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GEOPOTENTIAL 

 The acceleration due to gravity is not constant.  It varies from place to place, 

with the largest variation due to latitude. 

 What we call gravity is the combination of the gravitational acceleration and 

the centrifugal acceleration from the Earth’s rotation. 

 Gravity at the North Pole is approximately 9.83 m/s2, while at the Equator it 

is about 9.78 m/s2. 

 Though small, the variation in gravity must be accounted for.  We do this via the 

concept of geopotential. 

 Geopotential is essentially the potential energy per unit mass. 

 A surface of constant geopotential represents a surface along which all objects of 

the same mass have the same potential energy. 

 If gravity were constant, a geopotential surface would lie at a constant altitude.  

Since gravity is not constant, a geopotential surface will have varying altitude. 

 Geopotential is defined as 
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or in differential form as 

gdzd  . 

 Geopotential height is defined as 
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where g0 is a constant called standard gravity, and has a value of 9.80665 m/s2.  

 Geopotential height is expressed in geopotential meters, abbreviated as gpm. 
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 If the change in gravity with height is ignored, geopotential height and geometric 

height are related via 
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 If the local gravity is stronger than standard gravity, then Z > z. 

 If the local gravity is weaker than standard gravity, then Z < z. 

 Gravity varies from around 9.79 to 9.82 m/s2.  Therefore, g/g0  1, and for many 

applications we can ignore the difference between geopotential and geometric 

height, since Z  z. 

 But, keep in mind that they are different, and at times this difference, though 

small, is very important and cannot be neglected. 

 Many equations, such as the hydrostatic equation or the hypsometric equation, 

can be written either in terms of geometric height or geopotential height.  A 

convenient rule that applies most of the time is that 

 if the formula is written in geopotential height, Z, then g0 is used for gravity. 

 if the formula is written in geometric height, z, then g is used for gravity. 

 Example:  The hydrostatic equation can be written both ways, as shown 

below 
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PRESSURE 

 Pressure is force per unit area. 

 There are two types of pressure: 

 Hydrostatic pressure, which is just due to the weight of the air above you. 

 Dynamic pressure, which is due to the motion of the air. 

 In meteorology, dynamic pressure is usually very small, and we will assume for 

now that atmospheric pressure is solely due to hydrostatic pressure. 

 To find how pressure changes with height we start with the hydrostatic equation 
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and the ideal gas law 
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 Eliminating density from these two equation gives 
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 Integrating vertically from the surface to some height z we get 
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PRESSURE DECREASE IN AN ISOTHERMAL ATMOSPHERE 

 Absolute temperature varies by only 20% or so through the troposphere, so we 

can get an idea how pressure changes with height by assuming a constant 

temperature (isothermal atmosphere).  If this is done, the expression for the 

pressure profile becomes 
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 HP is the pressure scale height of the atmosphere, and is a measure of how 

rapidly the pressure drops with height.  A larger scale height means a slower 

rate of decrease with height. 

 At z = Hp the pressure will have decreased to 37% of the surface value 

(e1 = 0.368). 

 The pressure scale height is the e-folding scale for pressure. 
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DENSITY PROFILE 

 We can also use the hydrostatic equation and the equation of state to find how 

density changes with height.  We first start by differentiating the ideal gas law 

with respect to height to get 
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From the hydrostatic equation we know that 
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and putting this into (7) we can write 
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Dividing (8) through by RdT gives 
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Integrating (9) from the surface to some level z we get 
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 Notice that the density and pressure profiles do not have the exact same functional 

dependence unless the atmosphere is isothermal [T(z) = T0], in which case 
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AN IMPORTANT REITERATION! 

 Any of the equations we’ve derived above in terms of actual height z and actual 

gravity g can be converted to geopotential height Z by simply substituting 

standard gravity g0 for actual gravity! 

 

THICKNESS AND THE HYPSOMETRIC EQUATION 

 In terms of geopotential height the hydrostatic equation is 
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 Substituting from the ideal gas law we have 

0

d

pgdp

dZ R T
  , 

or 

0

1 dR T dp

g P dZ
  .                                                       (12) 

 Integrating (12) between two levels in the atmosphere gives 
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 Using the generalized mean value theorem of calculus (13)becomes 
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is the average temperature in the layer between p1 and p2. 

 So the formula for the geopotential distance between the two pressure levels is  
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 The hypsometric equation tells us that the thickness between two pressure levels 

is directly proportional to the average temperature within the layer. 

 We can use thickness as a measure of the average temperature of a layer. 

 We can use contours of thickness in a similar manner to how we use isotherms. 

 Colder layers are thinner, warmer layers are thicker. 
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SEA-LEVEL PRESSURE REDUCTION 

 Weather observing stations measure station pressure, which must be converted 

to sea-level pressure for reporting and plotting on weather charts. 

 The method of calculating the sea-level pressure is called pressure reduction or 

reducing the pressure to sea-level (confusing, because in most cases sea-level 

pressure is larger than station pressure). 

 Sea-level pressure reduction is accomplished via the hysometric equation, (16), 

treating Z1 = 0 as sea level, and Z2 = Zsta as the geopotential height of the station. 

 This means p1 = psl, the sea-level pressure 

 p2 = psta, the station pressure 

 Rearranging (16) with these definitions give 
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 The differences in pressure reduction formulas used in various applications 

mainly lie in the assumptions regarding the layer-average temperature in the 

hypothetical atmospheric layer between the surface and sea level. 

 For U. S. surface observing stations T is computed as follows: 

 The lapse rate between sea-level and the surface is a constant γ = 6.5 K/km. 

 The surface temperature, Tsfc, is the average of the current surface 

temperature and the 12-hour prior surface temperature, 

12( ) / 2sfc now hrT T T  .                                             (18) 

 This means the layer-average temperature in the hypothetical layer between 

the station and the surface is 

2
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or combining (18) and (19), 
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 In practice there are additional correction terms applied in the calculation of T . 

 Humidity is accounted for by using the virtual temperature, Tv, instead of the 

actual temperature. 
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 In practice, the Weather Service uses climatological humidity rather than 

observed humidity for this correction. 

 Empirical corrections are made for each specific station to account for: 

  Variations in climatological lapse rates from summer to winter.  This is 

called the ‘plateau effect’, because it is most extreme at high elevation 

stations. 

 Local anomalies in lapse rate. 

 

ALTIMETER SETTING 

 Aircraft altimeters are essentially barometers that are calibrated to read altitude 

above mean sea level. 

 By assuming a constant lapse rate and integrating (5) we obtain a relationship 

between pressure and height, 
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which in terms of height vs pressure is 
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 Equation (22) is what is used by altimeters to measure pressure and calculate 

altitude above sea level. 

 However, we need to choose relevant values for both 0p  and 0T . 

 We are really free to choose whatever values for 0p  and 0T  we want to use, and 

although the altitude wouldn’t necessarily be correct, it would keep aircraft 

separated by altitude as long as everyone were using the same values for 0p  and 

0T . 

 What is done in practice is to choose values of 0p  and 0T  such that when ( )p z  is 

equal to the station pressure stap  then the altitude z  will be equal to the station 

elevation, staz , 
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 With the proper altimeter setting, when the aircraft is on the airfield the 

altimeter will read the elevation of the airfield. 

 The value of 0p  needed to achieve this is called the altimeter setting altp .  

 The temperature profile is assumed to be the U.S. Standard Atmosphere, so that 

0( )T z T z   ,                                                  (24) 

where γ is the standard lapse rate of 6.5K/km, and 0T  is the temperature at 

sea level. 

 We find 0T  as follows.  We know that in the standard atmosphere 
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Integrating (25) from standard sea-level pressure p* = 1013.25 mb and standard 

sea-level temperature, T* = 288.15K, to pressure 0p  and 
0T , yields 
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 Substituting (26) into (23) and then solving for 0p  (which is altp ) results in 
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 NOTE!  In practice, 0.3 mb is subtracted from the station pressure prior to using 

Eqn. (27).  This accounts for the fact that when the aircraft is on the runway its 

altimeter is not sitting on the ground.  The 0.3 mb correction comes from the 

assumption that the altimeter is located 3 meters above the ground. 
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 Important Point:  The altitude from a pressure altimeter will always be just an 

approximation to true altitude.  It should be most accurate for the altitude of the 

station elevation.  For other altitudes it is approximate.  The aim is to keep 

aircraft separated by altitude so that they don’t collide.  As long as all aircraft 

talking with the controller are using the same altimeter setting, then they can 

stay separated by altitude. 

 

SEA-LEVEL PRESSURE VS. ALTIMETER SETTING 

 Neither sea-level pressure nor altimeter setting are physical quantities which can 

be measured.  They are defined and calculated quantities, and each is used for 

its own purpose. 

 In a METAR observation, altimeter setting and sea-level pressure will often 

differ, because of their differing purposes, and assumptions made about the 

hypothetical atmospheric layer between the surface and sea level.  In summary: 

Sea-level Pressure Altimeter Setting 

Used to create sea-level pressure charts 

for calculating horizontal pressure 

gradients. 

Used for calibrating aircraft altimeters 

so that they read the proper altitude. 

Uses 12-hour averaged station 

temperature. 

Doesn’t use any information about 

station temperature. 

Assumes constant lapse rate of 

6.5K/km in layer below surface. 

Assumes constant lapse rate of 

6.5K/km in layer below surface. 

Corrects for humidity. No humidity correction. 

Corrects for ‘plateau effect’ at high 

elevations. 

No correction for plateau effect. 

 

 Sometimes we would like to figure out the station pressure from a METAR 

observation. 

 We could do this by using either the sea-level pressure or the altimeter 

setting and solving the respective equations for station pressure. 

 Because the altimeter setting has fewer assumptions and doesn’t use any 

current temperature or humidity information, calculating station pressure 

from altimeter setting should be a more reliable method. 

 Also, more METAR stations report altimeter setting than report sea-level 

pressure. 
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 The formula for calculating station pressure from altimeter setting is 
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DISTRIBUTION OF MOLECULAR SPEEDS 

 In a sample of gas, not all molecules move at the same speed.  Instead, there is a 

distribution of speeds. 

 For an ideal gas, the speed distribution is given by the Maxwell-Boltzmann 

distribution function 




















kT

mv

kT

m
vvf

2
exp

2
4)(

223

2


 .                                       (29) 

 The probability of finding a molecule with a speed between v1 and v2 is given by 
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 The most probable speed is the speed where the distribution function is a 

maximum. 

 The mean speed is different than, but close to, the most probable speed. 

 

WHY IS THERE SO LITTLE HYDROGEN IN THE ATMOSPHERE? 

 An object cannot escape the gravitation pull of the Earth unless its speed exceeds 

the escape velocity (vesc ~ 11,200 m/s). 

 The probability of a molecule exceeding escape velocity is found by 






escv

escape dvvfP )( .                                                              (31) 

 For O2 at 288 K, the probability of escape is virtually zero. 

 For H2 at 288 K the probability of escape is ~1022. 

 Though small, it is not inconsequential.  Out of 1 mole of H2, you can expect 

60 or so molecules to achieve escape velocity. 

 Hydrogen constantly leaks into space 
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IS THE UPPER ATMOSPHERE WELL MIXED? 

 The atmosphere is a mixture of several different gases.  The most abundant are 

N2, O2, Ar, and CO2. 

 In order of molecular weight we have 

Molecule Molecular Weight 

(g/mol) 

CO2 44 

Ar 39 

O2 32 

N2 28 

 

 You would think that the atmosphere would stratify according to weight, with 

the heaviest molecules having the greatest concentration near the surface.  

Therefore, we would expect most of the CO2 and Ar to be found near the 

surface. 

  Without turbulence, molecular diffusion would dominate any vertical transport 

processes. 

 Molecular diffusion favors lighter molecules over heavier ones.  Therefore, 

the lighter molecules would be better mixed through a layer than would the 

heavier molecules, which would remain near the bottom due to gravity. 

 Molecular diffusion is characterized by the mean free path, which is the 

average distance between collisions. 

 The shorter the mean free path, the less effective molecular diffusion 

becomes. 

 Mean free path increases as pressure (and density) decrease. 

 If turbulence is present, mixing is accomplished very efficiently. 

 Turbulent mixing does not discriminate based on mass.  All molecules are 

mixed just as effectively. 

 Turbulent mixing is characterized by the mixing length, which is the average 

length that an air parcel can travel and still retain its identity. 

 If the mixing length is greater than the mean free path, turbulent mixing will 

dominate and all molecules will be well mixed. 
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 If the mean free path is greater than the mixing length, molecular diffusion will 

dominate and the heavier molecules will be found toward the bottom. 

 Up to about 80 km or so, the mixing length is larger than the mean free path, so 

that turbulent mixing dominates and the atmosphere is well mixed. 

 Above 80 km the mean free path becomes larger than the mixing length (because 

density is decreasing with altitude).  Therefore, above 80 km molecular diffusion 

dominates and the atmosphere is no longer well mixed.  Instead, it becomes 

stratifies with the heavier molecules concentrated at the bottom. 

 The well-mixed region is called the homosphere. 

 The stratified region is called the heterosphere. 

 The transition layer between the two is called the turbopause. 
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EXERCISES 

1.   If the atmosphere was incompressible (density constant at all altitudes), 100 km 

thick, and had a surface pressure of 1000 mb, at what altitude would the 

pressure be 250 mb?  Sketch the graph of pressure vs. altitude for this case and 

discuss how it compares with the real atmosphere. 

 

 

 

 

 

 

 

2.  Find an expression for number density (molecules per m3) as a function of height 

for a general atmosphere, and for an isothermal atmosphere. 

 

 

 

 

 

 

3.  Explain why airplane cabins are pressurized. 

 

 

 

 

4.  If the thickness of the 1000 – 500 mb layer is 5400 gpm, what is the layer average 

temperature (in C)? 

 


