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Chapter Three 
Relations on Sets 

 3.1 Cartesian Product  
Definition 3.1.1. A set 𝐴 is called  

(i) finite set if 𝐴 contains finite number of element, say 𝑛, and denote that by 

|𝐴| = 𝑛. The symbol |𝐴| is called the cardinality of 𝐴, 

(ii) infinite set if 𝐴 contains infinite number of elements. 

Definition 3.1.2. The Cartesian product (or cross product) of 𝐴 and 𝐵, denoted 

by 𝐴 ×  𝐵, is the set 𝐴 ×  𝐵 =  {(𝑎, 𝑏) | 𝑎 ∈  𝐴 and 𝑏 ∈  𝐵}. 

(1) The elements (𝑎, 𝑏) of 𝐴 ×  𝐵 are ordered pairs, 𝑎 is called the first 

coordinate (component) of (𝑎, 𝑏) and 𝑏 is called the second coordinate 

(component) of (𝑎, 𝑏).  

(2) For pairs (𝑎, 𝑏), (𝑐, 𝑑) we have (𝑎, 𝑏) =  (𝑐, 𝑑) ⇔  𝑎 =  𝑐 and 𝑏 = 𝑑. 

(3) The 𝑛-fold product of sets 𝐴1,  𝐴2 , …,  𝐴𝑛 is the set of 𝑛-tuples  

𝐴1 ×  𝐴2 × … ,. × 𝐴𝑛 = {(𝑎1 , 𝑎2 , …, 𝑎𝑛)|  𝑎𝑖 ∈ 𝐴𝑖  for all 1 ≤  𝑖 ≤  𝑛}. 

Example 3.1.3. Let 𝐴 = {1,2, 3} and 𝐵 = {4, 5,6}. 

(i) 𝐴 × 𝐵 = {(1, 4), (1, 5), (1,6), (2, 4), (2, 5), (2,6), (3, 4), (3, 5), (3,6)} . 
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(ii) 𝐵 × 𝐴 = {(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2), (6, 3)}. 

Remark 3.1.4. 

(i) For any set 𝐴, we have 𝐴 ×  ∅ =  ∅ ( and ∅ ×  𝐴 =  ∅) since, if (𝑎, 𝑏)  ∈

 𝐴 ×  ∅, then 𝑎 ∈  𝐴 and 𝑏 ∈  ∅, impossible. 

(ii)  If |𝐴| = 𝑛 and |𝐵| = 𝑚, then |𝐴 × 𝐵| = 𝑛𝑚. 

 If 𝐴 or 𝐵 is infinite set then cross product 𝐴 × 𝐵 is infinite set. 

(iii)  Example 3.1.3 showed that 𝐴 × 𝐵 ≠ 𝐵 × 𝐴 . 

Theorem 3.1.5.  For any sets 𝐴, 𝐵, 𝐶, 𝐷  

(i) 𝐴 × 𝐵 = 𝐵 × 𝐴 ⟺ 𝐴 = 𝐵, 

(ii) if 𝐴 ⊆ 𝐵, then 𝐴 × 𝐶 ⊆ 𝐵 × 𝐶, 

(iii) 𝐴 ×  (𝐵 ∩  𝐶)  = (𝐴 ×  𝐵)  ∩ (𝐴 ×  𝐶), 

(iv)  𝐴 × (𝐵 ∪  𝐶) =  (𝐴 ×  𝐵) ∪ (𝐴 ×  𝐶), 

(v)  (𝐴 ×  𝐵) ∩ (𝐶 × 𝐷)  = (𝐴 ∩  𝐶) × (𝐵 ∩  𝐷), 

(vi) (𝐴 ×  𝐵)⋃(𝐶 × 𝐷)  ⊆  (𝐴 ⋃ 𝐶) × (𝐵 ⋃ 𝐷). The equialty may not hold. 

(vii)  𝐴 × (𝐵 −  𝐶) = (𝐴 × 𝐵) − ( 𝐴 × 𝐶). 

Proof.  

(i) The necessary condition. Let 𝐴 × 𝐵 = 𝐵 × 𝐴. To prove 𝐴 = 𝐵. 

Let 𝑥 ∈ 𝐴 ⟹ (𝑥, 𝑦) ∈ 𝐴 ×  𝐵, ∀𝑦 ∈ 𝐵.       Def. of × 

                 ⟹ (𝑥, 𝑦) ∈ 𝐵 ×  𝐴                      By hypothesis 

                 ⟺ 𝑥 ∈ 𝐵  ⋀  𝑦 ∈  𝐴                      Def. of × 

       (1)      ⟹  𝑥 ∈ 𝐵 ⟹ 𝐴 ⊆ 𝐵                    Def. of  ⊆ 

       (2)     By the same way we can prove that 𝐵 ⊆ 𝐴.              

Therefore,    𝐴 = 𝐵                                                    Inf. (1),(2). 

  The sufficient condition. Let  𝐴 = 𝐵. To prove 𝐴 × 𝐵 = 𝐵 × 𝐴. 

  𝐴 × 𝐵 = 𝐴 × 𝐴 = 𝐵 × 𝐴                                      Hypothesis 

(vii) 𝐴 × (𝐵 −  𝐶) = (𝐴 × 𝐵) − ( 𝐴 × 𝐶). 



Foundation of Mathematics1 Ch.3                                     Dr. Bassam AL-Asadi, Dr. Emad Al-Zangana   

Mustansiriyah University                      College of Science    Dept. of Math.                          (2024-2025) 

 

3 

Ch.3   Dr. Bassam AL-Asadi, Dr. Emad Al-Zangana 

 (𝑥, 𝑦) ∈ 𝐴 × (𝐵 −  𝐶) ⟺ 𝑥 ∈ 𝐴 ⋀ 𝑦 ∈ (𝐵 − 𝐶)       Def. of  × 

⟺ 𝑥 ∈ 𝐴 ⋀( 𝑦 ∈ 𝐵 ⋀ 𝑦 ∉ 𝐶)                                  Def. of − 

⟺ (𝑥 ∈ 𝐴 ⋀ 𝑥 ∈ 𝐴) ⋀( 𝑦 ∈ 𝐵 ⋀ 𝑦 ∉ 𝐶)                 Idempotent Law of  ⋀ 

⟺ (𝑥 ∈ 𝐴 ⋀ 𝑦 ∈ 𝐵)⋀(𝑥 ∈ 𝐴 ⋀ 𝑦 ∉ 𝐶)                   Commut. and Assoc. Laws of  ⋀ 

⟺ (𝑥, 𝑦) ∈ (𝐴 × 𝐵)⋀ (𝑥, 𝑦) ∉ (𝐴 × 𝐶)                  Def. of  × 

⟺ (𝑥, 𝑦) ∈ (𝐴 × 𝐵) − (𝐴 × 𝐶)                               Def. of − 

 3.2 Relations  
 

Definition 3.2.1. Any subset “ 𝑅” of 𝐴 ×  𝐵 is called a relation between 𝑨 and 𝑩 

and denoted by 𝑅(𝐴, 𝐵). Any subset of 𝐴 ×  𝐴 is called a relation on 𝑨.  

 In other words, if 𝐴 is a set, any set of ordered pairs with components in 𝐴 

is a relation on 𝐴. Since a relation 𝑅 on 𝐴 is a subset of 𝐴 ×  𝐴, it is an element of 

the power set of 𝐴 ×  𝐴; that is, 𝑅 ∈  𝑃(𝐴 ×  𝐴). 

 If 𝑅 is a relation on 𝐴 and (𝑥, 𝑦) ∈  𝑅, then we write 𝒙𝑹𝒚, read as “𝑥 is 

in 𝑅-relation to 𝑦”, or simply, 𝑥 is in relation to 𝑦, if 𝑅 is understood.  

Example 3.2.2. 

(i) Let 𝐴 = {2, 4, 6, 8}, and define the relation 𝑅 on 𝐴 by (𝑥, 𝑦) ∈ 𝑅 iff 

𝑥 divides 𝑦. Then, 𝑅 =

 {(2, 2), (2, 4), (2, 6), (2, 8), (4, 4), (4, 8), (6, 6), (8, 8)}.  

(ii) Let 𝐴 = {0,3,5,8}, and define 𝑅 ⊆ 𝐴 × 𝐴 by 𝑥𝑅𝑦 iff 𝑥 and 𝑦 have the 

same remainder when divided 3. 

𝑅 = {(0, 0), (0, 3), (3, 0), (3, 3), (5, 5), (5, 8), (8, 5), (8, 8)}.  

Observe, that 𝑥𝑅𝑥 for 𝑥 ∈  𝑁 and, whenever 𝑥𝑅𝑦 then also 𝑦𝑅𝑥.  

(iii) Let 𝐴 = ℝ, and define the relation 𝑅 on ℝ by 𝑥𝑅𝑦 iff 𝑦 =  𝑥2  . Then 

𝑅 consists of all points on the parabola 𝑦 = 𝑥2.  
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(iv)  Let 𝐴 = ℝ, and define 𝑅 on ℝ by 𝑥𝑅𝑦 iff 𝑥 · 𝑦 = 1. Then 𝑅 consists 

of all pairs      (𝑥,
1

𝑥
), where 𝑥 is non-zero real number.  

(v)  Let 𝐴 = {1, 2, 3}, and define 𝑅 on 𝐴 by 𝑥𝑅𝑦 iff 𝑥 +  𝑦 = 7. Since the 

sum of two elements of 𝐴 is at most 6, we see that 𝑥𝑅𝑦 for no two 

elements of 𝐴; hence, 𝑅 = ∅. 

For small sets we can use a pictorial representation of a relation 𝑅 on 𝐴: 

Sketch two copies of 𝐴 and, if 𝑥𝑅𝑦 then draw an arrow from the 𝑥 in the left sketch 

to the 𝑦 in the right sketch.  

(vi) Let 𝐴 =  {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, and consider the relation  

𝑅 = {(𝑎, 𝑎), (𝑎, 𝑐), (𝑐, 𝑑), (𝑑, 𝑏), (𝑑, 𝑐)}. 

An arrow representation of 𝑅 is given in Fig.     

             

           

 

 

 

 (vii) Let 𝐴 be any set. Then the relation 𝑅 = {(𝑥, 𝑥):𝑥 ∈ 𝐴} = 𝐼𝐴  on 𝐴 is called the 

identity relation on 𝑨. Thus, in an identity relation, every element is related to 

itself only. 

Definition 3.2.3.  Let 𝑅 be a relation between 𝐴 and 𝐵. Then  

(i) Dom(𝑅) = {𝑥 ∈  𝐴 ∶  There exists some 𝑦 ∈  𝐵 such that (𝑥, 𝑦)  ∈  𝑅}                     

is called the domain of 𝑹.  

(ii) Ran(𝑅) = {𝑦 ∈ 𝐵: There exists some 𝑥 ∈ 𝐴 such that (𝑥, 𝑦) ∈  𝑅} 

is called the range of 𝑹.  

Observe that Dom(𝑅) is subset of 𝐴, and Ran(𝑅) is subset of 𝐵.   

a                               a 

b                              b 

c                               c 

d                               d 

e                               e 
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Note: If 𝑅 is a relation on 𝐴, then 

Dom(𝑅) =  {𝑥 ∈ 𝐴 ∶  There exists some 𝑦 ∈ 𝐴 such that (𝑥, 𝑦)  ∈  𝑅}, and                       

Ran(𝑅) = {𝑦 ∈ 𝐴: There exists some 𝑥 ∈ 𝐴 such that (𝑥, 𝑦) ∈  𝑅}. 

Observe that Dom(𝑅) and Ran(𝑅) are both subsets of 𝐴.   

Example 3.2.4. 

(i) Let 𝐴 and 𝑅 be as in Example 3.2.2(vi). Then  

Dom(𝑅) =  {𝑎, 𝑐, 𝑑},  Ran(𝑅)  = {𝑎, 𝑏, 𝑐, 𝑑}. 

(ii) Let 𝐴 = ℝ, and define 𝑅 by 𝑥𝑅𝑦 iff 𝑦 = 𝑥2. Then 

 Dom(𝑅) = ℝ,  Ran(𝑅) = {𝑦 ∈  ℝ ∶  𝑦 ≥  0}. 

(iii) Let 𝐴 =  {1, 2, 3, 4, 5, 6}, and define 𝑅 by 𝑥𝑅𝑦 iff  𝑥 ≨  𝑦  and 𝑥 divides 𝑦; 

𝑅 = {(1, 2), (1, 3), . . . , (1, 6), (2,4), (2, 6), (3, 6)}, and Dom (𝑅) = {1, 2, 3},                 

Ran(𝑅) = {2, 3, 4, 5, 6}. 

(iv) Let 𝐴 = ℝ, and 𝑅 be defined as (𝑥, 𝑦) ∈ 𝑅 iff 𝑥2 + 𝑦2 = 1. Then  

(𝑥, 𝑦)  ∈ 𝑅 iff (𝑥, 𝑦) is on the unit circle with centre at the origin. So, 

Dom(𝑅) = Ran(𝑅)  = {𝑧 ∈ ℝ: −1 ≤ 𝑧 ≤ 1}. 

Definition 3.2.5. (Reflexive, Symmetric, antisymmetric and Transitive Relations) 

 

Let 𝑅 be a relation on a nonempty set 𝐴.   

(i)        𝑅 is reflexive if (𝑥, 𝑥) ∈ 𝑅 for all 𝑥 ∈  𝐴.  

(ii)        𝑅 is antisymmetric if for all 𝑥, 𝑦 ∈ 𝐴, (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑥) ∈ 𝑅 

implies 𝑥 =  𝑦.  

(iii) 𝑅 is transitive if for all 𝑥, 𝑦, 𝑧 ∈  𝐴, (𝑥, 𝑦) ∈  𝑅 and (𝑦, 𝑧) ∈  𝑅 

implies (𝑥, 𝑧) ∈ 𝑅.  

(iv) 𝑅 is symmetric if whenever (𝑥, 𝑦)  ∈  𝑅 then (𝑦, 𝑥) ∈ 𝑅. 
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Definition 3.2.6. 
(i) 𝑅 is an equivalence relation on 𝐴, if 𝑅 is reflexive, symmetric, and transitive.  

The set 

[𝑥] = {𝑦 ∈ 𝐴: 𝑥𝑅𝑦}  
is called equivalence class. The set of all different equivalence classes 𝐴 𝑅⁄   is 

called the quotient set. 
 (ii) 𝑅 is a partial order on 𝐴(an order on 𝐴, or an ordering of 𝐴), if 𝑅 is 

reflexive, antisymmetric, and transitive. We usually write ≤  for 𝑅; that is, 

𝑥 ≤  𝑦   iff   𝑥𝑅𝑦 . 

(iii) If 𝑅 is a partial order on 𝐴, then the element 𝑎 ∈ 𝐴 is called least element of 

𝑨 with respect to 𝑹 if and only if 𝑎𝑅𝑥 for all 𝑥 ∈ 𝐴. 

(iv) If 𝑅 is a partial order on 𝐴, then the element 𝑎 ∈ 𝐴 is called greatest element 

of 𝑨 with respect to 𝑹 if and only if 𝑥𝑅𝑎 for all 𝑥 ∈ 𝐴. 

(v) If 𝑅 is a partial order on 𝐴, then the element 𝑎 ∈ 𝐴 is called minimal element 

of 𝑨 with respect to 𝑹 if and only if 𝑥𝑅𝑎 then  𝑎 = 𝑥 for all 𝑥 ∈ 𝐴. 

(vi) If 𝑅 is a partial order on 𝐴, then the element 𝑎 ∈ 𝐴 is called maximal 

element of 𝑨 with respect to 𝑹 if and only if 𝑎𝑅𝑥 then  𝑎 = 𝑥 for all 𝑥 ∈ 𝐴. 
 

Example 3.2.7.    
(i) The relation on the set of integers ℤ defined by 

(𝑥, 𝑦) ∈  𝑅 if 𝑥 − 𝑦 = 2𝑘, for some 𝑘 ∈  ℤ  

is an equivalence relation, and partitions the set integers into two equivalence 
classes, i.e., the even and odd integers. 

If 𝑦 = 0, then [𝑥] = ℤ𝑒 . If 𝑦 = 1, then [𝑥] = ℤ𝑜.  ℤ = ℤ𝑒⋃ℤ𝑜,   ℤ/𝑅={ℤ𝑒 , ℤ𝑜}.   
 

(ii) The inclusion relation ⊆ is a partial order on power set 𝑃(𝑋) of a set 𝑋. 

(iii) Let 𝐴 = {3,6,7}, and  

𝑅1 = {(𝑥, 𝑦) ∈ 𝐴 × 𝐴: 𝑥 ≤ 𝑦}, 𝑅2 = {(𝑥, 𝑦) ∈ 𝐴 × 𝐴: 𝑥 ≥ 𝑦} 

𝑅3 = {(𝑥, 𝑦) ∈ 𝐴 × 𝐴: 𝑦 divisble by 𝑥} 
are relations defined on 𝐴. 

𝑅1 = {(3,3), (3,6), (3,7), (6,6), (6,7), (7,7)}, 
𝑅2 = {(3,3), (6,3),(6,6), (7,3), (7,6), (7,7)}.  

                              𝑅3 = {(3,3), (3,6),(6,6), (7,7)}. 

𝑅1,𝑅2 and 𝑅3 are partial orders on 𝐴. 

(1)The least element of 𝐴 with respect to 𝑅1 is                  --------------. 

(2)The least element of 𝐴 with respect to 𝑅2 is                  --------------. 

(3)The greatest element of 𝐴 with respect to 𝑅1 is             --------------. 

(4)The greatest element of 𝐴 with respect to 𝑅2 is             --------------. 
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(5)𝐴 has no least and greatest element with respect to 𝑅3 since, --------------. 

(6)The maximal element of 𝐴 with respect to 𝑅3 is            --------------. 

(7)The minimal element of 𝐴 with respect to 𝑅3 is             --------------. 

(iv)  Let 𝑋 = {1,2,4,7}, 𝐾 = {{1,2}, {4,7}, {1,2,4}, 𝑋} and  

𝑅1 = {(𝐴, 𝐵) ∈ 𝐾 × 𝐾: 𝐴 ⊆ 𝐵}, 
𝑅2 = {(𝐴, 𝐵) ∈ 𝐾 × 𝐾: 𝐴 ⊇ 𝐵}, 

 are relations defined on 𝐾. 

 

 
 

𝑅1 = ({1,2}, {1,2}), ({1,2}, {1,2,4}), ({1,2}, 𝑋), 
 ({4,7}, {4,7}), ({4,7}, 𝑋),  

 ({1,2,4}, {1,2,4}), ({1,2,4}, 𝑋),  

 (𝑋, 𝑋)   

 

 

𝑅2 = ({1,2}, {1,2}),    

 ({4,7}, {4,7}),    

 ({1,2,4}, {1,2}), ({1,2,4}, {1,2,4}),   

 (𝑋, {1,2}), (𝑋, {4,7}), (𝑋, {1,2,4}), (𝑋, 𝑋) 
 
𝑅1 and 𝑅2 are partial orders on 𝐾. 

(1)𝐾 has no least element with respect to 𝑅1 since,       --------------. 

(2)The greatest element of 𝐾 with respect to 𝑅1 is         --------------. 

(3)The least element of 𝐾 with respect to to 𝑅2 is          --------------. 

(4)𝐾 has no greatest element with respect to 𝑅2 since,   --------------. 

(5)The minimal elements of 𝐾 with respect to 𝑅1 are     --------------. 
(6)The maximal element of 𝐾 with respect to 𝑅1 is        --------------. 

(7)The minimal element of 𝐾 with respect to 𝑅2 is         --------------. 

(8)The maximal element of 𝐾 with respect to 𝑅2 is         --------------. 

 

Remark 3.2.8. 
(i) Every greatest (least) element is maximal (minimal). The converse is not true. 
(ii) The greatest (least) element if exist, it is unique.  

(iii) Every finite partially ordered set has maximal (minimal) element. 
Properties of equivalence classes 

(iv) For all 𝑎 ∈ 𝑋, 𝑎 ∈ [𝑎]. 
(v)  𝑎𝑅𝑏 ⟺  [𝑎] = [𝑏]. 
(vi) [𝑎] = [𝑏] ⟺ (𝑎, 𝑏) ∈ 𝑅 ⟺ 𝑎𝑅𝑏. 
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(vii) [𝑎]⋂[𝑏] ≠ ∅ ⟺ [𝑎] = [𝑏]. 
(viii) [𝑎]⋂[𝑏] = ∅ ⟺ [𝑎] ≠ [𝑏]. 

(ix)  For all 𝑎 ∈ 𝑋, [𝑎] ∈ 𝑋/𝑅 but [𝑎] ⊆ 𝑋. 

Definition 3.2.9.  𝑅 is a totally order on 𝐴 if 𝑅 is a partial order, and 𝑥𝑅𝑦 or 𝑦𝑅𝑥 

for all 𝑥, 𝑦 ∈  𝐴; that is, if any two elements of 𝐴 are comparable with respect to 𝑅. 
Then we call the pair (𝐴, ≤) a totally order set or a chain.  

 

Example 3.2.10. 

(i) Let 𝐴 =  {2, 3, 4, 5, 6}, and  𝑅 a relation on  𝐴 defined as the usual ≤  relation 

on ℕ, i.e. 𝑎𝑅𝑏 iff 𝑎 ≤  𝑏. Then 𝑅 is a totally order on 𝐴.  

(ii) Let “/” be  a relation on ℕ defined as follows:  

𝑎/𝑏  iff 𝑎 divides 𝑏. 

To show that / is a partial order we have to show the three defining properties of a 

partial order relation:                                                                                           

Reflexive: Since every natural number 𝑎, 𝑎 = 𝑎. 1; that is, 𝑎 is a divisor of itself, 

so we have 𝑎/𝑎 for all 𝑎 ∈ 𝐴.                                                                                                          

Antisymmetric: If 𝑎 divides 𝑏, then we have 𝑏 = 𝑘𝑎 for some 𝑘 in ℕ. If 𝑏 divides 

𝑎, then  𝑎 = 𝑡𝑏 for some 𝑡 in ℕ. So, 𝑎 = 𝑘𝑡𝑎, thus 𝑘𝑡 = 1; that is, 𝑘 = 1 and 𝑎 =

1. Therefore, 𝑎 = 𝑏. 

Transitive: If 𝑎 divides 𝑏, then we have 𝑏 = 𝑘𝑎 for some 𝑘 in ℕ, and if 𝑏 divides 

𝑐, then we have 𝑐 = 𝑡𝑏 for some 𝑡 in ℕ. Thus, 𝑐 = 𝑡(𝑘𝑎) = (𝑡𝑘)𝑎. Therefore, 𝑎 

divides 𝑐. 

Thus, / is a partial order on 𝑁.  

The relation "/" is not totally order since (3,4) ∉ /.   

(iii) Let 𝐴 =  {𝑥, 𝑦} and define ≤ on the power set 𝑃(𝐴) = {∅, {𝑥}, {𝑦}, 𝐴} by 

𝑠 ≤ 𝑡 iff 𝑠 is a subset of  𝑡. 

This gives us the following relation:  

 ∅ ≤  ∅, ∅ ≤  {𝑥}, ∅ ≤  {𝑦}, ∅ ≤ {𝑥, 𝑦} =  𝐴, {𝑥} ≤  {𝑥}, {𝑥} ≤ {𝑥, 𝑦}, {𝑦} ≤

 {𝑦}, {𝑦} ≤ {𝑥, 𝑦}, {𝑥, 𝑦}  ≤ {𝑥, 𝑦}.  
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The relation "≤" is not totally order since ({𝑥}, {𝑦}) ∉ ≤.   

Exercise 3.2.11. 

Let 𝐴 = {1, 2, . . . , 10} and define the relation 𝑅 on 𝐴 by 𝑥𝑅𝑦 iff 𝑥 is a multiple of 

𝑦. Show that 𝑅 is a partial order on 𝐴. (Hint: 𝑅 = {(𝑛𝑦, 𝑦): for some 𝑛 ∈

ℤ and 𝑦 ∈ 𝐴}) 

Definition 3.2.12. (Inverse of a Relation) 

Suppose 𝑅 ⊆ 𝐴 × 𝐵 is a relation between 𝐴 and 𝐵 then the inverse relation 𝑅−1 ⊆
𝐵 × A is defined as the relation between 𝐵 and 𝐴 and is given by 

𝑏𝑅−1𝑎      if and only if       𝑎𝑅𝑏. 

That is, 𝑅−1 = {(𝑏, 𝑎)  ∈  𝐵 × 𝐴 ∶  (𝑎, 𝑏)  ∈  𝑅}. 
 

Example 3.2.13.  Let R be the relation between ℤ and ℤ+ defined by 

𝑚𝑅𝑛 if and only if 𝑚2 = 𝑛. 
Then  

𝑅 = {(𝑚, 𝑛) ∈  ℤ × ℤ+: 𝑚2 = 𝑛} = {(𝑚, 𝑚2) ∈  ℤ × ℤ+}, 
and  

 𝑅 −1 = {(𝑛, 𝑚) ∈  ℤ+  × ℤ ∶  𝑚2 = 𝑛} = {(𝑚2 , 𝑚)  ∈  ℤ+  × ℤ }. 
For example, –3 R 9, –4 R 16, 16 𝑅−1  4, 9 𝑅−1  3, etc.  

Remark 3.2.14. If  𝑅 is partial order relation on 𝐴 ≠ ∅, then 

(i) 𝑅−1  is also partial order relation on 𝐴. 

(ii) (𝑅−1)−1 = 𝑅. 

(iii) Dom(𝑅−1) =Ran(𝑅)  and   Ran(𝑅−1) =Dom(𝑅). 

Proof. (i) 

(1) Reflexive. Let 𝑥 ∈ 𝐴. 

⟹ (𝑥, 𝑥) ∈ 𝑅  (Reflexivity of  𝐴) ⟹ (𝑥, 𝑥) ∈ 𝑅−1               Def of 𝑅−1  

(2) Anti-symmetric. Let (𝑥, 𝑦) ∈ 𝑅−1 and (𝑦, 𝑥) ∈ 𝑅−1. To prove 𝑥 = 𝑦. 

⟹ (𝑦, 𝑥) ∈ 𝑅⋀(𝑥, 𝑦) ∈ 𝑅                                                       Def of 𝑅−1 

⟹ 𝑦 = 𝑥                                                                              Since 𝑅 is antisymmetric 
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(3) Transitive. Let (𝑥, 𝑦) ∈ 𝑅−1 and (𝑦, 𝑧) ∈ 𝑅−1. To prove (𝑥, 𝑧) ∈ 𝑅−1 . 

⟹ (𝑦, 𝑥) ∈ 𝑅⋀(𝑧, 𝑦) ∈ 𝑅                                                     Def of 𝑅−1  

⟹ (𝑧, 𝑦) ∈ 𝑅⋀(𝑦, 𝑥) ∈ 𝑅                                                     Commut. Law of ⋀ 

⟹ (𝑧, 𝑥) ∈ 𝑅                                                                         Since 𝑅 is transitive 

 ⟹ (𝑥, 𝑧) ∈ 𝑅−1                                                                      Def of 𝑅−1  

Definition 3.2.15.  (Partitions) 

Let 𝐴 be a set and let 𝐴1 , 𝐴2  , . . . , 𝐴𝑛  be subsets of 𝐴 such 

(i)  𝐴𝑖 ≠  Ø for all 𝑖, 

(ii) 𝐴𝑖 ∩ 𝐴𝑗 = Ø if 𝑖 ≠  𝑗 , 

(iii) 𝐴 = ⋃ 𝐴𝑖
𝑛
𝑖=1 = 𝐴1  ∪ 𝐴2 ∪ … ∪ 𝐴𝑛  . Then the sets 𝐴𝑖  partition the set 𝐴 and 

these sets are called the classes of the partition. 
 

Remark 3.2.16. An equivalence relation on 𝑋 leads to a partition of 𝑋, and vice 

versa for every partition of 𝑋 there is a corresponding equivalence relation. 

Proof:  

(a) Let 𝑅 be an equivalence relation on 𝑋.  

1- ∀𝑎 ∈ 𝑋, 𝑎 ∈ [𝑎]         Def. of equ. Class 

2- ∃[𝑏] ∈ 𝑋/𝑅 such that [𝑏] = [𝑎]                   Since 𝑋/𝑅 contains all diff. classes 

3- 𝑋 = ⋃ {𝑎} ⊆ ⋃ [𝑎] ⊆ ⋃ [𝑏] ⊆ 𝑋𝑎∈[𝑏]𝑎∈𝑋𝑎∈𝑋 ⟹ 𝑋 = ⋃ [𝑏][𝑏]∈𝑋/𝑅 . 

4-  [𝑏]⋂[𝑎] = ∅, for all [𝑏], [𝑎] ∈ 𝑋/𝑅            Def. of  𝑋/𝑅 

5-  𝑅 is partition of 𝑋                                         Inf.(3),(4) 

(b)  Let (i)  𝐴𝑖 ≠  Ø for all 𝑖, 𝐴𝑖 ⊆ 𝑋 

(ii) 𝐴𝑖 ∩ 𝐴𝑗 = Ø if 𝑖 ≠  𝑗 , 

(iii) 𝑋 = ⋃ 𝐴𝑖
𝑛
𝑖=1 = 𝐴1  ∪ 𝐴2 ∪ … ∪ 𝐴𝑛. 

Define 𝑅 (relation) on 𝑋 by 𝑎𝑅𝑏 ⟺ if ∃ 𝐴𝑖  such that 𝑎, 𝑏 ∈ 𝐴𝑖 . 

This relation is an equivalence relation on 𝑋. 
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Definition 3.2.17. (The Composition of Two Relations) 

The composition of two relations 𝑅1(𝐴, 𝐵) and 𝑅2(𝐵, 𝐶) is given by  𝑅2  𝑜 𝑅1  

where  (𝑎, 𝑐) ∈ 𝑅2  𝑜 𝑅1   if and only if there exists 𝑏 ∈  𝐵 such that (𝑎, 𝑏) ∈ 𝑅1 and 

(𝑏, 𝑐) ∈ 𝑅2. That is, 

 𝑅2  𝑜 𝑅1 = {(𝑎, 𝑐) ∈ 𝐴 × 𝐶|∃ 𝑏 ∈ 𝐵 such that(𝑎, 𝑏) ∈ 𝑅1 and (𝑏, 𝑐) ∈ 𝑅2}  

 

Remark 3.2.18.  Let 𝑅1(𝐴, 𝐵), 𝑅2(𝐵, 𝐶)  and 𝑅3(𝐶, 𝐷) are relations. Then, 

(i) (𝑅3   𝑜 𝑅2  ) 𝑜 𝑅1  = 𝑅3   𝑜 (𝑅2  𝑜 𝑅1). 

(ii) (𝑅2   𝑜 𝑅1  )−1 = 𝑅1
−1𝑜 𝑅2

−1
. 

(iii) Let 𝑅−1 = {(𝑏, 𝑎)|(𝑎, 𝑏) ∈ 𝑅} ⊆ 𝐵 × 𝐴. Then  
 

(𝑎, 𝑏) ∈ 𝑅 𝑜 𝑅−1 ⟺ (𝑏, 𝑎) ∈ 𝑅 𝑜 𝑅−1, for every for every 𝑎, 𝑏 in 𝐵. 

Proof. Exercise. 

Example 3.2.19.  

 Let sets 𝐴 = {𝑎, 𝑏, 𝑐}, 𝐵 = {𝑑, 𝑒, 𝑓 }, 𝐶 = {𝑔, ℎ, 𝑖} and relations  

𝑅(𝐴, 𝐵) = {(𝑎, 𝑑), (𝑎, 𝑓 ), (𝑏, 𝑑), (𝑐, 𝑒)}  

and 

𝑆(𝐵, 𝐶) = {(𝑑, 𝑔), (𝑑, 𝑖), (𝑒, 𝑔), (𝑒, ℎ)}.  

Then we graph these relations and show how to determine the composition 

pictorially S o R is determined by choosing 𝑥 ∈ 𝐴 and 𝑦 ∈  𝐶  and checking if 

there is a route from 𝑥 to 𝑦 in the graph. If so, we join 𝑥 to 𝑦 in 𝑆 𝑜 𝑅. 

𝑆 𝑜 𝑅 = {(𝑎, 𝑔), (𝑎, 𝑖), (𝑏, 𝑔), (𝑏, 𝑖), (𝑐, 𝑔), (𝑐, ℎ)}. 
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For example, if we consider 𝑎 and 𝑔 we see that there is a path from 𝑎 to 𝑑 and 

from 𝑑 to 𝑔 and therefore (𝑎, 𝑔) is in the composition of 𝑆 and 𝑅. 

 

Definition 3.2.19. Union and Intersection of Relations 

(i) The union of two relations  𝑅1(𝐴, 𝐵) and 𝑅2 (𝐴, 𝐵) is subset of 𝐴 ×  𝐵 and  

defined as 
(𝑎, 𝑏) ∈ 𝑅1 ∪ 𝑅2 if and only if (𝑎, 𝑏) ∈ 𝑅1 or (𝑎, 𝑏) ∈ 𝑅2. 
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(ii) The intersection of two relations  𝑅1(𝐴, 𝐵) and 𝑅2  (𝐴, 𝐵) is subset of 𝐴 ×  𝐵 

and defined as 
(𝑎, 𝑏) ∈ 𝑅1 ⋂ 𝑅2 if and only if (𝑎, 𝑏) ∈ 𝑅1 and (𝑎, 𝑏) ∈ 𝑅2. 

 

Remark 3.2.20.  
(i) The relation 𝑅1 is a subset of 𝑅2  (𝑅1  ⊆ 𝑅2) if whenever (𝑎, 𝑏) ∈ 𝑅1 then 
(𝑎, 𝑏) ∈ 𝑅2.  

(ii) The intersection of two equivalence relations 𝑅2 , 𝑅1on a set 𝑋 is also 

equivalence relation on 𝑋. 

(iii) In general, the union of two equivalence relations 𝑅1 , 𝑅2 on a set 𝑋 need not to 

be  an equivalence relation on 𝑋. 
Proof. Exercise. 

 

Example 3.2.21. Let 𝑋 = {𝑎, 𝑏, 𝑐}. Define two relations on 𝑋 as follows: 

𝑅1(𝑋, 𝑋) = {(𝑎, 𝑎), (𝑏, 𝑏 ), (𝑐, 𝑐), (𝑎, 𝑏), (𝑏, 𝑎)},  

𝑅2(𝑋, 𝑋) = {(𝑎, 𝑎), (𝑏, 𝑏 ), (𝑐, 𝑐), (𝑎, 𝑐), (𝑐, 𝑎)}. 

Let 𝑅 = 𝑅1⋃𝑅2 . Here, 𝑅 is not an equivalence relation on 𝑋 since it is not 

transitive relation, because (𝑏, 𝑎) and (𝑎, 𝑐) ∈ 𝑅 but (𝑏, 𝑐) ∉ 𝑅. 

 

 

 

 

 


