
1

C
h
a
p
te

r 1

عباس عبد العزيز عبد الحميد.د.م.أ

قسم الحاسـوب/ كليـة العلـوم
abbasabdulazeez@uomustansiriyah.edu.iq

Foundation

Lecture _1

Assist. Prof. Dr. Abbas A. Abdulhameed Master_24 / Computer Network

2

Chapter 1

Foundation

Computer Networks: A Systems Approach, 5e
Larry L. Peterson and Bruce S. Davie

3

C
h
a
p
te

r 1

Problems

◼ How to build a scalable network that will support
different applications?

◼ What is a computer network?

◼ How is a computer network different from other
types of networks?

◼ What is a computer network architecture?

4

C
h
a
p
te

r 1

Chapter Outline

◼ Applications

◼ Requirements

◼ Network Architecture

◼ Implementing Network Software

◼ Performance

5

C
h
a
p
te

r 1

Chapter Goal

◼ Exploring the requirements that different
applications and different communities place on
the computer network

◼ Introducing the idea of network architecture

◼ Introducing some key elements in implementing
Network Software

◼ Define key metrics that will be used to evaluate
the performance of computer network

6

C
h
a
p
te

r 1

Applications

◼ Most people know about the Internet (a
computer network) through applications
◼ World Wide Web

◼ Email

◼ Online Social Network

◼ Streaming Audio Video

◼ File Sharing

◼ Instant Messaging

◼ …

7

C
h
a
p
te

r 1

Example of an application

A multimedia application including video-conferencing

8

C
h
a
p
te

r 1

Application Protocol

◼ URL
◼ Uniform resource locater

◼ http://www.cs.princeton.edu/~llp/index.html

◼ HTTP
◼ Hyper Text Transfer Protocol

◼ TCP
◼ Transmission Control Protocol

◼ 17 messages for one URL request
◼ 6 to find the IP (Internet Protocol) address

◼ 3 for connection establishment of TCP

◼ 4 for HTTP request and acknowledgement
◼ Request: I got your request and I will send the data

◼ Reply: Here is the data you requested; I got the data

◼ 4 messages for tearing down TCP connection

9

C
h
a
p
te

r 1

Requirements

◼ Application Programmer

◼ List the services that his application needs: delay

bounded delivery of data

◼ Network Designer

◼ Design a cost-effective network with sharable

resources

◼ Network Provider

◼ List the characteristics of a system that is easy to

manage

10

C
h
a
p
te

r 1

Connectivity
◼ Need to understand the

following terminologies
◼ Scale

◼ Link

◼ Nodes

◼ Point-to-point

◼ Multiple access

◼ Switched Network
◼ Circuit Switched

◼ Packet Switched

◼ Packet, message

◼ Store-and-forward

(a) Point-to-point

(b) Multiple access

11

C
h
a
p
te

r 1

Connectivity
◼ Terminologies (contd.)

◼ Cloud

◼ Hosts

◼ Switches

◼ internetwork

◼ Router/gateway

◼ Host-to-host connectivity

◼ Address

◼ Routing

◼ Unicast/broadcast/multicast

(a) A switched network

(b) Interconnection of networks

(a)

(b)

12

C
h
a
p
te

r 1

Cost-Effective Resource Sharing
◼ Resource: links and

nodes

◼ How to share a link?

◼ Multiplexing

◼ De-multiplexing

◼ Synchronous Time-division

Multiplexing

◼ Time slots/data

transmitted in

predetermined slots
Multiplexing multiple logical flows

over a single physical link

13

C
h
a
p
te

r 1

Cost-Effective Resource Sharing
◼ FDM: Frequency Division

Multiplexing

◼ Statistical Multiplexing
◼ Data is transmitted based

on demand of each flow.

◼ What is a flow?

◼ Packets vs. Messages

◼ FIFO, Round-Robin,
Priorities (Quality-of-
Service (QoS))

◼ Congested?

◼ LAN, MAN, WAN

◼ SAN (System Area
Networks

A switch multiplexing packets from

multiple sources onto one shared

link

14

C
h
a
p
te

r 1

Support for Common Services

◼ Logical Channels

◼ Application-to-Application communication path or a

pipe

Process communicating over an

abstract channel

15

C
h
a
p
te

r 1

Common Communication Patterns

◼ Client/Server

◼ Two types of communication channel

◼ Request/Reply Channels

◼ Message Stream Channels

16

C
h
a
p
te

r 1

Reliability

◼ Network should hide the errors

◼ Bits are lost
◼ Bit errors (1 to a 0, and vice versa)

◼ Burst errors – several consecutive errors

◼ Packets are lost (Congestion)

◼ Links and Node failures

◼ Messages are delayed

◼ Messages are delivered out-of-order

◼ Third parties eavesdrop

17

C
h
a
p
te

r 1

Network Architecture

Example of a layered network system

18

C
h
a
p
te

r 1

Network Architecture

Layered system with alternative abstractions available at a given layer

19

C
h
a
p
te

r 1

Protocols

◼ Protocol defines the interfaces between the
layers in the same system and with the layers of
peer system

◼ Building blocks of a network architecture

◼ Each protocol object has two different interfaces

◼ service interface: operations on this protocol

◼ peer-to-peer interface: messages exchanged with

peer

◼ Term “protocol” is overloaded
◼ specification of peer-to-peer interface

◼ module that implements this interface

20

C
h
a
p
te

r 1

Interfaces

Service and Peer Interfaces

21

C
h
a
p
te

r 1

Protocols

◼ Protocol Specification: prose, pseudo-code, state

transition diagram

◼ Interoperable: when two or more protocols that

implement the specification accurately

◼ IETF: Internet Engineering Task Force

22

C
h
a
p
te

r 1

Protocol Graph

Example of a protocol graph

nodes are the protocols and links the “depends-on” relation

23

C
h
a
p
te

r 1

Encapsulation

High-level messages are encapsulated inside of low-level messages

24

C
h
a
p
te

r 1

OSI Architecture

The OSI 7-layer Model

OSI – Open Systems Interconnection

25

C
h
a
p
te

r 1

Description of Layers

◼ Physical Layer

◼ Handles the transmission of raw bits over a communication link

◼ Data Link Layer

◼ Collects a stream of bits into a larger aggregate called a frame

◼ Network adaptor along with device driver in OS implement the

protocol in this layer

◼ Frames are actually delivered to hosts

◼ Network Layer

◼ Handles routing among nodes within a packet-switched network

◼ Unit of data exchanged between nodes in this layer is called a

packet

The lower three layers are implemented on all network nodes

26

C
h
a
p
te

r 1

Description of Layers

◼ Transport Layer

◼ Implements a process-to-process channel

◼ Unit of data exchanges in this layer is called a message

◼ Session Layer

◼ Provides a name space that is used to tie together the potentially

different transport streams that are part of a single application

◼ Presentation Layer

◼ Concerned about the format of data exchanged between peers

◼ Application Layer

◼ Standardize common type of exchanges

The transport layer and the higher layers typically run only on end-

hosts and not on the intermediate switches and routers

27

C
h
a
p
te

r 1

Internet Architecture

Internet Protocol Graph

Alternative view of the

Internet architecture. The

“Network” layer shown here

is sometimes referred to as

the “sub-network” or “link”

layer.

28

C
h
a
p
te

r 1

Internet Architecture

◼ Defined by IETF

◼ Three main features

◼ Does not imply strict layering. The application is free to bypass

the defined transport layers and to directly use IP or other

underlying networks

◼ An hour-glass shape – wide at the top, narrow in the middle and

wide at the bottom. IP serves as the focal point for the

architecture

◼ In order for a new protocol to be officially included in the

architecture, there needs to be both a protocol specification and

at least one (and preferably two) representative implementations

of the specification

29

C
h
a
p
te

r 1

Application Programming Interface

◼ Interface exported by the network

◼ Since most network protocols are implemented (those in
the high protocol stack) in software and nearly all
computer systems implement their network protocols as
part of the operating system, when we refer to the
interface “exported by the network”, we are generally
referring to the interface that the OS provides to its
networking subsystem

◼ The interface is called the network Application
Programming Interface (API)

30

C
h
a
p
te

r 1

Application Programming Interface (Sockets)

◼ Socket Interface was originally provided by the
Berkeley distribution of Unix

- Now supported in virtually all operating systems

◼ Each protocol provides a certain set of services,
and the API provides a syntax by which those
services can be invoked in this particular OS

31

C
h
a
p
te

r 1

Socket

◼ What is a socket?
◼ The point where a local application process attaches

to the network

◼ An interface between an application and the network

◼ An application creates the socket

◼ The interface defines operations for
◼ Creating a socket

◼ Attaching a socket to the network

◼ Sending and receiving messages through the socket

◼ Closing the socket

32

C
h
a
p
te

r 1

Socket

◼ Socket Family

◼ PF_INET denotes the Internet family

◼ PF_UNIX denotes the Unix pipe facility

◼ PF_PACKET denotes direct access to the network
interface (i.e., it bypasses the TCP/IP protocol stack)

◼ Socket Type
◼ SOCK_STREAM is used to denote a byte stream

◼ SOCK_DGRAM is an alternative that denotes a
message oriented service, such as that provided by
UDP

33

C
h
a
p
te

r 1

Creating a Socket

int sockfd = socket(address_family, type, protocol);

◼ The socket number returned is the socket descriptor for

the newly created socket

◼ int sockfd = socket (PF_INET, SOCK_STREAM, 0);

◼ int sockfd = socket (PF_INET, SOCK_DGRAM, 0);

 The combination of PF_INET and SOCK_STREAM implies TCP

34

C
h
a
p
te

r 1

Client-Serve Model with TCP

Server

◼ Passive open

◼ Prepares to accept connection, does not actually establish a

connection

Server invokes
 int bind (int socket, struct sockaddr *address,

 int addr_len)

 int listen (int socket, int backlog)

 int accept (int socket, struct sockaddr *address,

 int *addr_len)

35

C
h
a
p
te

r 1

Client-Serve Model with TCP

Bind

◼ Binds the newly created socket to the specified address i.e. the

network address of the local participant (the server)

◼ Address is a data structure which combines IP and port

Listen

◼ Defines how many connections can be pending on the specified

socket

36

C
h
a
p
te

r 1

Client-Serve Model with TCP

Accept

◼ Carries out the passive open

◼ Blocking operation

◼ Does not return until a remote participant has established a

connection

◼ When it does, it returns a new socket that corresponds to the

new established connection and the address argument
contains the remote participant’s address

37

C
h
a
p
te

r 1

Client-Serve Model with TCP

Client

◼ Application performs active open

◼ It says who it wants to communicate with

Client invokes

 int connect (int socket, struct sockaddr *address,

 int addr_len)

Connect

◼ Does not return until TCP has successfully established a

connection at which application is free to begin sending data

◼ Address contains remote machine’s address

38

C
h
a
p
te

r 1

Client-Serve Model with TCP

In practice

◼ The client usually specifies only remote participant’s

address and let’s the system fill in the local

information

◼ Whereas a server usually listens for messages on a

well-known port

◼ A client does not care which port it uses for itself, the

OS simply selects an unused one

39

C
h
a
p
te

r 1

Client-Serve Model with TCP

Once a connection is established, the application

process invokes two operation

 int send (int socket, char *msg, int msg_len,

 int flags)

 int recv (int socket, char *buff, int buff_len,

 int flags)

40

C
h
a
p
te

r 1

Example Application: Client

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER_PORT 5432

#define MAX_LINE 256

int main(int argc, char * argv[])

{

 FILE *fp;

 struct hostent *hp;

 struct sockaddr_in sin;

 char *host;

 char buf[MAX_LINE];

 int s;

 int len;

 if (argc==2) {

 host = argv[1];

 }

 else {

 fprintf(stderr, "usage: simplex-talk host\n");

 exit(1);

 }

41

C
h
a
p
te

r 1

Example Application: Client
/* translate host name into peer’s IP address */

 hp = gethostbyname(host);

 if (!hp) {

 fprintf(stderr, "simplex-talk: unknown host: %s\n", host);

 exit(1);

 }

 /* build address data structure */

 bzero((char *)&sin, sizeof(sin));

 sin.sin_family = AF_INET;

 bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length);

 sin.sin_port = htons(SERVER_PORT);

 /* active open */

 if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

 perror("simplex-talk: socket");

 exit(1);

 }

 if (connect(s, (struct sockaddr *)&sin, sizeof(sin)) < 0) {

 perror("simplex-talk: connect");

 close(s);

 exit(1);

 }

 /* main loop: get and send lines of text */

 while (fgets(buf, sizeof(buf), stdin)) {

 buf[MAX_LINE-1] = ’\0’;

 len = strlen(buf) + 1;

 send(s, buf, len, 0);

 }

}

42

C
h
a
p
te

r 1

Example Application: Server
#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER_PORT 5432

#define MAX_PENDING 5

#define MAX_LINE 256

int main()

{

 struct sockaddr_in sin;

 char buf[MAX_LINE];

 int len;

 int s, new_s;

 /* build address data structure */

 bzero((char *)&sin, sizeof(sin));

 sin.sin_family = AF_INET;

 sin.sin_addr.s_addr = INADDR_ANY;

 sin.sin_port = htons(SERVER_PORT);

 /* setup passive open */

 if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

 perror("simplex-talk: socket");

 exit(1);

 }

43

C
h
a
p
te

r 1

Example Application: Server

if ((bind(s, (struct sockaddr *)&sin, sizeof(sin))) < 0) {

 perror("simplex-talk: bind");

 exit(1);

 }

 listen(s, MAX_PENDING);

 /* wait for connection, then receive and print text */

 while(1) {

 if ((new_s = accept(s, (struct sockaddr *)&sin, &len)) < 0) {

 perror("simplex-talk: accept");

 exit(1);

 }

 while (len = recv(new_s, buf, sizeof(buf), 0))

 fputs(buf, stdout);

 close(new_s);

 }

}

44

C
h
a
p
te

r 1

Performance

◼ Bandwidth

◼ Width of the frequency band

◼ Number of bits per second that can be transmitted over a

communication link

◼ 1 Mbps: 1 x 106 bits/second = 1x220 bits/sec

◼ 1 x 10-6 seconds to transmit each bit or imagine that a

timeline, now each bit occupies 1 micro second space.

◼ On a 2 Mbps link the width is 0.5 micro second.

◼ Smaller the width more will be transmission per unit time.

45

C
h
a
p
te

r 1

Bandwidth

Bits transmitted at a particular bandwidth can be regarded as

having some width:

(a) bits transmitted at 1Mbps (each bit 1 μs wide);

(b) bits transmitted at 2Mbps (each bit 0.5 μs wide).

46

C
h
a
p
te

r 1

Performance

◼ Latency = Propagation + transmit + queue

◼ Propagation = distance/speed of light

◼ Transmit = size/bandwidth

◼ One bit transmission => propagation is important

◼ Large bytes transmission => bandwidth is important

47

C
h
a
p
te

r 1

Delay X Bandwidth

◼ We think the channel between a pair of processes as a

hollow pipe

◼ Latency (delay) length of the pipe and bandwidth the

width of the pipe

◼ Delay of 50 ms and bandwidth of 45 Mbps

 50 x 10-3 seconds x 45 x 106 bits/second

 2.25 x 106 bits = 280 KB data.

Network as a pipe

48

C
h
a
p
te

r 1

Delay X Bandwidth

◼ Relative importance of bandwidth and latency

depends on application

◼ For large file transfer, bandwidth is critical

◼ For small messages (HTTP, NFS, etc.), latency is

critical

◼ Variance in latency (jitter) can also affect some

applications (e.g., audio/video conferencing)

49

C
h
a
p
te

r 1

Delay X Bandwidth

◼ How many bits the sender must transmit

before the first bit arrives at the receiver if the

sender keeps the pipe full

◼ Takes another one-way latency to receive a

response from the receiver

◼ If the sender does not fill the pipe—send a

whole delay × bandwidth product’s worth of

data before it stops to wait for a signal—the

sender will not fully utilize the network

50

C
h
a
p
te

r 1

Delay X Bandwidth

◼ Infinite bandwidth

◼ RTT dominates

◼ Throughput = TransferSize / TransferTime

◼ TransferTime = RTT + 1/Bandwidth x

TransferSize

◼ Its all relative

◼ 1-MB file to 1-Gbps link looks like a 1-KB

packet to 1-Mbps link

51

C
h
a
p
te

r 1

Relationship between bandwidth and latency

A 1-MB file would fill the 1-Mbps link 80 times,

but only fill the 1-Gbps link 1/12 of one time

52

C
h
a
p
te

r 1

Summary

◼ We have identified what we expect from a computer

network

◼ We have defined a layered architecture for computer

network that will serve as a blueprint for our design

◼ We have discussed the socket interface which will be

used by applications for invoking the services of the

network subsystem

◼ We have discussed two performance metrics using

which we can analyze the performance of computer

networks

	Slide 1
	Slide 2
	Slide 3: Problems
	Slide 4: Chapter Outline
	Slide 5: Chapter Goal
	Slide 6: Applications
	Slide 7: Example of an application
	Slide 8: Application Protocol
	Slide 9: Requirements
	Slide 10: Connectivity
	Slide 11: Connectivity
	Slide 12: Cost-Effective Resource Sharing
	Slide 13: Cost-Effective Resource Sharing
	Slide 14: Support for Common Services
	Slide 15: Common Communication Patterns
	Slide 16: Reliability
	Slide 17: Network Architecture
	Slide 18: Network Architecture
	Slide 19: Protocols
	Slide 20: Interfaces
	Slide 21: Protocols
	Slide 22: Protocol Graph
	Slide 23: Encapsulation
	Slide 24: OSI Architecture
	Slide 25: Description of Layers
	Slide 26: Description of Layers
	Slide 27: Internet Architecture
	Slide 28: Internet Architecture
	Slide 29: Application Programming Interface
	Slide 30: Application Programming Interface (Sockets)
	Slide 31: Socket
	Slide 32: Socket
	Slide 33: Creating a Socket
	Slide 34: Client-Serve Model with TCP
	Slide 35: Client-Serve Model with TCP
	Slide 36: Client-Serve Model with TCP
	Slide 37: Client-Serve Model with TCP
	Slide 38: Client-Serve Model with TCP
	Slide 39: Client-Serve Model with TCP
	Slide 40: Example Application: Client
	Slide 41: Example Application: Client
	Slide 42: Example Application: Server
	Slide 43: Example Application: Server
	Slide 44: Performance
	Slide 45: Bandwidth
	Slide 46: Performance
	Slide 47: Delay X Bandwidth
	Slide 48: Delay X Bandwidth
	Slide 49: Delay X Bandwidth
	Slide 50: Delay X Bandwidth
	Slide 51: Relationship between bandwidth and latency
	Slide 52: Summary

