Week Two Introduction to number base conversion

Hussein Alsheakh, PhD
Department of Computer Science
College of Science
Mustansiriyah University

Addition

- Decimal Addition

Binary Addition

- Column Addition

Binary Subtraction

- Borrow a "Base" when needed

Binary Multiplication

- Bit by bit

Number Base Conversions

Decimal (Integer) to Binary Conversion

- Divide the number by the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient
- Take the quotient and repeat the division

Example: (13) ${ }_{10}$

	Quotient	Remainder	Coefficient
$\mathbf{1 3 / 2}=$	6	1	$\mathbf{a}_{\mathbf{0}}=1$
$6 / \mathbf{2}=$	3	0	$\mathbf{a}_{\mathbf{1}}=0$
$3 / \mathbf{2}=$	1	1	$\mathbf{a}_{\mathbf{2}}=1$
$1 / \mathbf{2}=$	0	1	$\mathbf{a}_{\mathbf{3}}=1$
Answer:	$(13)_{10}=\left(a_{3} a_{2} a_{1} a_{0}\right)_{2}=(1101)_{2}$		
	MSB	LSB	

Decimal (Fraction) to Binary Conversion

- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

Example: (0.625) ${ }_{10}$

	Integer	Fraction	Coefficient
0.625 *	$* 2=1$	25	$a_{-1}=1$
0.25 *	*2 = 0	5	$\mathrm{a}_{-2}=0$
0.5 *	*2 = 1		$a_{-3}=1$
Answer:	: (0.625) 10 $=\left(0 . \mathrm{a}_{-1} \mathrm{a}_{-2} \mathrm{a}_{-3}\right)_{2}=(0.101)_{2}$		
		$\begin{array}{r} \uparrow \\ \text { MSB } \end{array}$	LSB

Decimal to Octal Conversion Example: (175) ${ }_{10}$

	Quotient	Remainder	Coefficient
$175 / \mathbf{8}=$	21	7	$\mathbf{a}_{0}=7$
$21 / \mathbf{8}=$	2	5	$\mathbf{a}_{1}=5$
$2 / 8=$	0	2	$\mathbf{a}_{2}=2$
Answer:	$(175)_{10}=\left(a_{2} a_{1} a_{0}\right)_{8}=(257)_{8}$		

Example: $(0.3125)_{10}$

$$
\begin{aligned}
& \text { Integer Fraction Coefficient } \\
& 0.3125 * 8=2 \quad 5 \quad \mathbf{a}_{-1}=2 \\
& 0.5 * 8=4 \quad 0 \quad \mathbf{a}_{-2}=4 \\
& \text { Answer: } \quad(0.3125)_{10}=\left(0 . a_{-1} a_{-2} a_{-3}\right)_{8}=(0.24)_{8}
\end{aligned}
$$

Binary - Octal Conversion

- $8=2^{3}$
- Each group of 3 bits represents an octal digit

Example:

0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Works both ways (Binary to Octal \& Octal to Binary)

Binary - Hexadecimal Conversion

- $16=2^{4}$
- Each group of 4 bits represents a hexadecimal digit

Example:

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

Works both ways (Binary to Hex \& Hex to Binary)

- Octal - Hexadecimal Conversion

Example:

Works both ways (Octal to Hex \& Hex to Octal)

HW
 Convert the following, and Show your steps

- (527) 10 to BCD
- 10111011 to octal
- 1011011101 to hexadecimal
- Convert the following Octal number, 330.93758 to Decimal
- Convert the following binary number, 101.012 to Decimal
- Convert the following binary number, 1E5.7A16 to Decimal

