

Foundation of Mathematics 2 CHAPTER 2 SYSTEM OF NUMBERS

Dr. Amer Ismal, Dr. Bassam AL-Asadi, Dr. Emad Al-Zangana

y. pur

Mustansiriyah University-College of Science-Department of Science Mathematics

2024-2025

Chapter Two

System of Numbers

1. Natural Numbers

Let 0 =Set with no point, that is; $0 = \emptyset$, 1 =Set with one point, that is; 1 = {0}, 2 =Set with two points, that is; 2 = {0,1}, and so on. Therefore,

$$1 = \{0\} = \{\emptyset\},\$$

 $2 = \{0,1\} = \{\emptyset, \{\emptyset\}\},\$

 $3 = \{0, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\},\$

 $n = \{0, 1, 2, 3, \dots, n-1\}.$

Definition 2.1.1. Let *A* be a set. A **successor** to *A* is $A^+ = A \cup \{A\}$ and denoted by A^+ .

According to above definition we can get the numbers 0,1,2,3,... as follows:

$$0 = \emptyset,$$

$$1 = \{0\} = \emptyset \cup \{\emptyset\} = \emptyset^+ = 0^+,$$

$$2 = \{0,1\} = \{0\} \cup \{1\} = 1 \cup \{1\} = 1^+,$$

$$3 = \{0,1,2\} = \{0,1\} \cup \{2\} = 2 \cup \{2\} = 2^+,$$

Definition 2.1.2. A set *A* is said to be **successor set** if it satisfies the following conditions:

(i) $\emptyset \in A$,

(ii) if $a \in A$, then $a^+ \in A$.

Remark 2.1.3.

(i) Any successor set should contains the numbers 0, 1, 2, ... n.

(ii) Collection of all successor sets is not empty.

(iii) Intersection of any non-empty collection of successor sets is also successor set.

Definition 2.1.4. Intersection of all successor sets is called **the set of natural numbers** and denoted by \mathbb{N} , and each element of \mathbb{N} is called **natural element**.

Peano's Postulate 2.1.5.

(P₁) $0 \in \mathbb{N}$. (P₂) If $a \in \mathbb{N}$, then $a^+ \in \mathbb{N}$. (P₃) $0 \neq a^+ \in \mathbb{N}$ for every natural number *a*. (P₄) If $a^+ = b^+$, then a = b for any natural numbers *a*, *b*. (P₅) If *X* is a successor subset of \mathbb{N} , then $X = \mathbb{N}$.

Remark 2.1.6.

(i) P_1 says that 0 should be a natural number.

(ii) P_2 states that the relation $+: \mathbb{N} \to \mathbb{N}$, defined by $+(n) = n^+$ is mapping.

(iii) P_3 as saying that 0 is the first natural number, or that '-1' is not an element of N.

(iv) \mathbf{P}_4 states that the map $+: \mathbb{N} \to \mathbb{N}$ is injective.

(v) P₅ is called the **Principle of Induction**.

2.1.7. Addition + on \mathbb{N}

We will now define the operation of addition + using only the information provided in the Peano's Postulates.

Let $a, b \in \mathbb{N}$. We define $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as follows:

	$+(a,b) = a + b = \bigg\{a$	a + 0 = a + $c^+ = (a + c)^+$	$if b = 0$ $if b \neq 0$
+			

where $b = c^+$.

Therefore, if we want to compute 1 + 1, we note that $1 = 0^+$ and get $1 + 1 = 1 + 0^+ = (1 + 0)^+ = 1^+ = 2$. We can proceed further to compute 1 + 2.

To do so, we note that $2 = 1^+$ and therefore that

$$1 + 2 = 1 + 1^{+} = (1 + 1)^{+} = 2^{+} = 3.$$

2

2.1.8. Multiplication \cdot on \mathbb{N}

We will now define the operation of multiplication \cdot using only the information provided in the Peano's Postulates.

Let $a, b \in \mathbb{N}$. We define $: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as follows $(a,b) = a \cdot b = \begin{cases} a \cdot 0 = 0 & \text{if } b = 0 \\ a \cdot c^+ = a + a \cdot c & \text{if } b \neq 0 \end{cases}$

where $b = c^+$.

Thus, we can easily show that $a \cdot 1 = a$ by noting that $1 = 0^+$ and therefore, $a \cdot 1 = a \cdot 0^+ = a + (a \cdot 0) = a + 0 = a.$

We can use this to multiply $3 \cdot 2$. Of course, we know that $2 = 1^+$ and therefore, $3 \cdot 2 = 3 \cdot 1^+ = 3 + (3 \cdot 1) = 3 + 3 = 3 + 2^+ = (3 + 2)^+ = 5^+ = 6.$

Remark 2.1.9. From 2.1.7 and 2.1.8 we can deduce that for all $n \in \mathbb{N}$, if $n \neq 0$, then there exist an element $m \in \mathbb{N}$ such that $n = m^+$.

Theorem 2.1.10.

(i)
$$n^{+} = n + 1$$
, $n^{+} = 1 + n$, $n = n \cdot 1$, $n = 1 \cdot n$, $0 \cdot n = 0$, $0 + n = n$
 $\forall n \in \mathbb{N}$.
(ii) (Associative property of +): $(n + m) + c = n + (m + c)$, $\forall n, m, c \in \mathbb{N}$.
(iii) (Commutative property of +): $n + m = m + n$, $\forall n, m \in \mathbb{N}$.
(iv) (Distributive property of \cdot on +): $\forall n, m, c \in \mathbb{N}$,
From right $(n + m) \cdot c = n \cdot c + m \cdot c]$,
From left $c \cdot (n + m) = c \cdot n + c \cdot m$ (The prove depend on (vi)).
(v) (Commutative property of \cdot): $n \cdot m = m \cdot n$, $\forall n, m \in \mathbb{N}$.
(vi) (Associative property of \cdot): $(n \cdot m) \cdot c = n \cdot (m \cdot c)$, $\forall n, m, c \in \mathbb{N}$.
(vii) The addition operation + defined on \mathbb{N} is unique.
(viii) The multiplication operation \cdot defined on \mathbb{N} is unique.
(ix) (Cancellation Law for +): $m + c = n + c$, for some $c \in \mathbb{N} \Leftrightarrow m = n$.
(x) 0 is the unique element such that $0 + m = m + 0 = m$, $\forall m \in \mathbb{N}$.
(xi) 1 is the unique element such that $1 \cdot m = m \cdot 1 = m$, $\forall m \in \mathbb{N}$.
Proof:
(i) $n^{+} = (n + 0)^{+}$ (Since $n = n + 0$)

$$= n + 0^+$$
 (Def. of +)

= n + 1 (Since $0^+ = 1$)

(ii) Let $L_{mn} = \{c \in \mathbb{N} | (m+n) + c = m + (n+c)\}, m, n \in \mathbb{N}.$ (1) (m+n) + 0 = m + n = m + (n+0); that is, $0 \in L_{mn}$. Therefore, $L_{mn} \neq \emptyset$. (2) Let $c \in L_{mn}$; that is, (m+n) + c = m + (n+c). To prove $c^+ \in L_{mn}$. $(m+n) + c^+ = ((m+n) + c)^+$ $= (m + (n+c))^+$ (since $c \in L_{mn}$) $= m + (n+c)^+$ (Def. of +) $= m + (n+c^+)$ (Def. of +)

Thus, $c^+ \in L_{mn}$. Therefore, L_{mn} is a successor subset of N. So, we get by \mathbf{P}_5 . $L_{mn} = \mathbb{N}$.

(iii) Suppose that $L_m = \{n \in \mathbb{N} | m + n = n + m\}, m \in \mathbb{N}$. Then prove that L_m is successor subset of \mathbb{N} .

(iv) Suppose that $L_{mn} = \{c \in \mathbb{N} | c \cdot (m+n) = c \cdot m + c \cdot n\}, m, n \in \mathbb{N}$. Then prove that L_{mn} is successor subset of \mathbb{N} .

(v) Suppose that $L_m = \{n \in \mathbb{N} | m \cdot n = n \cdot m\}$, $m \in \mathbb{N}$. Then prove that L_m is successor subset of \mathbb{N} .

(vi) Suppose that $L_{mn} = \{c \in \mathbb{N} | (m \cdot n) \cdot c = m \cdot (n \cdot c)\}$, $m, n \in \mathbb{N}$. Then prove that L_{mn} is successor subset of \mathbb{N} .

(vii) Let \oplus be another operation on \mathbb{N} such that

$$\bigoplus(a,b) = \begin{cases} a \bigoplus 0 = a & \text{if } b = 0\\ a \bigoplus c^+ = (a \bigoplus c)^+ & \text{if } b \neq 0 \end{cases}$$

where $b = c^+$.

Let $L = \{m \in \mathbb{N} | n + m = n \oplus m, \forall n \in \mathbb{N}\}.$ (1) To prove $0 \in L$. $n + 0 = n = n \oplus 0$. Thus, $0 \in L$. (2) To prove that $k^+ \in L$ for every $k \in L$. Suppose $k \in L$.

 $n + k^{+} = (n + k)^{+} \qquad \text{Def. of } +$ = $(n \oplus k)^{+} \qquad (\text{Since } k \in L)$ = $n \oplus k^{+} \qquad \text{Def. of } \oplus$

Thus, $k^+ \in L$.

From (1), (2) we get that *L* is a successor set and $L \subseteq \mathbb{N}$. From \mathbf{P}_5 we get that $L = \mathbb{N}$.

(viii) Exercise.

(ix) Suppose that

 $L = \{c \in \mathbb{N} | m + c = n + c, \text{ for some } c \in \mathbb{N} \iff m = n\}, m, n \in \mathbb{N}.$ Then prove that *L* is successor subset of \mathbb{N} .

(x), (xi) Exercise.

Definition 2.1.11. Let $x, y \in \mathbb{N}$. We say that x less than y and denoted by x < y iff there exist $k \neq 0 \in \mathbb{N}$ such that x + k = y.

Theorem 2.1.12.

(i) The relation < is transitive relation on N.
(ii) 0 < n⁺ and n < n⁺ for all n ∈ N.
(iii) 0 < m or m = 0, for all m ∈ N. *Proof:*(i),(ii),(iii) Exercise.

Theorem 2.1.13. (Trichotomy)

For each $m, n \in \mathbb{N}$ one and only one of the following is true: (1) m < n or (2) n < m or (3) m = n. **Proof:** Let $m \in \mathbb{N}$ and $L_1 = \{ n \in \mathbb{N} | n < m \},\$ $L_2 = \{ n \in \mathbb{N} | m < n \},\$ $L_3 = \{n \in \mathbb{N} | n = m\},\$ $M = L_1 \cup L_2 \cup L_3.$ (1) $L_i \neq \emptyset$ and $L_i \subseteq \mathbb{N}$, i = 1,2,3. Therefore, $M \subseteq \mathbb{N}$ and $M \neq \emptyset$. (2) To prove that *M* is a successor set. (i) To prove that $0 \in M$. (a) If m = 0, then $0 \in L_3 \rightarrow 0 \in M$ (Def. of U) (b) If $m \neq 0$, then $\exists k \in \mathbb{N} \ni$ $m = k^+$ $\rightarrow 0 < k^+ = m$ (Theorem 2.1.12(ii)). $\longrightarrow 0 \in L_1 \longrightarrow 0 \in M$ Or If $m \neq 0$, then 0 < m (Theorem 2.1.12(iii)). $\rightarrow 0 \in L_1 \rightarrow 0 \in M$ (ii) Suppose that $k \in M$. To prove that $k^+ \in M$. Since $k \in M$, then $k \in L_1$ or $k \in L_2$ or $k \in L_3$ (Def. of U) (a) If $k \in L_1$ (Def. of L_1) $\rightarrow k < m$ $\rightarrow \exists c \neq 0 \in \mathbb{N} \ni m = k + c$ (Def of <)

 $\rightarrow \exists l \in \mathbb{N} \ni c = l^+$ (Remark 2.1.9)

Foundation of Mathematics 2 Ch.2 Dr. Amer Ismal, Dr. Bassam AL-Asadi, Dr. Emad Al-ZanganaMustansiriyah UniversityCollege of ScienceDept. of Sci. Math.(2024-2025)

 $\rightarrow m = k + c = k + l^+$ (Def. of +) $= (k + l)^{+}$ $\rightarrow m = (k+l)^+ = (l+k)^+$ (Commutative law for +) $\rightarrow m = l + k^+$ (Def. of +) • If l = 0, then $m = k^+ \longrightarrow k^+ \in L_3$; • If $l \neq 0$, then $k^+ < m$ (Def. of <) $\rightarrow k^+ \in L_1$. A-20' (**b**) If $k \in L_2$ $\rightarrow m < k$ (Def. of L_2) (Theorem 2.1.12(ii)) $\rightarrow m < k < k^+$ $\rightarrow m < k^+$ (Theorem 2.1.12(i)) $\rightarrow k^+ \in L_2$ (Def. of L_2) $\rightarrow k^+ \in M$ (Def. of U) (c) If $k \in L_3$ (Def. of L_2) $\rightarrow m = k$ $\rightarrow m = k < k^+$ (Theorem 2.1.12(ii)) $\rightarrow m < k^+$ (Theorem 2.1.12(i)) $\rightarrow k^+ \in L_2$ (Def. of L_2) $\rightarrow k^+ \in M$ (Def. of U)

Theorem 2.1.14.

(i) For all $n \in \mathbb{N}$, $0 < n \Leftrightarrow n \neq 0$. (ii) For all $m, n \in \mathbb{N}$, if $n \neq 0$, then $m + n \neq 0$. (iii) $m + k < n + k \Leftrightarrow m < n$, for all $m, n, k \in \mathbb{N}$. (iv) If $m \cdot n = 0$, then either m = 0 or n = 0, $\forall m, n \in \mathbb{N}$. (N has no zero divisor) (v) (Cancellation Law for \cdot): $m \cdot c = n \cdot c$, for some $c(\neq 0) \in \mathbb{N} \Leftrightarrow m = n$. (vi) For all $k(\neq 0) \in \mathbb{N}$, if m < n, then $m \cdot k < n \cdot k$, for all $m, n \in \mathbb{N}$. (vii) For all $k(\neq 0) \in \mathbb{N}$, if $m \cdot k < n \cdot k$, then m < n, for all $m, n \in \mathbb{N}$. (viii) For all $k(\neq 0) \in \mathbb{N}$, if $m \cdot k < n \cdot k$, then m < n, for all $m, n \in \mathbb{N}$. *Proof:* (ii) Case 1: If m = 0. $\rightarrow m + n = 0 + n = n \neq 0$ $\rightarrow m + n \neq 0$ Case 2:

If $m \neq 0 \rightarrow 0 < m$ Suppose that m + n = 0 By (i)

Foundation of Mathematics 2 Ch.2 Dr. Amer Ismal, Dr. Bassam AL-Asadi, Dr. Emad Al-ZanganaMustansiriyah UniversityCollege of ScienceDept. of Sci. Math.(2024-2025)

 $\rightarrow m < 0$ $\rightarrow m < 0 \text{ and } 0 < m$ $Contradiction with Trichotomy Theorem; that is, <math>m + n \neq 0$. (vii) Let $m \cdot k < n \cdot k$. Assume that m < n

 $\rightarrow n < m \text{ or } n = m$ Suppose n = m $\rightarrow m \cdot k = n \cdot k$ $\rightarrow m \cdot k = n \cdot k \text{ and } m \cdot k < n \cdot k$ $\rightarrow \text{Contradiction with (Trichotomy Theorem)}$ Suppose n < m $\rightarrow n \cdot k < m \cdot k$ $\rightarrow n \cdot k < m \cdot k \text{ and } m \cdot k < n \cdot k$ $\rightarrow \text{Contradiction with Trichotomy Theorem}$ $\rightarrow \therefore m < n$

JI. Basal

(Trichotomy Theorem)

(Cancelation law of \cdot)

(From (vi

(i),(iii),(iv),(v),(vi) Exercise.

2. Construction of Integer Numbers

Let write $\mathbb{N} \times \mathbb{N}$ as follows:

	((0,0))	(0,1)	(0,2)	(0,3)	(0,4)	•••	•••	•••	(…	
			(1,2)				•••	•••	•••	
			(2,2)				•••	•••	•••	<
							•••	•••		
$\mathbb{N} \times \mathbb{N} = 0$	{(4,0)	(4,1)	(4,2)	(4,3)	(4,4)	•••	•••		•••	
			(5,2)				(,		
		•	•	•	•		-	X		
		•	•	•			\mathcal{O}			
		•	•	•	•)	

Let define a relation on $\mathbb{N} \times \mathbb{N}$ as follows:

$$(a,b)R^*(c,d) \Leftrightarrow a+d=b+c.$$

Example 2.2.1. $(1,0)R^*(4,3)$ since 1 + 3 = 0 + 4. $(1,0)R^*(6,4)$ since $1 + 4 \neq 0 + 6$.

Theorem 2.2.2. The relation R^* on $\mathbb{N} \times \mathbb{N}$ is an equivalence relation. *Proof:*

(1) Reflexive. For all (a, b) ∈ N × N, a + b = a + b; that is (a, b)R*(a, b).
(2) Symmetric. Let (a, b), (c, d) ∈ N × N such that (a, b)R*(c, d). To prove that (c, d)R*(a, b).

```
(3) Transitive. Let (a,b), (c,d), (r,s) \in \mathbb{N} \times \mathbb{N} such that (a,b)R^*(c,d) and

(c,d)R^*(r,s). To prove (a,b)R^*(r,s).

a+d=b+c (Since (a,b)R^*(a,b)) .....(1)

c+s=d+r (Since (c,d)R^*(r,s)) .....(2)

\rightarrow (a+d)+s = (b+c)+s (Add s to both side of (1))

= b+(c+s) (Cancellations low and asso. law for +) .....(3)

\rightarrow (a+d)+s = b+(c+s) (Sub.(2) in (3))
```

Foundation of Mathematics 2 Ch.2 Dr. Amer Ismal, Dr. Bassam AL-Asadi, Dr. Emad Al-ZanganaMustansiriyah UniversityCollege of ScienceDept. of Sci. Math.(2024-2025)

= b + (d + r) $\rightarrow a + (d + s) = b + (r + d) \quad (Asso. law and comm. law for +)$ $\rightarrow a + (s + d) = b + (r + d) \quad (Comm. law for +)$ $\rightarrow (a + s) + d = (b + r) + d \quad (Asso. law for +)$ $\rightarrow (a + s) = (b + r) \quad (Cancellation low for +)$ $\rightarrow (a, b)R^*(r, s) \quad (Def. of R^*)$

Remark 2.2.3.

(i) The equivalence class of each $(a, b) \in \mathbb{N} \times \mathbb{N}$ is as follows:

$$[(a,b)] = [a,b] = \{(r,s) \in \mathbb{N} \times \mathbb{N} | a+s = b+r\}.$$

1	(0,0)	(0,1)	(0,2)	(0,3)	(0,4))
	(1,0)	(1, 1)	(1,2)	(1,3)	(1,4)		 	
	(2,0)	(2,1)	(2,2)	(2,3)	(2,4)		 •••	
	(3,0)	(3,1)	(3,2)	(3,3)	(3,4)	.	 	
ł	(4,0)	(4,1)	(4,2)	(4,3)	(4,4)		 	}
	(5,0)	(5,1)	(5,2)	(5,3)	(5,4)		 	
	:	:	:	:				
	:	:	:	:	:			
	:	:	:	:	:			J

$$[1,0] = \{(x, y) \in \mathbb{N} \times \mathbb{N} | 1 + y = 0 + x\}$$

= $\{(x, y) \in \mathbb{N} \times \mathbb{N} | x = 1 + y\}$
= $\{(y + 1, y) | y \in \mathbb{N}\}$
= $\{(1,0), (2,1), (3,2), ...\}.$
[0,0] = $\{(x, y) \in \mathbb{N} \times \mathbb{N} | 0 + y = 0 + x\}$
= $\{(x, y) \in \mathbb{N} \times \mathbb{N} | x = y\}$
= $\{(x, x) | x \in \mathbb{N}\}$
= $\{(x, x) | x \in \mathbb{N}\}$
= $\{(0,0), (1,1), (2,2), ...\}.$
(ii) $[a, b] = \{(a, b), (a + 1, b + 1), (a + 2, b + 2), ...\}.$

(iii) These classes [(a, b)] formed a partition on $\mathbb{N} \times \mathbb{N}$.

Theorem 2.2.4. For all $(x, y) \in \mathbb{N} \times \mathbb{N}$, one of the following hold: (i) [x, y] = [0,0], if x = y. (ii) [x, y] = [z, 0], for some $z \in \mathbb{N}$, if y < x. 9 (iii)[x, y] = [0, z], for some $z \in \mathbb{N}$, if x < y. **Proof:** Let $(x, y) \in \mathbb{N} \times \mathbb{N}$. Then by Trichotomy Theorem, there are three possibilities. (1) x = y, $\rightarrow 0 + y = 0 + x$ Def. of + \rightarrow (0,0) $R^*(x,y)$ Def. of R^* \rightarrow [0,0] = [x, y] Def. of [a, b](2) x < y, $\rightarrow y = x + z$ for some $z \in \mathbb{N}$ Def. of < $\rightarrow x + z = y + 0$ Def. of + \rightarrow (*x*, *y*)*R*^{*}(0, *z*) \rightarrow (0, *z*)*R*^{*}(*x*, *y*) Def. of R^* $\rightarrow [0,z] = [x,y]$ Def. of [a, b](3) y < x, $\rightarrow x = y + z$ for some $z \in \mathbb{N}$ Def. of <Def. of + $\rightarrow x + 0 = v + z$ \rightarrow (*x*, *y*)*R*^{*}(*z*, 0) \rightarrow (*z*, 0)*R*^{*}(*x*, *y*) Def. of R^2 \rightarrow [z, 0] = [x, y] Def. of [a, b]

2.2.5. Constriction of Integer Numbers Z

The set of integer numbers, \mathbb{Z} will be defined as follows:

$$\mathbb{Z} = \bigcup_{(a,b)\in\mathbb{N}\times\mathbb{N}} [(a,b)] = \bigcup_{a(\neq 0)\in\mathbb{N}} [(a,0)] \bigcup_{b(\neq 0)\in\mathbb{N}} [(0,b)] \bigcup [(0,0)].$$

2.2.6. Addition, Subtraction and Multiplication on \mathbb{Z} Addition: $\oplus : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z};$

Subtraction:
$$\bigcirc: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z};$$

 $[r,s] \ominus [t,u] = [r,s] \oplus [u,t] = [r + u,s + t]$ Multiplication: $\bigcirc: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z};$

$$[r,s] \odot [t,u] = [r \cdot t + s \cdot u, r \cdot u + s \cdot t]$$

Theorem 2.2.7. The relations \oplus , \ominus and \odot are well defined; that is, \oplus , \ominus and \odot are functions. *Proof:*

To prove \oplus is function. Assume that $[r,s] = [r_0, s_0]$ and $[t,u] = [t_0, u_0]$. $[r,s] \oplus [t,u] = [r + t, s + u]$ $[r_0, s_0] \oplus [t_0, u_0] = [r_0 + t_0, s_0 + u_0]$ To prove $[r + t, s + u] = [r_0 + t_0, s_0 + u_0]$.

 $\begin{array}{ll} \rightarrow (r,s)R^{*}(r_{0},s_{0}) & [r,s] = [r_{0},s_{0}] \text{ and Def. of } R^{*} \\ \rightarrow r + s_{0} = s + r_{0} & \dots \dots (1) \\ \rightarrow (t,u)R^{*}(t_{0},u_{0}) & [r,s] = [r_{0},s_{0}] \text{ and Def. of } R^{*} \\ \rightarrow t + u_{0} = u + t_{0} & \dots \dots (2) \\ \rightarrow (r + s_{0}) + (t + u_{0}) = (s + r_{0}) + (u + t_{0}) & \text{Adding (1),(2)} \\ \rightarrow (r + t) + (s_{0} + u_{0}) = (s + u) + (r_{0} + t_{0}) & \text{Asso. and comm. for } + \\ \rightarrow (r + t,s + u)R^{*}(r_{0} + t_{0},s_{0} + u_{0}) & \text{Def. of } R^{*} \\ \rightarrow [r + t,s + u] = [r_{0} + t_{0},s_{0} + u_{0}] & \text{Def. of } [a,b] \end{array}$

 \ominus and \odot (**Exercise**)

Example 2.2.8.

 $[2,4] \oplus [0,1] = [2 + 0,4 + 1] = [2,5] = [0,3].$ $[5,2] \oplus [8,1] = [5 + 8,2 + 1] = [13,3] = [10,0].$

Notation 2.2.9.

(i) Let identify the equivalence classes [r, s] according to its form as in Theorem 2.2.3.

 $[a,0] = +a, a \in \mathbb{N}$, called **positive integer**. $[0,b] = -b, b \in \mathbb{N}$, called **negative integer**. [0,0] = 0, called the **zero element**.

[4,6] = [0,2] = -2[9,6] = [3,0] = 3[6,6] = [0,0] = 0

(ii) The relation $i: \mathbb{N} \to \mathbb{Z}$, defined by i(n) = [n, 0] is 1-1 function, and $i(n+m) = i(n) \oplus i(m)$, $i(n \cdot m) = i(n) \odot i(m)$. So, we can identify *n* with +n; that is, $\boxed{+n=n}$, $\boxed{+=\bigoplus}$ and $\boxed{:=\odot}$.

Theorem 2.2.10.

(i) a ∈ Z is positive if there exist [x, y] ∈ Z such that a = [x, y] and y < x.
(ii) b ∈ Z is negative if there exist [x, y] ∈ Z such that b = [x, y] and x < y.
(iii) For each element [x, y] ∈ Z, [y, x] ∈ Z is the unique element such that [x, y] + [y, x] = 0. Denote [y, x] by -[x, y].
(iv) (-m) ⊙ n = -(m ⋅ n), ∀ n, m ∈ Z.
(v) m ⊙ (-n) = -(m ⋅ n), ∀ n, m ∈ Z.
(vi) (Commutative property of +): n+m=m+n, ∀ n, m ∈ Z.
(vii) (Associative property of +): (n+m)+c = n + (m+c), ∀ n, m, c ∈ Z.
(ix) (Commutative property of ·): (n ⋅ m = m ⋅ n), ∀ n, m ∈ Z.
(x) (Associative property of ·): (n ⋅ m = m ⋅ n), ∀ n, m ∈ Z.
(x) (Associative property of ·): (n ⋅ m = m ⋅ n), ∀ n, m, c ∈ Z.
(xi) (Cancellation Law for +): m + c = n + c, for some c ∈ Z ⇔ m = n.
(xii) (Cancellation Law for ·): m ⋅ c = n ⋅ c, for some c (≠ 0) ∈ Z ⇔ m = n.
(xiii) 0 is the unique element such that 0 + m = m ⋅ 1 = m, ∀ m ∈ Z.

(xv) Let
$$a, b, c \in \mathbb{Z}$$
. Then $c = a - b \Leftrightarrow a = c + b$.
(xvi) $-(-b) = b$, $\forall b \in \mathbb{Z}$.
Proof: Exercise.

Remark 2.2.11.

For each element $a = [x, y] \in \mathbb{Z}$, the unique element in Theorem 2.2.8(xiv) is -a = [y, x].

Definition 2.2.12. (Z as an Ordered)

Let $[r,s], [t,u] \in \mathbb{Z}$. We say that [r,s] less than [t,u] and denoted by $[r,s] < [t,u] \Leftrightarrow r+u < s+t$.

This is well defined and agrees with the ordering on \mathbb{N} .

Theorem 2.2.13. (Trichotomy For \mathbb{Z}) (Well Ordering)

For each [r, s], $[t, u] \in \mathbb{Z}$ one and only one of the following is true: (1) [r, s] < [t, u] or (2) [t, u] < [r, s] or (3) [r, s] = [t, u]. *Proof:* Since $r + u, t + s \in \mathbb{N}$, so by Trichotomy Theorem for \mathbb{N} , one and only one of the following is true:

 $\begin{array}{l} (1) \ r+u < s+t \to [r,s] < [t,u] \\ (2) \ s+t < r+u \to [t,u] < [r,s] \\ (3) \ r+u = s+t \to (r,s) R^*(t,u) \to [r,s] = [t,u]. \end{array}$

Theorem 2.2.14.

For each $[r, s] \in \mathbb{Z}$, $[r, s] < [0, 0] \Leftrightarrow r < s$. *Proof:*

 $[r,s] < [0,0] \Leftrightarrow r + 0 < s + 0 \Leftrightarrow r < s.$

meri

Remark 2.2.15.

According to Theorem 2.2.11 and Notation 2.2.7(i), for all $[r,s] \in \mathbb{Z}$ $[r,s] < [0,0] \Leftrightarrow r < s \Leftrightarrow [r,r+l] \in \mathbb{Z}$, where s = r+l for some l $\Leftrightarrow [0,l] < [0,0]$ $\Leftrightarrow -l < 0$.