown at figure (b) above): is 2-D translation of 

second coordinates system (x1,y1) to first coordinates system 

(x,y) by: 

Translate (-5,-3)=
















−− 135

010

001

  

Second step (shown at figure (c) above): is 2-D rotation of 

second coordinates system (X1,Y1) counterclockwise 45o by: 

Rotate(45)=
















−

100

045cos45sin

045sin45cos

 

The above example can be extended to 3-D. Let a coordinates 

system (x1,y1,z1) be defined in terms of the standard (x,y, and z) 

coordinates by the unit vector: 

u=(ux,uy,uz), v=(vx,vy,vz), w=(wx,wy,wz) 

also assume the origin of the (x1,y1,z1) coordinates system is at 

(a,b,c) with respect to the (x,y,z) coordinates system as shown in 

figure below: 
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                            x1 

            (5,5,0) 

                                            

                              Z                             Z1                               Y1   

                                                                   W                       V    

 

                                                                                    U 

  

            X                                 Y                               X1 

The transformation sends the (x1,y1,z1) coordinates system to 

the (x,y,z) system (with u going to x, v going to y, and w going to 

z) by using the product of translation followed by a rotation: 

Tr×R=





































−−− 1000

0

0

0

1

0100

0010

0001

wzwywx

vzvyvx

uzuyux

cba

 

A point P defined in the (x,y,z) coordinates system has 

representation P1 in (x1,y1,z1) coordinates system given by: 

P1=P×Tr×R 

Example: The coordinates of point P in terms of (x,y,z) is (0,0,-5), 

find the coordinates of the same point in terms of (x1,y1,z1) 

using transforming coordinates system with center at (5,5,-5) as 

shown in figure below: 

                                                                      (5,5,-5)    z1     (10,5,-5) 

 

                                                           y1 

 

 

                           

              y                                                                (5,0,-5) 

 

                                   x 

 

 

 

 

 

                       P(0,0,-5) 
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 P1 P2 Vector 

(P2-P1) 

Normalized 

Vx1 (5,5,-5) (5,5,0) (0,0,5) (0,0,1) 

Vy1 (5,5,-5) (5,0,-5) (0,-5,0) (0,-1,0) 

Vz1 (5,5,-5) (10,5,-5) (5,0,0) (1,0,0) 

 

 

 

P in terms of (x1,y1,z1)=P1= 

=P ×Tr ×R= [ ]


















−



















−−

−

1000

0001

0010

0100

1555

0100

0010

0001

1500 = [ ]1550 −  

Coordinates of (P1) is (0,5,-5). 

 

 

Geometric Transformation 

(3-D) Three Dimensional Transformations  

 A 3-D geometric transformations are extensions of the two 

dimensional transformations techniques as shown below: 

1-  3-D Translation: 

A 3-D object can be translated from one place to another by 

translating every point of the 3-D object to the new place as 

follows: 

x =x+Tx ,  y =y+Ty , z =z+Tz 

3-D Translation transformation can be represented in a 

uniform way by a 4×4 matrix as shown below: 
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[ ] [ ]


















=

1

0100

0010

0001

 11

TzTyTx

zyxzyx  

As shown in following figure: 

                                                Y 

  

  

  

  

                                                                  T=(Tx,Ty,Tz) 

  

                        z                                                         x  

 

2-  3-D Scaling: 

A 3-D object can be scaled as follows: 

x =xSx ,  y =ySy , z =zSz 

Where Sx, Sy, and Sz are scaling factors.  

3-D scaling transformation can be represented in a uniform 

way by a 4×4 matrix as shown below: 

[ ] [ ]


















=

1000

000

000

000

 11
Sz

Sy

Sx

zyxzyx  

 

3-  3-D Rotation: 

In order to rotate an object in 3-D world, the rotation axis and 

rotation angle must be specified firstly. Any of the three axes 

(x,y,z) may be the rotation axis. Rotation of a point (x,y,z) 
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through a counterclockwise angle θ  about the positive part of 

the axis, can be shown in following figures: 

          y                                    y                                  y 

 

 

   x                                     x                                       x 

                     z                                       z                                z  

  

Rotation about z-axis: 

Rotation transformation equations: 

x =x cosθ + y sinθ  ,  y = -x sinθ + y cosθ  , z =z 

Rotation transformation can be done using a 4×4 matrix:: 

[ ] [ ]
















 −

=

1000

0100

00cossin

00sincos

11
θθ

θθ

zyxzyx  

Rotation about x-axis: 

Rotation transformation equations: 

y =y cosθ + z sinθ  ,  z = -y sinθ + z cosθ  , x =x 

Rotation transformation can be done using a 4×4 matrix:: 

[ ] [ ]


















−
=

1000

0cossin0

0sincos0

0001

 11
θθ

θθ
zyxzyx  

Rotation about y-axis: 

Rotation transformation equations: 

z = - x sinθ  + z cosθ ,  x = x cosθ  + z sinθ , y =y 

Rotation transformation can be done using a 4×4 matrix:: 
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[ ] [ ]
















 −

=

1000

0cos0sin

0010

0sin0cos

 11
θθ

θθ

zyxzyx  

 

 

H.W.:  

Write complete (C or C++) program in order to perform all types 

of 3-D transformations on a cubic object (Use suitable vertices 

for the cubic object)? 

 

 

 

Projections 

 

 

It is easy to see a group of points in 2-D world and convert 

them onto computer screen. This is can be done by putting 

these points in a viewport with clipping processing for 

enhancement.  

In 3-D world the subject is different. In order to see 3-D 

object, there are different views such as: top view, side view, or 

front view. In addition, 3-D object must be processed with 

projections techniques in order to see it as a flat object on a 2-D 

screen. There are two methods for projecting 3-D object on 2-D 

plane: 
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1- Parallel Projection: 

 

Parallel projection represents the 3-D object relatively; 

therefore this type is used with quick drawing (draft drawing). 

Parallel projection can give different views from the 3-D object 

from different sides as shown in figure below: 

 

       

                     Top view         

     

  

  

  

                                                                                            Side view 

  

  

  

  

  

  

  

        Front view 

 

Note: parallel projection cannot give a realistic representation for 

3-D object. 

 

 

 



  

103 

 

Parallel Orthographic Projection 

The simplest of the parallel projections is the orthographic 

projection, commonly used for engineering drawings. They 

accurately show correct size and shape of a single plane face of an 

object. Orthographic projections are projections onto one of the 

coordinate planes x=0, y=0, or z=0. The matrix for projection onto 

the z=0 plane is: 

[ ]


















=

1000

0000

0010

0001

Pz  

Similarly, the matrices for projection onto the x=0 and y=0 planes 

are: 

[ ]






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
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
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
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[ ]

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
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


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
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



=

1000

0100

0000
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Py  

Orthographic projections of the object in figure below: 

                               

                                                  y 

 

 

 

                          

 

 



  

104 

 

                        Z                                                                 x 

                            x                y                                                           y                                   

 

 

 

   z                                                                 x               z 

 

A single orthographic projection does not provide sufficient 

information to visually and practically reconstruct the shape of an 

object. Consequently, multiple orthographic projections are 

necessary.  

 

 

2- Perspective Projection: 

 

Perspective projection gives a realistic representation for 3-D 

object, but without real dimensions values. 

 

 

 

                                                                                           Center of  

                                                                                           Projection 

 

 

                                                                        Projection plane 

 

 



  

105 

 

 

 

In above figure, there are two equal length lines, but with 

different perspective projections. The closer line to the projection 

plane is the larger projection length. 

To calculate the perspective projection lengths, the following 

equations are used: 

0

)(

)(

=
+

=

+
=

Zp

Zd

d
YYp

Zd

d
XXp

 

Where x,y,and z: represent coordinates of a point in 3-D world 

P(x,y,z). 

Xp,Yp, and Zp: represent coordinates of a point in projection plane 

(Xp,Yp,0). 

d: the distance between 3-D coordinates of a point, and projection 

plane.   

 

H.W.:  

Find Perspective Projection of cubic object :((0,0,0), (5,0,0), (5,5,0), 

(0,5,0), (0,5,5), (0,0,5), (5,0,5), (5,5,5)).  Note that d=5 units? 
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Curves 

 

A curve may be represented as a collection of points. 

Provided the points are properly spaced, connection of the 

points by short straight line segments yields an adequate visual 

representation of the curve. The following figure shows two 

alternate point representations of the same plane curve. 

 

                      

  

  

              (a)                                                     (b) 

Points along the curve in above figure (a) are equally spaced 

along the curve length. Notice that connection of the points by 

short straight line segments yields a poor representation of the 

curve. The representation is especially poor where the radius of 

curvature is small. Increasing the point density in these regions, 

as shown in figure above (b) improves the representation. 

 

Non Parametric Curves:  

Mathematically, either a parametric or a nonparametric form 

is used to represent a curve. A nonparametric representation is 

either explicit or implicit. For a plane curve, an explicit, 

nonparametric form is given by: )(xfy = . An example is the 

equation of a straight line, y=mx+b. In this form, for each x-value 

only one y-value is obtained. Consequently, closed or multiple 

value curves, e.g., a circle, cannot be represented explicitly. 
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Implicit representation of the form: 0),( =yxf , do not have this 

limitation. 

A general second-degree implicit equation written as: 

0222 22 =+++++ feydxcybxyax  

Provides a variety of two dimensional curve forms called conic 

sections. The three types of conic sections are the parabola, the 

hyperbola and the ellipse. As shown in following figure: 

 

   

 

 

 

 

 

 

                      (a) Hyperbola                                       (b) Parabola 

 

 

   

 

 

 

 

 

 

                      (c) Ellipse                                                   (d) Circle 

                                               

Circle is a special case of an ellipse. By defining the constants 

a,b,c,d,e, and f , several different types of conic sections are 
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produced. A simpler curve is defined by first setting a=1.0, b=0, 

and c=1.0, then the form of the curve is : 

02222 =++++ feydxyx  

A straight line is obtained by setting a=b=c=0. The equation is 

then:      0=++ feydx ,     or     bmx
e

f
x

e

d
y +=−−= )(  

Where, as usual, m is the slope of the line and b is its y 

intercept. 

 

 

Parametric Curves:  

In parametric form each coordinate of a point on a curve is 

represented as a function of a single parameter. The position 

vector of a point on the curve is fixed by the value of the 

parameter, the Cartesian coordinates of a point on the curve are: 

x=x(t) , y=y(t) 

The position vector of a point on the curve is then: 

P(t)=[ x(t)  y(t) ] 

The parametric form is suitable for representing closed and 

multiple valued curves. The curve end points and length are 

fixed by the parameter range. Often it is convenient to normalize 

the parameter range for the curve of interest to 0 ≤  t ≤1. 

The simplest parametric curve representation is for a straight 

line. For two position vectors P1 and P2, a parametric 

representation of the straight line segment between them is: 

P(t)=P1+(P2-P1)t         0 ≤  t ≤1 

Since P(t) is a position vector, each of the components of P(t) 

has a parametric representation x(t) and y(t) between P1 and P2, 

i.e., 
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x(t)=x1+(x2-x1)t         0 ≤  t ≤1 

y(t)=y1+(y2-y1)t  

 

Example: 

For the position vector P1[1  2] and P2[4  3] determine the 

parametric representation of the line segment between them. 

Also determine the slope and tangent vector of the line 

segment? 

 

A parametric representation is: 

P(t)=P1+(P2-P1)t=[ 1  2 ] + ([4  3] – [1  2]) t        0 ≤  t ≤1 

P(t)= [1  2]+[3  1] t      0 ≤  t ≤1 

Parametric representation of the x and y components are: 

x(t)=x1+(x2-x1)t = 1+3t 

y(t)=y1+(y2-y1)t=2+t 

The tangent vector is obtained by differentiating P(t). 

Specifically: 

=′′=′ )]()([)( tytxtP  [ 3  1 ] 

or               jivt += 3
r

 

Where tv
r

 is the tangent vector and I,j are unit vectors in the x,y 

directions, respectively. 

The slope of the line segment is: 

3

1

)(

)(
=

′

′
==

tx

ty

dt
dx
dt

dy

dx

dy
 

Representation of Space Curves: 

Three-dimensional space curves are represented non 

parametrically or parametrically. An explicit non parametric 

representation is: 
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X=x    ;  y=f(x)   ;  z=g(x) 

Alternatively, a nonparametric implicit representation of the 

curve as the intersection of two surfaces is given by: 

f(x,y,z)=0  ;   g(x,y,z)=0 

Example: 

Determine the curve described by the intersection of the two 

second degree surfaces by: 

f(x,y,z)=y-z2=0 

g(x,y,z)=zx-y2=0 

Provided that z≠ 0, x and y can be expressed in terms of z to 

obtain the explicit form of the intersection curve 

Y=z2  ; x= 3
2

z
z

y
=  

Notice that the intersection of two second degree surfaces 

yields a third degree curve. The surfaces and intersection curve 

are shown in figure below: 

 

  

  

 

 

 

 

 

 

In general, parametric space curve is expressed as: 

x=t ; y=f(t) ; z=g(t)  
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Where the parameter t varies over a given range ( 21 ttt ≤≤ ). One 

of the useful parametric space curves is the circular helix as 

shown in figure below. The parametric equations are given by: 

x=r cos(t); y=r sin(t); z=bt 

For r and b 0≠  and ( - 〈∞∞〈t ).  
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Cubic Splines: 

Cubic polynomials: f(u) = Ax3 + Bx2 + Cx + D 

Cubic is minimum degree that allows both position and first 

derivatives at endpoints to be independently controlled. 

Higher degrees are possible too (and allow better control over 

higher orders of continuity). But higher order polynomials are 

also harder to control; they tend to want to oscillate. 

 

We typically use cubic polynomials in computer graphics. 

 

Specifying position and slope of endpoints: 

This one is called a Hermite Curve. 

left endpoint (u=0): 

position = p0 

slope = s0 

right endpoint (u=1): 

position = p1 

slope = s1 

Therefore: 

  A(0)3 +  B(0)2 + C(0) + D = p0              Equation 

  A(1)3 +  B(1)2 + C(1) + D = p1 

 3A(0)2 + 2B(0)   + C        = s0                 Derivative of equation  

 3A(1)2 + 2B(1)   + C        = s1 

It is possible to use a different basis for specifying the 

polynomial. 

  Basis #1: A, B, C, D 

  Basis #2: p0, p1, s0, s1 

Tangent line specifies slope of the curve. 
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Approximating control points: 

By specifying four positions, we have what are called 

"interpolating" control points. 

What we're going to do is to use a basis that consists of four 

different cubic curves.  The weight for each one is specified by 

one of the control points. 

The four curves are the Berstein polynomials: 

b0(u) = (1-u)3 

b1(u) = 3u(1-u)2 

b2(u) = 3u2(1-u) 

b3(u) = u3 

Note that b0(u) + b1(u) + b2(u) + b3(u) = 1 

A curve constructed using the Bernstein polynomials is called a 

Bezier curve. 

 

Uniform B-splines: 

Four control vertices, just like before. But basis functions are 

somewhat different. We are going to use a single 4-unit-wide 

cubic curve, but then shift it for each control point. 

The four shifted versions of the curve (truncated to [0,1] range) 

are: 

B0(u) = 1/6 u3 

B1(u) = 1/6 (-3u3 + 3u2 + 3u + 1) 

B2(u) = 1/6 (3u3 - 6u2 + 4) 

B3(u) = 1/6 (1-u)3 

defined for u=[0,1] 
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Animation 

 

 

Animation is based on a principle of human vision. If you 

view related still images in quick succession, you perceive them 

as continuous motion. Each individual image is referred to as a 

frame.  

The main difficulty in creating animation has been the effort 

required by the animator to produce large number of frames. 

Creating images by hand is a big job. That's where the technique 

of keyframing comes in. Most of the frames in animation are 

routine and incremental changes from the previous frame 

directed toward some goal. Traditional animation studios 

realized they could increase the productivity of their artists by 

having them draw only the important frames, called keyframes. 

The in-between frames were called tweens. Once all of the 

keyframes and tweens were drawn, the images had to be inked 

or rendered to produce the final images. Even today, production 

of traditional animation usually requires hundreds of artists to 

generate the thousands of images needed. 

 

Design of Animation Sequences: 

In general, an animation sequence is designed with the 

following steps: 

1- Storyboard layout. 

2- Object definitions. 

3- Key frame specifications. 

4- Generation of in between frames. 
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For frame by frame animation, each frame of the scene is 

separately generated and stored. Later, the frames can be 

recorded on film or they can be consecutively displayed in real 

time playback mode.  

Storyboard: is an outline of the action. It defines the motion 

sequence as a set of basic events that are take place.  

Object definition: can be defined in terms of basic shapes, such 

as polygons or splines. In addition, the associated movements 

for each object are specified along with shape. 

Key frame: is detailed drawing of the scene at a certain time in 

the animation sequence. Within each key frame, each object is 

positioned according to the time for that frame.  

In betweens: are the intermediate frames between the key 

frames. The number of in betweens needed is determined by the 

media to be used to display the animation. Film requires 24 

frames per second, and graphics terminals are refreshed at the 

rate of the 30 to 60 frames per second. Typically, Time intervals 

for the motion are setup so that there are from three to five in 

betweens for each pair of key frames. Depending on the speed 

specified for the motion, some key frames can be duplicated. For 

1-minute film sequence with no duplication, we would need 1440 

frames. 

 

Key frame systems: 

We generate each set of in betweens from the specification 

of two (or more) key frames. Motion paths can be given with a 

kinematic (it is branch of mechanics that describes the motions 

of bodies without considering the forces required to produce 

and maintain the motion) as a set of spline curves, or the motion 
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can be physically based by specifying the forces on objects to 

be animated (dynamics or kinetics).  

For example scenes, we can separate the frames into 

individual components or objects. Given the animation paths, we 

can interpolate the positions of individual objects between any 

two times. With complex object transformations, the shapes of 

objects may change over time. If for example the shapes are 

described with polygon meshes, then the number of edges per 

polygon can change from one frame to the next. Thus, the total 

number of line segments can be different in different frames. 

Morphing: 

Transformation of object shapes from one form to another is 

called morphing. Morphing methods can be applied to any 

motion or transition involving a change in shape. 

Given two key frames for an object transformation, we first 

adjust the object specification in one of the frames so that the 

number of polygon edges (or the number of vertices) is the same 

for the two frames. This preprocessing step is illustrated in 

following figure. 

 

 

 

 

 

             Key frame K                        Key frame K+1 

A straight line segment in key frame K is transformed into two 

line segments in key frame K+1. Since key frame K has an extra 

vertex, we add a vertex between vertices 1 and 2 in key frame K 

   

   1•  

 

 

 

                       • 2 

 

 

  1̀ •   
 

                        • 3̀  

 

       2̀ •   
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to balance the number of vertices (and edges) in the two key 

frames. To generate the in betweens, we transition the added 

vertex in key frame K into vertex 3̀ along the straight line path 

shown in following figure.  

                                                   

                                                         

                                                        

  

  

      key frame K            halfway key frame         key frame K+1  

An example of a triangle linearly expanding into a quadrilateral 

is given in following figure. 

 

 

 

 

 

 

 

          key frame K                               halfway key frame 

 

                          

                     

          

    

                                                                  key frame K+1  
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                        • 3̀  

 

        2̀ •   

 

         •   
 

                 •  
 

              •   

   

    

 

               

 Added  

Point       •  

 

   

 

 

                                •  
 

 

 

   

    

 

                                      •  
 

                        

 



  

118 

 

Key Framing Animation: 

This is the animation used in traditional animation. The 

animator starts by specifying the positions and orientations at 

various key points in time. In betweeners (usually done by 

computer) generate the image in between the key frames. 

Splines are used to interpolate the positions on objects between 

key frames.  

 

Representation of Key frame Table in Spline 

Curves:  

We can represent a key frame table shown in following table 

as shown in following figures. 

 

Frame 

no. 

Transformation Direction Amount 

0-20 Move X 5 

21-30 Scale X 200% 

31-40 Move Y 10 

41-50 Scale Y 200% 

51-60 Move Z 15 

61-70 Scale Z 200% 
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Key Frame Representation 
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