
 Programming Language for Atmospheric Sciences / Lecture (4) Dr. Muthanna A. Al-Tameemi

 43

4. Numerical Python (NumPy)

NumPy is a Python library created in 2005 that performs numerical calculations. It is generally

used for working with arrays.

NumPy also includes a wide range of mathematical functions, such as linear algebra, Fourier

transforms, and random number generation, which can be applied to arrays.

What is NumPy Used for?

NumPy is an important library generally used for:

• Machine Learning

• Data Science

• Image and Signal Processing

• Scientific Computing

• Quantum Computing

Why Use NumPy?

Some of the major reasons why we should use NumPy are:

1. Faster Execution

In Python, we use lists to work with arrays. But when it comes to large array operations, Python

lists are not optimized enough.

Numpy arrays are optimized for complex mathematical and statistical operations. Operations on

NumPy are up to 50x faster than iterating over native Python lists using loops.

Here're some of the reasons why NumPy is so fast:

• Uses specialized data structures called numpy arrays.

• Created using high-performance languages like C and C++.

2. Used with Various Libraries

NumPy is heavily used with various libraries like Pandas, Scipy, scikit-learn, etc.

4.1 Import NumPy in Python

We can import NumPy in Python using the import statement.

• If we import NumPy without an alias using import numpy, we can create an array

using the numpy.array() function.

• Using an alias np is a common convention among Python programmers, as it

makes it easier and quicker to refer to the NumPy library in your code.

 Programming Language for Atmospheric Sciences / Lecture (4) Dr. Muthanna A. Al-Tameemi

 44

4.2 Dimensions in Arrays

A dimension in arrays is one level of array depth (nested arrays).

1. 0-D Arrays

0-D arrays, or Scalars, are the elements in an array. Each value in an array is a 0-D array.

2. 1-D Arrays

 An array that has 0-D arrays as its elements is called uni-dimensional or 1-D array.

These are the most common and basic arrays.

3. 2-D Arrays

An array that has 1-D arrays as its elements is called a 2-D array.

These are often used to represent matrix or 2nd order tensors.

Or

4. 3-D Arrays

An array that has 2-D arrays (matrices) as its elements is called 3-D array.

 Programming Language for Atmospheric Sciences / Lecture (4) Dr. Muthanna A. Al-Tameemi

 45

These are often used to represent a 3rd order tensor.

4.3 Access Array Elements

Array indexing is the same as accessing an array element. You can access an array element by

referring to its index number.

The indexes in NumPy arrays start with 0, meaning that the first element has index 0, and the

second has index 1 etc.

Example #1

Get third and fourth elements from the following array and add them.

Example #2
Access the element on the first row, second column:

Example #3
Get the third element of the second array of the first array and add to the second element of the first

array of the second array

 Programming Language for Atmospheric Sciences / Lecture (4) Dr. Muthanna A. Al-Tameemi

 46

Negative Indexing

Use negative indexing to access an array from the end.

Example #4

Print the last element from the 2nd dim:

4.4 NumPy Array Attributes

In NumPy, attributes are properties of NumPy arrays that provide information about the array's

shape, size, data type, dimension, and so on.

For example, to get the dimension of an array, we can use the ndim attribute.

There are numerous attributes available in NumPy, which we'll learn below.\

Attributes Description

ndim returns number of dimension of the array
size returns number of elements in the array
dtype returns data type of elements in the array
shape returns the size of the array in each dimension.
itemsize returns the size (in bytes) of each elements in the array
data returns the buffer containing actual elements of the array in memory

Example #1

The ndim attribute returns the number of dimensions in the numpy array.

 Programming Language for Atmospheric Sciences / Lecture (4) Dr. Muthanna A. Al-Tameemi

 47

Example #2

The size attribute returns the total number of elements in the given array.

Example #3

The shape attribute returns a tuple of integers that gives the size of the array in each dimension.

4.5 NumPy Input Output

NumPy offers input/output (I/O) functions for loading and saving data to and from files.

Input/output functions support a variety of file formats, including binary and text formats.

The binary format is designed for efficient storage and retrieval of large arrays.

The text format is more human-readable and can be easily edited in a text editor.

Here are some of the commonly used NumPy Input/Output functions:

Function Description

save() saves an array to a binary file in the NumPy .npy format.

load() loads data from a binary file in the NumPy .npy format
savetxt() saves an array to a text file in a specific format
loadtxt() loads data from a text file.

Example #1

The save() function is used to save an array to a binary file in the NumPy .npy format.

Here, we saved the NumPy array named arr1 to the binary file named file1.npy in our current

directory.

 Programming Language for Atmospheric Sciences / Lecture (4) Dr. Muthanna A. Al-Tameemi

 48

Example #2

In the previous example, we saved an array to a binary file. Now we'll load that saved file using

the load() function.

Example #3

In NumPy, we use the savetxt() function to save an array to a text file.

The code above will save the NumPy array arr2 to the text file named file2.txt in our current

directory.

Example #4

We use the loadtxt() function to load the saved txt file.

Let's see an example to load the file2.txt file that we saved earlier.

4.6 NumPy Arithmetic Array Operations

NumPy provides a wide range of operations that can perform on arrays, including arithmetic

operations.

NumPy's arithmetic operations are widely used due to their ability to perform simple and efficient

calculations on arrays.

In this tutorial, we will explore some commonly used arithmetic operations in NumPy and learn

how to use them to manipulate arrays.

 Programming Language for Atmospheric Sciences / Lecture (4) Dr. Muthanna A. Al-Tameemi

 49

List of Arithmetic Operations

Here's a list of various arithmetic operations along with their associated operators and built-in

functions:

lement-wise Operation Operator Function

Addition + add()

Subtraction - subtract()

Multiplication * multiply()

Division / divide()

Exponentiation ** power()

Modulus % mod()

1. NumPy Array Element- Addition

We can use the both + operator and the built-in function add() to perform element- addition

between two NumPy arrays. For example,

2. NumPy Array Element- Subtraction

In NumPy, we can either use the - operator or the subtract() function to perform element-

subtraction between two NumPy arrays. For example,

 Programming Language for Atmospheric Sciences / Lecture (4) Dr. Muthanna A. Al-Tameemi

 50

3. NumPy Array Element-Multiplication

For element- multiplication, we can use the * operator or the multiply() function. For example,

4. NumPy Array Element-Division

We can use either the / operator or the divide() function to perform element- division between two

numpy arrays. For example,

5. NumPy Array Element-Exponentiation

Array exponentiation refers to raising each element of an array to a given power.

In NumPy, we can use either the ** operator or the power() function to perform the element-

exponentiation operation. For example,

 Programming Language for Atmospheric Sciences / Lecture (4) Dr. Muthanna A. Al-Tameemi

 51

6. NumPy Array Element- Modulus

We can perform a modulus operation in NumPy arrays using the % operator or the mod() function.

This operation calculates the remainder of element-division between two arrays. Let's see an

example.

4.7 Numpy Comparison/Logical Operations

NumPy provides several comparison and logical operations that can be performed on NumPy

arrays.

NumPy's comparison operators allow for element- comparison of two arrays.

Similarly, logical operators perform boolean algebra, which is a branch of algebra that deals with

True and False statements.

NumPy Comparison Operators

NumPy provides various element-wise comparison operators that can compare the elements of two

NumPy arrays.

Here's a list of various comparison operators available in NumPy.

Operators Descriptions

< (less than) returns True if element of the first array is less than the second one

<= (less than or equal to) returns True if element of the first array is less than or equal to the second one

> (greater than) returns True if element of the first array is greater than the second one

>= (greater than or equal

to)

returns True if element of the first array is greater than or equal to the second one

== (equal to) returns True if the element of the first array is equal to the second one

!= (not equal to) returns True if the element of the first array is not equal to the second one

 Programming Language for Atmospheric Sciences / Lecture (4) Dr. Muthanna A. Al-Tameemi

 52

Example 1: NumPy Comparison Operators

Here, we can see that the output of the comparison operators is also an array, where each element

is either True or False based on the array element's comparison.

4.8 NumPy Comparison Functions

NumPy also provides built-in functions to perform all the comparison operations.

For example, the less() function returns True if each element of the first array is less than the

corresponding element in the second array.

Here's a list of all built-in comparison functions.

unctions Descriptions

less() returns element-wise True if the first value is less than the second

less_equal() returns element-wise True if the first value is less than or equal to second

greater() returns element-wise True if the first value is greater then second

greater_equal() returns element-wise True if the first value is greater than or equal to second

equal() returns element-wise True if two values are equal

not_equal() returns element-wise True if two values are not equal

 Programming Language for Atmospheric Sciences / Lecture (4) Dr. Muthanna A. Al-Tameemi

 53

Example 2: NumPy Comparison Functions

4.9 NumPy Logical Operations

As mentioned earlier, logical operators perform Boolean algebra; a branch of algebra that deals

with True and False statements.

Logical operations are performed element-wise. For example, if we have two arrays x1 and x2 of

the same shape, the output of the logical operator will also be an array of the same shape.

Here's a list of various logical operators available in NumPy:

Operators Descriptions

logical_and Computes the element-wise truth value of x1 AND x2

logical_or Computes the element-wise truth value of x1 OR x2

logical_not Computes the element-wise truth value of NOT x

	Example #1
	Example #2
	Example #3
	Negative Indexing
	Example #4
	Example #1
	Example #2
	Example #3
	Example #1
	Example #2
	Example #3
	Example #4

