Week Two Introduction to number base conversion

Hussein Alsheakh, PhD Department of Computer Science College of Science Mustansiriyah University

Addition

• Decimal Addition

Binary Addition

• Column Addition

Binary Subtraction

• Borrow a "Base" when needed

Binary Multiplication

• Bit by bit

Number Base Conversions

3/10/2024

Decimal (Integer) to Binary Conversion

- Divide the number by the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient
- Take the quotient and repeat the division

Example: (13)₁₀

Decimal (Fraction) to Binary Conversion

- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

Example: (0.625)₁₀

Decimal to Octal Conversion Example: (175)₁₀

	Quotient	Remainder	Coefficient
175 / 8	B = 21	7	$a_0 = 7$
21 / 8	B = 2	5	$a_1 = 5$
2 / 8	B = 0	2	$a_2 = 2$

Answer: $(175)_{10} = (a_2)^2$

Example: (0.3125)₁₀

		Integer	Fraction	Coefficient
0.3125 *	8 =	2.	5	a ₋₁ = 2
0.5 *	8 =	4.	0	$a_{-2} = 4$
Answer:	(0. :	3125) ₁₀	= (0.a ₋₁ a	₋₂ a ₋₃) ₈ = (0.24) ₈

•
$$8 = 2^3$$

• Each group of 3 bits represents an octal digit
• Example:
(10110.01)₂
(26.2)₈
• Cetal Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Binary – Octal Conversion

Works both ways (Binary to Octal & Octal to Binary)

3/10/2024

Binary – Hexadecimal Conversion

- 16 = 2⁴
- Each group of 4 bits represents a hexadecimal digit

Hex	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
А	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Works both ways (Binary to Hex & Hex to Binary)

• Convert to Binary as an intermediate step

Example:

Works both ways (Octal to Hex & Hex to Octal)

3/10/2024

HW Convert the following, and Show your steps

- (527) 10 to BCD
- 10111011 to octal
- 1011011101 to hexadecimal
- Convert the following Octal number, 330.93758 to Decimal
- Convert the following binary number, 101.012 to Decimal
- Convert the following binary number, 1E5.7A16 to Decimal