Abstract Algebra 1

References:

- Introduction to Modern Abstract Algebra, by David M. Burton.
- Contemporary abstract algebra, by Gallian and Joseph.
- Groups and Numbers, by R. M. Luther.
- A First Course in Abstract Algebra, by J. B. Fraleigh.
- · Group Theory, by M. Suzuki.
- · Abstract Algebra Theory and Applications, by Thomas W. Judson.
- Abstract Algebra, by I. N. Herstein.
- Basic Abstract Algebra, by P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul.
 - 1. Definition and Examples of Groups.

Definition(1-1):

A set G is a group if it is satisfying the following four axioms

- i. \exists a binary operation $G \times G \mapsto G$ (closure) $(a, b) \mapsto ab$
- ii. $a(bc) = (ab)c \ \forall a, b, c \in G \ (associativity),$
- iii. $\exists 1 \in G \text{ s.t. } a1 = a = 1a \ \forall a \in G$
- iv. $\forall a \in G, \exists a^{-1} \in G \text{ s.t. } aa^{-1} = 1 = a^{-1}a \text{ (inverse)}$

Examples(1-2):

1. $(\mathbb{R}^* = \mathbb{R} \setminus \{0\},\cdot)$ is a group.

Solution: $\forall a, b, c \in \mathbb{R}^*$, we have

 $i.ab \in \mathbb{R}^*$, ii. a(bc)=(ab)c, iii. $\exists 1 \in \mathbb{R}^* \ni a1=a=1a$, iv. $\forall a \in \mathbb{R}^*, \exists a^{-1}=\frac{1}{a} \in \mathbb{R}^* \ni aa^{-1}=1=a^{-1}a$

2. $(\mathbb{Q}^* = \mathbb{Q} \setminus \{0\},\cdot)$ is a group.

3. $(\mathbb{C}^* = \mathbb{C} \setminus \{0\},\cdot)$ is a group.

Solution: i, ii are clear,

iii.
$$\exists 1 \in \mathbb{C}^* \ni (a+ib)1 = a+ib = 1(a+ib),$$

iv.
$$(a+ib)^{-1} = \frac{a-ib}{a^2+b^2}$$

4. $(GL(2,\mathbb{R}),\cdot)$ is a group.

Solution: i, ii are clear, iii. $\exists \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in GL(2, \mathbb{R}) \ni \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ iv. } \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{pmatrix}$$

5. (S_3,\circ) is a group.

Solution: $S_3 = \{i, (12), (13), (23), (123), (132)\}$

0	i	(12)	(13)	(23)	(123)	(132)
i	i	(12)	(13)	(23)	(123)	(132)
(12)	(12)	i	(132)	(123)	(23)	(13)
(13)	?	?	?	?	?	?
(23)	?	?	?	?	?	?
(123)	?	?	?	?	?	?
(132)	?	?	?	?	?	?

We note that axioms i, ii and iii from above table are satisfy axiom iv.

а	i	(12)	(13)	(23)	(123)	(123)
	198	100000000000000000000000000000000000000	580,430,80	0.0000000000000000000000000000000000000	18 40 40 40 40 40	

a^{-1}	?	?	?	?	?	?

6. $(G = \{0, -1, 1, 2\}, +)$ is not a group.

Solution: since $1 + 2 = 3 \notin G$

7. $(G = \{-1,1\},\cdot)$ is a group.

Solution:

	-1	10,2
-1	?	?
1	?	?

8. Let $G = \{a, b, c, d\}$ be a set. Define a binary operation * on G by the following table

*	a	b	c	d
а	а	b	с	d
b	b	с	d	а
С	c	d	а	b
d	d	а	b	с

Show that (G,*) is a group.

Solution: axioms i,ii are satisfy from above table, iii. The identity element is a, axiom iv.

x	а	b	с	d
x ⁻¹	?	?	?	?

9. $(G = \{1, -1, i, -i\}, \cdot)$ is a group.

Solution:

	1	-1	i	-i
1	?	?	?	?
-1	?	?	?	?
i	?	?	?	?
-i	?	?	?	?

10. Let $G = \mathbb{Z}$, a * b = a + b + 2, show that (G,*) is a group.

Solution: $\forall a, b, c \in \mathbb{Z}$, we have i. $a * b = a + b + 2 \in \mathbb{Z}$,

ii.
$$a * (b * c) = a * (b + c + 2) = a + b + c + 4, (a * b) * c = (a + b + 2) * c = a + b + c + 4,$$

iii.
$$a * u = a + u + 2 = a, u = -2,$$

iv.
$$a * z = -2 \implies a + z + 2 = -2 \implies z = -a - 4$$

11. Let $G = \{f_1, f_2, f_3, f_4\}$ with f_i s.t. i = 1,2,3,4 are mappings on $\mathbb{R} \setminus \{0\}$ s.t. $f_1(x) = x, f_2(x) = -x, f_3(x) = \frac{1}{x}, f_4(x) = -\frac{1}{x}$. Show that (G, \circ) is a group.

Solution:

0	f_1	f_2	f_3	f_4
f_1	?	?	?	?
f_2	?	?	?	?
f_3	?	?	?	?
f_4	?	?	?	?

12. Let $G = \mathbb{R} \times \mathbb{R} = \{(a, b) : a, b \in \mathbb{R}, a \neq 0\}$ and * be defined by (a, b) * (c, d) = (ac, bc + d). Show that (G, *) is a group.

Solution: i. $(a,b)*(c,d) = (ac,bc+d) \in G$

ii.
$$(a,b) * [(c,d) * (e,f)] = (a,b) * (ce,de+f) = (ace,bce+de+f),$$

 $f),[(a,b) * (c,d)] * (e,f) = (ac,bc+d) * (e,f) = (ace,bce+de+f),$

iii.
$$(a,b)*(x,y) = (a,b) \Rightarrow (ax,bx+y) = (a,b) \Rightarrow x = 1,bx+y = b \Rightarrow b+y=b \Rightarrow y=0,$$

iv.
$$(a, b) * (w, z) = (1,0) \Rightarrow (aw, bw + z) = (1,0) \Rightarrow w = \frac{1}{a}, ba^{-1} + z = 0$$

$$0 \Rightarrow z = \frac{-b}{a}$$

13. Let (G,*) be an arbitrary group, the set of the functions from G into G with the composition (F_G,\circ) is forms a group, where $F_G = \{f_a : a \in G\}, f_a : G \mapsto G$ s.t. $f_a(x) = a * x, x \in G$.

Solution: i. Let $f_{a,f_b} \in F_G$, $a,b \in G$

$$(f_{a^{\circ}}f_{b})(x) = f_{a}(f_{b}(x)) = f_{a}(b * x) = a * (b * x) = (a * b) * x = f_{a*b}(x) \in F_{G}$$

ii.
$$(f_{a^{\circ}}f_b) \circ f_c = f_{a*b} \circ f_c = f_{(a*b)*c} = f_{a*(b*c)} = f_a \circ f_{b*c} = f_a \circ (f_b \circ f_c)$$

iii. f_e is an identity of F_G , since $f_a \circ f_e = f_{a*e} = f_{e*a} = f_e \circ f_a = f_a$

iv. the inverse of f_a in F_G is $f_{a^{-1}}$, since $f_a \circ f_{a^{-1}} = f_{a*a^{-1}} = f_{a^{-1}*a} = f_{a^{-1}} \circ f_a = f_a$

14. Let n be a positive integer and take $w = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n}) \in \mathbb{C}$, then $(C_n = \{1, w, w^2, \dots, w^{n-1}\}, \cdot)$ is an abelian group.

<u>Definition(1-3):</u> A group (G,*) is an abelian if $a*b=b*a \ \forall a,b \in G$.

Example(1-4): Determine whether the previous examples are abelian .

Exercises:

- 1. Determine whether (G,*) an abelian group.
 - $G = \mathbb{Z}, a * b = a + b + 3$
 - $G = \mathbb{R} \times \mathbb{R} = \{(a, b) : a, b \in \mathbb{R}\} \text{ s.t. } (a, b) * (c, d) = (a + b, b + d + 2bd)$
 - $(G = \{f_1, f_2, f_3, f_4, f_5, f_6\}, \circ)$ where $f_1(x) = x, f_2(x) = \frac{1}{x}, f_3(x) = 1 x, f_4(x) = \frac{x-1}{x}, f_5(x) = \frac{x}{x-1}, f_6(x) = \frac{1}{1-x}$
 - $G = \{(a,b): a,b \in \mathbb{R}, a \neq 0, b \neq 0\}$ s.t. (a,b)*(c,d) = (ab,bd)
 - $(G = \{an: n \in \mathbb{Z}\}, +)$
 - $G = \mathbb{Q}^*, a * b = \frac{ab}{2}$
- 2. Show that, $G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$, is a group.
- 3. Show that, (C_8,\cdot) is an abelian group.

2. Some Properties of Groups

Theorem(2-1): If (G,*) a group, then the left and right cancellation laws hold in G, that is:

1.
$$a * b = a * c \Longrightarrow b = c$$

2.
$$b * a = c * a \Longrightarrow b = c, \forall a, b, c \in G$$
.

Proof: 1. Suppose a * b = a * c, then $\exists a^{-1} \in G$

$$\ni a^{-1} * (a * b) = a^{-1} * (a * c)$$

$$\Rightarrow (a^{-1} * a) * b = (a^{-1} * a) * c$$

$$\Rightarrow e * b = e * c$$

$$\Rightarrow b = c$$
.

(2) (Homework).

Theorem(2-2): In a group (G,*), there is exactly one element e in G such that $e*a=a*e=a \forall a \in G$.

Proof: Assume that G has two identity elements e and e^* , this means for all $a \in G$, we have a * e = e * a = a and $a * e^* = e^* * a = a$

$$e * e^* = e^* * e = e$$
 and $e^* * e = e * e^* = e^* \implies e = e^*$.

Theorem(2-3): In a group (G,*), the inverse element of each element of G is a unique.

Proof: Let $a \in G$ and a has two inverses x and x^* , such that

$$a * x = x * a = e$$
 and $a * x^* = x^* * a = e$

$$\Rightarrow x = x * e = x * (a * x^*) = (x * a) * x^* = e * x^* = x^*.$$

Theorem(2-4): If (G,*) is a group, then

1.
$$e^{-1} = e$$

2.
$$(a^{-1})^{-1} = a \ \forall a \in G$$

3.
$$(a*b)^{-1} = b^{-1}*a^{-1} \forall a, b \in G$$

Proof: 1. Let $e^{-1} = x$

$$x * e = e * x = x ... 1$$

$$e * x = x * e = e \dots 2$$

From 1 and 2, $x = e \implies e^{-1} = e$.

$$(2) (a^{-1})^{-1} = (a^{-1})^{-1} * e = (a^{-1})^{-1} * (a^{-1} * a)$$
$$= ((a^{-1})^{-1} * a^{-1}) * a = e * a = a.$$

(3) since
$$(a * b) \in G \Longrightarrow (a * b)^{-1} \in G$$

$$(a*b)*(a*b)^{-1} = (a*b)^{-1}*(a*b) = e$$

$$(a*b)*(a*b)^{-1} = e$$

$$a^{-1} * (a * b) * (a * b)^{-1} = a^{-1} * e$$

$$(a^{-1}*a)*b*(a*b)^{-1}=a^{-1}$$

$$e * b * (a * b)^{-1} = a^{-1}$$

$$b^{-1} * b * (a * b)^{-1} = b^{-1} * a^{-1}$$

$$e * (a * b)^{-1} = b^{-1} * a^{-1}$$

$$(a*b)^{-1} = b^{-1}*a^{-1}.$$

Theorem(2-5): Let (G,*) be a group, then

- i. $(a * b)^{-1} = a^{-1} * b^{-1}$ iff *G* is an abelian group.
- ii. If $a = a^{-1}$, then G is an abelian group.

Proof: i. (\implies) let (*G*,*) be a group and $(a * b)^{-1} = a^{-1} * b^{-1}$

To prove (G,*) is an abelian group.

Let $a, b \in G$, to prove $a * b = b * a \ \forall a, b \in G$

$$a * b = ((a * b)^{-1})^{-1}$$

$$= (b^{-1} * a^{-1})^{-1}$$

$$= (b^{-1})^{-1} * (a^{-1})^{-1}$$

$$= b * a$$

 (\Leftarrow) let (G,*) be an abelian group, to prove $(a*b)^{-1} = a^{-1}*b^{-1}$

$$(a*b)^{-1} = b^{-1}*a^{-1} = a^{-1}*b^{-1}.$$

(ii) let $a = a^{-1}$,

to prove $a * b = b * a \forall a, b \in G$

$$a * b = (a * b)^{-1} = b^{-1} * a^{-1} = b * a.$$

Remark(2-6): The converse of above part is not true, for example let $(G = \{1, -1, i, -i\}, \cdot)$ be an abelian group with $a = i \Rightarrow a^{-1} = -i \Rightarrow a \neq a^{-1}$.

Theorem(2-7): In a group (G,*), the equations a*x=b and y*a=b have a unique solutions.

Proof: a * x = b

$$\Rightarrow a^{-1} * (a * x) = a^{-1} * b$$

$$\Rightarrow$$
 $(a^{-1}*a)*x = a^{-1}*b$

$$\Rightarrow e * x = a^{-1} * b$$

$$\Rightarrow x = a^{-1} * b$$

To show the solution is a unique

Let
$$x^* \in G \ni a * x^* = b$$

$$\Rightarrow a * x^* = a * x$$

$$\implies x^* = x$$
.

The proof of y * a = b (**Homework**).

3. Certain Elementary Theorems on Groups.

<u>Definition(3-1):</u> Let (G,*) be a group, the integer powers of $a, a \in G$ is defined by:

1.
$$a^n = a * a * ... * a (n-times)$$

2.
$$a^0 = e$$

3.
$$a^{-n} = (a^{-1})^n, n \in \mathbb{Z}^+$$

4.
$$a^{n+1} = a^n * a, n \in \mathbb{Z}^+$$

Example(3-2): In $(\mathbb{R}, +)$, we have

$$3^0 = 0$$
,

$$3^2 = 3 + 3 = 6$$

$$3^{-3} = (3^{-1})^3 = (-3) + (-3) + (-3) = -9$$

Example(3-3): In (\mathbb{R},\cdot) , we have

$$2^0 = 1$$
,

$$2^3 = 2 \cdot 2 \cdot 2 = 8$$

$$2^{-4} = (2^{-1})^4 = (\frac{1}{2})^4 = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{16}$$

Example(3-4): In $(G = \{1, -1, i, -i\}, \cdot)$, we have

$$i^0 = 1$$
,

$$i^2=i\cdot i=-1,$$

$$i^{-2} = (i^{-1})^2 = (-i)^2 = -i \cdot -i = -1$$

<u>Theorem(3-5):</u> Let (G,*) be a group and $a ∈ G, m, n ∈ \mathbb{Z}$, then:

1.
$$a^n * a^m = a^{n+m} \ \forall \ n, m \in \mathbb{Z}$$
 (Homework)

2.
$$(a^n)^m = a^{nm} \quad \forall n, m \in \mathbb{Z}^+$$

3.
$$a^{-n} = (a^n)^{-1} \ \forall \ n \in \mathbb{Z}^+$$

4. $(a * b)^n = a^n * b^n \forall n \in \mathbb{Z} \iff G$ is an abelian group.

Proof: (2) let $P(m): (a^n)^m = a^{nm}$

if
$$m = 1 \implies P(1): (a^n)^1 = a^n = a^{n-1}$$

 \Rightarrow P(1) is a true.

Suppose that P(k) is a true with $k \in \mathbb{Z}^+$, $k \le m$

$$\Rightarrow (a^n)^k = a^{nk}$$

We have to prove that P(k + 1) is a true

$$P(k+1)$$
: $(a^n)^{k+1} = a^{n(k+1)}$

$$(a^n)^{k+1} = (a^n)^k * (a^n)^1$$

$$= a^{nk} * a^n$$

$$= a^{nk+n}$$

$$= a^{n(k+1)}$$

$$\Rightarrow P(k+1)$$
 is a true

By the principle of mathematical indication

$$\Rightarrow P(m)$$
 is a true $\forall m \in \mathbb{Z}^+$.

(3) if
$$n = 1 \Rightarrow P(1): (a^{-1})^1 = a^{-1} = (a^1)^{-1}$$

Suppose that if n = k is a true

$$\Rightarrow P(k): (a^{-1})^k = (a^k)^{-1}$$

We must prove P(k+1) is a true

$$P(k+1):(a^{-1})^{k+1}=(a^{k+1})^{-1}$$

$$(a^{-1})^{k+1} = (a^{-1})^k * (a^{-1})^1$$
$$= (a^k)^{-1} * (a^1)^{-1}$$
$$= (a^{k+1})^{-1}$$

$$\Rightarrow P(k+1)$$
 is a true

By the principle of mathematical indication

$$\Rightarrow P(n)$$
 is a true $\forall n \in \mathbb{Z}^+$.

(4)
$$(\Longrightarrow)$$
 if $n=2\Longrightarrow(a*b)^2=a^2*b^2$

$$(a*b)*(a*b) = a*a*b*b$$

$$a * (b * a) * b = a * (a * b) * b$$

$$(b*a)*b = (a*b)*b$$

$$b * a = a * b$$

 \Rightarrow G is an abelian group

 (\Leftarrow) let G be an abelian group and P(n): $(a * b)^n = a^n * b^n$

If $n = 1 \Longrightarrow (a * b)^1 = a^1 * b^1$ is a true

Suppose that P(k) is a true with $k \in \mathbb{Z}^+$, $k \le m$

$$\ni P(k): (a*b)^k = a^k * b^k$$

We must prove P(k + 1) is a true

$$P(k+1): (a*b)^{k+1} = (a*b)^k * (a*b)^1$$

$$= a^k * b^k * a^1 * b^1$$

$$= (a^k * b^k) * (b*a)$$

$$= a^k * (b^k * b) * a$$

$$= a^k * a * b^{k+1}$$

$$= a^{k+1} * b^{k+1}$$

 $\Rightarrow P(k+1)$ is a true $\forall n \in \mathbb{Z}^+$.

<u>Definition(3-6):</u> (The order of a Group)

The number of elements of a group G is called the order of G and it is denoted by |G| or O(G). The group G is called a finite if $|G| < \infty$ and an infinite group otherwise.

<u>Definition(3-7):</u> (The order of an element)

The order of an element $a, a \in G$ is the least positive integer n such that $a^n = e$ where e is the identity element of G. We denoted to order a by |a| or O(a). This means |a| = n if $a^n = e$, $n \in \mathbb{Z}^+$.

Example(3-8): $(\mathbb{Z}, +)$ is an infinite group.

Example(3-9): The trivial group $G = \{0\}$, |G| = 1, G is the only group of order one.

Example(3-10): Find the order of G and the order of their elements, where $G = \{1, -1, i, -i\}$.

Solution:
$$|G| = 4$$
 and $|1| = 1$, $|-1| = 2$

$$|i| = 4$$
 and $|-i| = 4$.

Exercises:

- Find the order of $(G = \{1, -1\}, \cdot)$ and the order of their elements.
- Find the order of (C_6, \cdot) and the order of their elements.
- Find the order of (S_3, \circ) and the order of their elements.
- Let $G = \{a, b, c, d\}$ be a set. Define a binary operation * on G by the following table

*	а	b	c	d
а	а	b	С	d
b	b	С	d	а
c	С	d	а	b
d	d	а	b	С

Find the order of G and their elements

4. Two Important Groups

Definition(4-1): Let $a, b, n \in \mathbb{Z}$, n > 0. Then a is congruent to b modulo n if a - b = nk, $k \in \mathbb{Z}$ and denoted by $a \equiv b$ or $a \equiv b \pmod{n}$.

Examples(4-2):

- 1. $17 \equiv 5 \pmod{6}$, since 17 5 = 12 = (6)(2).
- 2. $8 \equiv 4 \pmod{2}$, since 8 4 = 4 = (2)(2).
- 3. $-12 \equiv 3 \pmod{3}$, since -12 3 = -15 = (3)(-5)
- 4. $5 \not\equiv 2 \pmod{2}$, since $5 2 = 3 \not\equiv (2)(k), \forall k \in \mathbb{Z}$.

Theorem(4-3): The congruence modulo n is an equivalence relation on the set of integers.

Proof: let $a, b, c, n \in \mathbb{Z}$, n > 0

$$a - a = 0 = (n)(0) \Longrightarrow a \equiv a \pmod{n}$$

⇒ the reflexive is a true.

If $a \equiv b \pmod{n}$, to prove $b \equiv a \pmod{n}$

$$a \equiv b \pmod{n} \Rightarrow a - b = nk, \ k \in \mathbb{Z}$$
, so

$$b - a = -nk = n(-k), -k \in \mathbb{Z} \Longrightarrow b \equiv a \pmod{n}$$

⇒ the symmetric is a true.

If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, to prove $a \equiv c \pmod{n}$

Since $a \equiv b \pmod{n}$, then a - b = nk and

 $b \equiv c \pmod{n}$, then $b - c = nk^*$

By adding these two equations

$$\Rightarrow a - c = n(k + k^*), k + k^* \in \mathbb{Z}$$

- $\Rightarrow a \equiv c \pmod{n}$
- ⇒ the transitive is a true.
- \Rightarrow the congruence modulo n is an equivalent relation.

<u>Definition(4-4):</u> let $a \in \mathbb{Z}$, n > 0. The congruence class of a modulo n, denoted by [a] is the set of all integers that are congruent to a modulo n.

This means,
$$[a] = \{z \in \mathbb{Z} : z \equiv a \pmod{n}\}$$

$$=\{z\in\mathbb{Z};z=a+kn,k\in\mathbb{Z}\}$$

Example(4-5): if n = 2, find [0] and [1].

Solution:
$$[0] = \{z \in \mathbb{Z} : z = 0 + 2k, k \in \mathbb{Z}\}$$

= $\{0, \pm 2, \pm 4, ...\}$

$$[1] = \{z \in \mathbb{Z} : z \equiv 1 \pmod{2}\}$$

$$= \{z \in \mathbb{Z} : z = 1 + 2k, k \in \mathbb{Z}\}$$

$$= \{\pm 1, \pm 3, \pm 5, \dots\}.$$

Example(4-6): if n = 3, find [1] and [7].

Solution:
$$[1] = \{z \in \mathbb{Z} : z \equiv 1 \pmod{3}\}$$

= $\{z \in \mathbb{Z} : z = 1 + 3k, k \in \mathbb{Z}\}$
= $\{1, -2, 4, 7, -5, ...\}$

[7] (Homework)

<u>Definition(4-7):</u> The set of all congruence classes modulo n is denoted by Z_n (which is read $Z \mod n$). Thus,

$$Z_n = \{[0], [1], [2], \dots, [n-1]\}$$

Or
$$Z_n = \{0,1,2,...,n-1\}$$

 Z_n has n elements.

Example(4-8):
$$Z_1 = \{0\}, Z_2 = \{0,1\}, Z_3 = \{0,1,3\}.$$

Now, we define the addition on Z_n (write $+_n$) by the following: for any $[a], [b] \in Z_n, [a] +_n [b] = [a+_n b].$

Similarly, we define the multiplication on Z_n (write \cdot_n) by the following: for any $[a], [b] \in Z_n, [a] \cdot_n [b] = [a \cdot_n b], \forall [a], [b] \in Z_n.$

It is easy to note that $(Z_n, +_n)$ is an abelian group with identity [0] and for every $[a] \in Z_n$, $[a]^{-1} = [n-a]$. This group is called the additive group of integers modulo n.

Example(4-9): $(Z_4, +_4), Z_4 = \{0,1,2,3\}$

+4	0	1	2	3
0	0	1	2	3
1	0 1	2	3	0
2	2	3	0	1
3	3	0	1	2

- The closure is a true.
- ii. The associative is a true.
- iii. 0 is an identity element.
- iv. The inverse: $1^{-1} = 4 1 = 3$, $2^{-1} = 4 2 = 2$, $3^{-1} = 4 3 = 1$.
- v. An abelian: $1+_42 = 3 = 2+_41$, $1+_43 = 0 = 3+_41$.

Prof. Dr. Najm Al-Seraji, Abstract Algebra 1, 2023

Example(4-10): (Z_4, \cdot_4) ,

*4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	。 1

It is clear that we cannot have a group, since the number 1 is an identity, but the numbers 0 and 2 have no inverses. Thus (Z_4, \cdot_4) is not group.

The Permutations:

Definition(4-11): A permutation or symmetric of a set A is a function from A into A that is both one to one and onto. $f: A \mapsto A$ (one to one and onto) and $\operatorname{Symm}(A) = \{f: f: A \mapsto A, f \text{ one to one and onto}\}$ the set of all permutation on A. If A is the finite set $\{1,2,\ldots,n\}$, then the set of all permutation of A is denoted by S_n where $O(S_n) = n!$, where $n! = n(n-1)\ldots(3)(2)(1)$.

Example(4-12): let $A = \{1,2\}$. Write all permutation on A.

Solution:
$$f_1 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$
, $f_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

$$S_2 = \text{Symm}(A) = \{ f_1 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, f_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \}.$$

Example(4-13): let $A = \{1,2,3\}$. Write all permutation on A.

Solution:
$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
, $f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, $f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$,

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \qquad f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \qquad f_6 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$S_3 = \text{Symm}(A) = \{ f_1, f_2, f_3, f_4, f_5, f_6 \}, O(S_3) = (3)(2) = 6.$$

Theorem(4-14): If $A \neq \emptyset$, then the set of all permutation on A forms a group with composition of mapping. This means, let $A \neq \emptyset$, then $(\text{Symm}(A), \circ)$ is a group.

Proof: Symm(A) = { $f: f: A \mapsto A$ is a mapping}

Since there is $i_A: A \mapsto A$ a permutation on A

$$i_A \in \operatorname{Symm}(A) \Longrightarrow \operatorname{Symm}(A) \neq \emptyset$$

(i) Closure: let $f, g \in \text{Symm}(A)$

$$f: A \mapsto A, g: A \mapsto A \Longrightarrow f \circ g: A \mapsto A \Longrightarrow f \circ g \in \text{Symm}(A)$$

- (ii) The associative is a true, since the composition of the mappings is an associative.
- (iii) The identity: since $i_A \in \text{Symm}(A)$ and $i_A \circ f = f \circ i_A = f$, for all f in $\text{Symm}(A) \Rightarrow i_A$ is an identity element.
- (iv) The inverse: $\forall f: A \mapsto A, \exists f^{-1}: A \mapsto A \Rightarrow f^{-1} \in \operatorname{Symm}(A)$ and $f \circ f^{-1} = f^{-1} \circ f = i_A \Rightarrow (\operatorname{Symm}(A), \circ)$ is a group.

Example(4-15): let $A = \{1,2,3\}$, then $S_3 = \{f_1, f_2, f_3, f_4, f_5, f_6\}$ and (S_3, \circ) is a group. This group is called a symmetric group.

0	f_1	f_2	f_3	f_4	f_5	f_6
f_1	f_1	f_2	f_3	f ₄	f_5	f_6
f_2	f_2	f_3	f_1	f_5	f_6	f_4
f_3	f_3	f_1	f_2	f ₆	f ₄	f_5
f ₄	f_4	f_6	f_5	f_1	f_3	f_2
f_5	f_5	f_4	f_6	f_2	f_1	f_3
f_6	f_6	f_5	f ₄	f_3	f_2	f_1

 (S_3, \circ) is not an abelian group.

Definition(4-16): (The dihedral group D_n of order 2n)

The *n*-th dihedral group is the group of symmetries of the regular *n*-gon, $O(D_n) = 2n$.

 D_3 : is the third dihedral group. $O(D_3) = (2)(3) = 6$.

Example(4-17): the group of symmetries of square D_4 or G_S , $O(D_4) = 8$, $G_S = D_4 = \{r_1, r_2, r_3, r_4, v, h, D_1, D_2\}$, where r_i is a clockwise rotation.

- (i) Write all elements of G_S as a permutation. (**Homework**)
- (ii) Is (G_S, \circ) an abelian? Use table (**Homework**).

Definition(4-18): A permutation f of a set A is a cycle of length n if there exist $a_1, a_2, ..., a_n \in A$ such that $f(a_1) = a_2, f(a_2) = a_3, ..., f(a_{n-1}) = a_n, f(a_n) = a_1$ and f(x) = x for $x \in A$ but $x \notin \{a_1, a_2, ..., a_n\}$. we write $f = (a_1, a_2, ..., a_n)$.

Example(4-19): If $A = \{1,2,3,4,5\}$, then

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} = (1,3,5,4) \circ (2) = (1,3,5,4)$$

Observe that,

$$(1,3,5,4) = (3,5,4,1) = (5,4,1,3) = (4,1,3,5).$$

Example(4-20): Let $A = \{1,2,3,4,5,6\}$ be a set of a group S_6 . Then

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix} = (1,4,2) \circ (3) \circ (5,6) = (1,4,2) \circ (5,6)$$

And

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 3 & 5 & 2 & 1 \end{pmatrix} = (1,6) \circ (2,4,5) \circ (3) = (1,6) \circ (2,4,5)$$

These permutations above are not cycles.

Theorem(4-21): Every permutation f of a finite set A is a product of disjoint cycles.

Definition(4-22): A cycle of length two is a transposition.

Example(4-23): The permutation $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} = (24)$ is a transposition.

Property(4-24): Any permutation can be expressed as the product of transpositions. This means $(a_1, a_2, ..., a_n) = (a_1 a_2)(a_1 a_3) ... (a_1 a_n)$. Therefore any cycle is a product of transposition.

Example(4-25): We note that (16)(253) = (16)(25)(23).

<u>Definition(4-26):</u> A permutation is even or odd according as it can be written as the product of an even or odd number of transpositions.

Example(4-27): Let $f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \in S_3$. Is f even or odd permutation.

Solution:
$$f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = (132) = (13)(12)$$

f has two transpositions, thus f is an even permutation.

Example(4-28): Determine an even and odd permutation of D_4 . (Homework)

<u>Definition(4-29):</u> (Alternating group)

The Alternating group on n letters denoted by A_n is the group consisting of all even permutations in the symmetric group S_n .

$$O(A_n) = \frac{n!}{2}, A_n \subset S_n$$

Example(4-30): Let $S_3 = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, then $A_3 = \{i, f_2, f_3\}$ is a subgroup of S_3 . $O(A_3) = \frac{6}{2} = 3$

Example(4-31): Find A_4 from S_4 . (Homework)

5. Subgroups and Their Properties

<u>Definition(5-1):</u> Let (G,*) be a group and $H \subset G$, H a non-empty subset of G. Then (H,*) is a subgroup of (G,*), if (H,*) is itself a group.

<u>Definition(5-2):</u> Let (G,*) be a group and $H \subset G$, then (H,*) is a subgroup of (G,*) if,

- 1. $\forall a, b \in H \Rightarrow a * b \in H$;
- 2. The identity element of G is an element of H, $(e \in G \implies e \in H)$:
- 3. $\forall a \in H \implies a^{-1} \in H$.

Remark(5-3): Each group (G,*) has at least two subgroups $(\{e\},*)$ and (G,*), these subgroups are known trivial subgroups and improper, any subgroup different from these subgroups known proper subgroup.

Example(5-4): $(\mathbb{Z}, +)$ is a proper subgroup of $(\mathbb{R}, +)$.

Example(5-5): $(H = \{-1,1\},\cdot)$ is a proper subgroup of $(G = \{-1,1,-i,1\},\cdot)$.

Example(5-6): $(H = \{0,2\}, +_4)$ is a proper subgroup of $(Z_4, +_4)$, but $(H = \{0,3\}, +_4)$ not subgroup of $(Z_4, +_4)$.

Example(5-7): $(\mathbb{Q} \setminus \{0\},\cdot)$ is a subgroup of $(\mathbb{R} \setminus \{0\},\cdot)$.

Theorem(5-8): Let (G,*) be a group and $H \subseteq G$, then (H,*) is a subgroup of (G,*) iff $a*b^{-1} \in H$, $\forall a,b \in H$.

Proof: (\Rightarrow) let (H,*) be a subgroup of (G,*) and $a,b \in H$, then $a,b^{-1} \in H \Rightarrow a*b^{-1} \in H$

 (\Leftarrow) let $a * b^{-1} \in H$, to prove (H,*) be a subgroup of (G,*)

- 1. Since $H \neq \emptyset \Rightarrow \exists b \in H \ni b * b^{-1} \in H \Rightarrow e \in H$;
- 2. Since $b \in H$ and $e \in H \implies e * b^{-1} \in H \implies b^{-1} \in H$;

3. Let $a \in H$ and $b^{-1} \in H \Rightarrow a * (b^{-1})^{-1} \in H \Rightarrow a * b \in H \Rightarrow (H,*)$ is a subgroup of (G,*).

Example(5-9): Let $(\mathbb{Z}, +)$ be a group and $H = \{5a : a \in \mathbb{Z}\}$. Show that (H, +) is a subgroup of $(\mathbb{Z}, +)$.

Solution: let $x, y \in H$, to prove $x + y^{-1} \in H$

$$x \in H \Longrightarrow x = 5a, a \in \mathbb{Z}$$

$$y \in H \Longrightarrow y = 5b, b \in \mathbb{Z}$$

$$x + y^{-1} = 5a + (5b)^{-1} = 5a + 5(-b) = 5(a - b) \in H$$

 \Rightarrow (H, +) is a subgroup of $(\mathbb{Z}, +)$.

Theorem(5-10): If $(H_i,*)$ is the collection of subgroup of (G,*), then $(\cap H_i,*)$ is also subgroup of (G,*).

Proof: 1. Since $\exists e \in H_i, \forall i \Longrightarrow e \in \cap H_i \Longrightarrow \cap H_i \neq \emptyset$;

2. let $x, y \in \cap H_i$, to prove $x * y^{-1} \in \cap H_i$

Since $x, y \in \cap H_i \Rightarrow x, y \in H_i, \forall i \Rightarrow x * y^{-1} \in H_i, \forall i$

 $\Rightarrow x * y^{-1} \in \cap H_i \Rightarrow (\cap H_i,*)$ is a subgroup of (G,*).

Theorem(5-11): Let $(H_i,*)$ be the collection of subgroups of (G,*) and let H_k and $H_j \in \{H_i\}$ such that there is $H_e \in \{H_i\}$, $H_k \subseteq H_\ell$ and $H_j \subseteq H_\ell$, then $(\bigcup H_i,*)$ is also subgroup of (G,*).

Proof: 1. Since $\exists e \in H_i$ for some $i \Rightarrow e \in \bigcup H_i \Rightarrow \bigcup H_i \neq \emptyset$;

2. let $x, y \in \bigcup H_i$, then $x, y \in H_k$ or $x, y \in H_j$, so $x, y \in H_\ell$

$$\Rightarrow x * y^{-1} \in H_{\ell} \Rightarrow x * y^{-1} \in \bigcup H_{i}$$

 \Rightarrow (UH_i,*) is a subgroup of (G,*).

Theorem(5-12): Let($H_1,*$) and ($H_2,*$) are two subgroups of (G,*), then ($H_1 \cup H_2,*$) is a subgroup of (G,*) iff $H_1 \subset H_2$ or $H_2 \subset H_1$.

Proof: (\Longrightarrow) let $(H_1 \cup H_2,*)$ is a subgroup of (G,*),

to prove $H_1 \subset H_2$ or $H_2 \subset H_1$

suppose that $H_1 \not\subset H_2$ and $H_2 \not\subset H_1$

 $\Rightarrow \exists a \in H_1, a \notin H_2 \text{ and } \exists b \in H_2, b \notin H_1$

 $\Rightarrow a, b \in H_1 \cup H_2 \Rightarrow a * b^{-1} \in H_1 \cup H_2$

 $\Rightarrow a * b^{-1} \in H_1 \text{ or } a * b^{-1} \in H_2$

 $\Rightarrow a, b \in H_1$ or $a, b \in H_2$, but this is contradiction

 $\Rightarrow H_1 \subset H_2 \text{ or } H_2 \subset H_1$

 (\Leftarrow) let $H_1 \subset H_2$ or $H_2 \subset H_1$

To prove $(H_1 \cup H_2,*)$ is a subgroup of (G,*)

If $H_1 \subset H_2 \Longrightarrow H_1 \cup H_2 = H_2$ is a subgroup of (G,*)

If $H_2 \subset H_1 \Longrightarrow H_1 \cup H_2 = H_1$ is a subgroup of (G,*)

 \Rightarrow $(H_1 \cup H_2,*)$ is a subgroup of (G,*).

Remark(5-13): $(H_1 \cup H_2,*)$ need not be a subgroup of (G,*), for example:

 $H_1 = \{r_1, r_3\}$ is a subgroup of G_S

 $H_2 = \{r_1, v\}$ is a subgroup of G_S

 $H_1 \cup H_2 = \{r_1, r_3, v\}$ is not a subgroup of G_S , since $r_3 \circ v = h \notin H_1 \cup H_2$.

<u>Definition(5-14):</u> Let (G,*) be a group and (H,*), (K,*) are two subgroups of (G,*), then the product of H and K is the set:

 $H * K = \{h * k : h \in H, k \in K\}$

Notes(5-15):

- 1. H * H is write H^2 ;
- 2. If $H = \{a\}$, then H * K = a * K. If $K = \{b\}$, then H * K = H * b;
- 3. $H \cup K \subseteq H * K$.

Theorem(5-16): Let (G,*) be a group and (H,*), (K,*) are two subgroups of (G,*), then

- 1. $H * K \neq \emptyset$ and $H * K \subseteq G$.
- 2. $H \subseteq H * K$ and $K \subseteq H * K$.
- 3. (H * K,*) is a subgroup of (G,*) iff H * K = K * H.
- 4. If (G,*) is an abelian group, then (H * K,*) is a subgroup of (G,*).

Proof:

- 1. $e \in H$ and $e \in K \Rightarrow e * e = e \in H * K \Rightarrow H * K \neq \emptyset$, and let $x \in H * K \Rightarrow x = a * b \ni a \in H \subseteq G$, and $b \in K \subseteq G \Rightarrow a \in G$, and $b \in G \Rightarrow a * b = x \in G \Rightarrow H * K \subseteq G$.
- 2. Let $x \in H \Rightarrow x = x * e \in H * K \Rightarrow x \in H * K \Rightarrow H \subseteq H * K$, similarly, $K \subseteq H * K$.
- 3. (\Rightarrow) suppose (H * K, *) is a subgroup of (G, *), to prove H * K = K * H, this means $H * K \subseteq K * H$ and $K * H \subseteq H * K$, let $x \in H * K \Rightarrow x = a * b \ni a \in H$ and $b \in K$, since H * K is a subgroup of $G \Rightarrow x^{-1} \in H * K$, let $x^{-1} = c * d \ni c \in H$ and $d \in K$, $x = (x^{-1})^{-1} = (c * d)^{-1} = d^{-1} * c^{-1} \ni d^{-1} \in K$ and $c^{-1} \in H \Rightarrow x = d^{-1} * c^{-1} \in K * H \Rightarrow H * K \subseteq K * H$, to prove $K * H \subseteq H * K$ (**Homework**).
 - (\Leftarrow) letH * K = K * H, to prove (H * K,*) is a subgroup of (G,*) $H * K \neq \emptyset$ and $H * K \subseteq G$ (by 1)

Let
$$x, y \in H * K$$
, to prove $x * y^{-1} \in H * K$

$$x \in H * K \Longrightarrow x = a * b \ni a \in H \text{ and } b \in H$$

$$y \in H * K \Longrightarrow y = c * d \ni c \in H \text{ and } d \in H$$

$$x * y^{-1} = (a * b) * (c * d)^{-1}$$

$$= (a * b) * (d^{-1} * c^{-1})$$

$$= a * (b * d^{-1}) * c^{-1}$$

$$\Rightarrow (b*d^{-1})*c^{-1} \in K*H = H*K$$

$$\Rightarrow (b*d^{-1})*c^{-1} \in H*K$$

$$\Rightarrow \exists p \in H, q \in K \ni (b * d^{-1}) * c^{-1} = p * q$$

$$\Rightarrow a * (b * d^{-1}) * c^{-1} = a + p + q \in H * K$$

$$\Rightarrow x * y^{-1} \in H * K$$

$$\Rightarrow$$
 ($H * K,*$) is a subgroup of ($G,*$).

4.
$$H * K \neq \emptyset$$
, let $x, y \in H * K$

To prove
$$x * y^{-1} \in H * K$$

$$x \in H * K \Longrightarrow x = a * b \ni a \in H \text{ and } b \in K$$

$$y \in H * K \Longrightarrow y = c * d \ni c \in H \text{ and } d \in K$$

$$x * y^{-1} = (a * b) * (c * d)^{-1}$$

$$= (a*b)*(d^{-1}*c^{-1})$$

$$= (a * b) * (c^{-1} * d^{-1})$$

$$= a * (b * c^{-1}) * d^{-1}$$

$$= (a * c^{-1}) * (b * d^{-1})$$

$$\Rightarrow x * y^{-1} \in H * K$$

 \Rightarrow (H * K,*) is a subgroup of (G,*).

Example(5-17): In $(Z_8, +_8)$, let $H = \{0,4\}$ and $K = \{0,2,4,6\}$. Find $H +_8 K$.

Solution: $H + {}_{8}K = \{0,2,4,6\}.$

Note(5-18): Let (H,*) and (K,*) are two subgroups of (G,*), then:

- 1. $H * K \neq K * H$;
- 2. (H * K,*) need not be a subgroup of (G,*), give example (Homework).

Example(5-18): Is $H = \{0,6\}$ is a subgroup of $(Z_8, +_8)$? (Homework).

Example(5-19): Is $H = \{0,12\}$ is a subgroup of $(Z_4, +_4)$? (Homework).

<u>Definition(5-20):</u> The center of a group (G,*) denoted by Cent(G) or C(G) is the set $C(G) = \{c \in G: c * x = x * c, \forall x \in G\}.$

Note(5-21): $C(G) \neq \emptyset$, since $\exists e \in G \ni e * x = x * e \forall x \in G \implies e \in C(G)$.

Example(5-22): The group $(\mathbb{R} \setminus \{0\},\cdot)$, $C(\mathbb{R}) = \mathbb{R}$, since $(\mathbb{R} \setminus \{0\},\cdot)$ is an abelian group.

Example(5-23): The group (S_3, \circ) , $C(S_3) = \{f_1\}$, since

$$C(S_3) = \{ f \in S_3 : f \circ g = g \circ f \ \forall g \in S_3 \} = \{ f_1 \}.$$

Theorem(5-24): Let (G,*) be a group. Then(C(G),*) is a subgroup of (G,*).

Proof: $C(G) \neq \emptyset$, $C(G) = \{a \in G: x * a = a * x, \forall x \in G\} \subseteq G$

let $a, b \in C(G)$, to prove $a * b^{-1} \in C(G)$

$$a \in C(G) \Longrightarrow a * x = x * a \forall x \in G$$

$$b \in C(G) \Longrightarrow b * x = x * b \forall x \in G$$

To prove
$$(a * b^{-1}) * x = x * (a * b^{-1}) \forall x \in G$$

$$(a * b^{-1}) * x = a * (b^{-1} * x)$$

$$= a * (x^{-1} * b)^{-1}$$

$$= a * (b * x^{-1})^{-1}$$

$$= a * (x * b^{-1})$$

$$= (a * x) * b^{-1}$$

$$= (x * a) * b^{-1}$$

$$= x * (a * b^{-1})$$

$$\Rightarrow (a * b^{-1}) \in C(G)$$

 \Rightarrow (C(G),*) is a subgroup of (G,*).

Theorem(5-25): Let (G,*) be a group, then C(G) = G iff G is an abelian group.

Proof: $(\Rightarrow) \forall a \in G \Rightarrow a \in C(G)$

$$\Rightarrow a * x = x * a \forall x \in G$$

$$\Rightarrow a * x = x * a \forall x, a \in G$$

 \Rightarrow G is an abelian group.

 (\Leftarrow) suppose that G is an abelian group, to prove C(G) = G

This means $C(G) \subseteq G$ and $G \subseteq C(G)$

By definition of C(G), $C(G) \subseteq G$

To prove $G \subseteq C(G)$

Let $x \in G$, G is an abelian group

$$\Rightarrow x * a = a * x \ \forall a \in G$$

$$\Rightarrow x \in C(G)$$

$$\Rightarrow G \subseteq C(G)$$

$$\Rightarrow C(G) = G.$$

6. More Results of Subgroups

Cyclic Group:

<u>Definition(6-1)</u>Let (G,*) be a group and $a \in G$, the cyclic subgroup of G generated by a is denoted by $\langle a \rangle$ and defined as

$$\langle a \rangle = \{ a^k : k \in \mathbb{Z} \} = \{ \dots, a^{-1}, a^0, a^1, \dots \}$$

If $G = \langle a \rangle$, then G is called a cyclic group.

<u>Definition(6-2):</u> A group (G,*) is called cyclic group generated by a iff $\exists a \in G \ni G = \langle a \rangle = \{a^k : k \in \mathbb{Z}\}.$

Example(6-3): In $(Z_9, +_9)$, find the cyclic subgroup generated by 2,3,1.

Solution:
$$\langle 2 \rangle = \{2^k, k \in \mathbb{Z}\} = \{..., 2^{-3}, 2^{-2}, 2^{-1}, 2^0, 2^1, 2^2, 2^3, ...\}$$

=
$$\{...,3,5,7,0,2,4,6,...\}$$
 = $\{0,1,2,...,8\}$ = Z_9

 \Rightarrow Z_9 is a cyclic group generated by 2.

$$\langle 3 \rangle = \{..., 3^{-3}, 3^{-2}, 3^{-1}, 3^{0}, 3^{1}, 3^{2}, 3^{3}, ...\}$$

= $\{..., 3, 6, 0, 3, 6, ...\}$

= $\{0,3,6\}$ is a cyclic subgroup of \mathbb{Z}_9 .

$$\langle 1 \rangle = \{..., 1^{-3}, 1^{-2}, 1^{-1}, 1^{0}, 1^{1}, 1^{2}, 1^{3}, ...\}$$

= $\{..., 6, 7, 8, 0, 1, 2, 3, ...\}$

= Z_9 is generated by 1.

Example(6-4): In $(\mathbb{Z}, +)$, find a cyclic group generated by 1,2, -1.

Solution:
$$\langle 1 \rangle = \{1^k, k \in \mathbb{Z}\} = \{\dots, 1^{-3}, 1^{-2}, 1^{-1}, 1^0, 1^1, 1^2, 1^3, \dots\}$$
$$= \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} = \mathbb{Z}$$

$$\langle 2 \rangle = \{2^k, k \in \mathbb{Z}\} = \{..., 2^{-3}, 2^{-2}, 2^{-1}, 2^0, 2^1, 2^2, 2^3, ...\}$$

$$= \{..., -6, -4, -2, 0, 2, 4, 6, ...\} \neq Z_9$$

$$\langle -1 \rangle = \{(-1)^k, k \in \mathbb{Z}\}$$

$$= \{..., (-1)^{-3}, (-1)^{-2}, (-1)^{-1}, (-1)^0, (-1)^1, (-1)^2, (-1)^3, ...\}$$

$$= \{..., 2, 1, 0, -1, -2, ...\} = \mathbb{Z}$$

 \Rightarrow (\mathbb{Z} , +) is a cyclic group generated by 1 and -1.

Example(6-5): Is(S_3 , \circ) a cyclic group?

Solution:
$$\langle f_1 \rangle = \{f_1^k, k \in \mathbb{Z}\} = \{\dots, f_1^{-3}, f_1^{-2}, f_1^{-1}, f_1^0, f_1^1, f_1^2, f_1^3, \dots\}$$
$$= \{f_1\} \neq S_3$$

$$\langle f_2 \rangle = \{ f_2^k, k \in \mathbb{Z} \} = \{ \dots, f_2^{-2}, f_2^{-1}, f_2^0, f_2^1, f_2^2, \dots \}$$

$$= \{ \dots, f_2, f_3, f_1, f_2, f_3, \dots \}$$

$$= \{ f_1, f_2, f_3 \} \neq S_3$$

$$\langle f_3 \rangle = \{f_1, f_2, f_3\} \neq S_3$$

$$\langle f_4 \rangle = \{f_1, f_4\} \neq S_3$$

$$\langle f_5\rangle = \{f_1,f_5\} \neq S_3$$

$$\langle f_6 \rangle = \{f_1, f_6\} \neq S_3$$

 \Rightarrow (S₃, \circ) is not a cyclic group.

Example(6-6): In $(Z_6, +_6)$, find a cyclic subgroup generated by 1,2,5. (**Homework**)

Theorem(6-7): Every cyclic group is an abelian.

Proof: let (G,*) be a cyclic group, $\Longrightarrow \exists a \in G \ni G = \langle a \rangle = \{a^k, k \in \mathbb{Z}\}$

To prove G is an abelian group

Let $x, y \in G$, to prove $x * y = y * x \forall x, y \in G$

$$x\in G=\langle a\rangle\Longrightarrow x=a^m\ni m\in\,\mathbb{Z}$$

$$y \in G = \langle a \rangle \Longrightarrow y = a^n \ni n \in \mathbb{Z}$$

$$x * y = a^m * a^n = a^{m+n} = a^{n+m} = a^n * a^m = y * x$$

 \implies *G* is an abelian group.

Note(6-8): The converse of above theorem is not true in general, for example.

$$(G = \{e, a, b, c\}, *) \ni a^2 = b^2 = c^2 = e$$

$$a^2 = e \Rightarrow a * a = e \Rightarrow a^{-1} = a$$

$$b^2 = e \Longrightarrow b * b = e \Longrightarrow b^{-1} = b$$

$$c^2 = e \Longrightarrow c * c = e \Longrightarrow c^{-1} = c$$

$$e^{-1} = e \Longrightarrow x^{-1} = x \ \forall \ x \in G$$

 \Rightarrow (G,*) is an abelian group, but (G,*) is not a cyclic group, since

$$\langle e \rangle = \{e\} \neq G$$

$$\langle a \rangle = \{a^k, k \in \mathbb{Z}\} = \{e, a\} \neq G$$

$$\langle b \rangle = \{b^k, k \in \mathbb{Z}\} = \{e, b\} \neq G$$

$$\langle c \rangle = \{c^k, k \in \mathbb{Z}\} = \{e, c\} \neq G$$

 \Rightarrow (G,*) is not a cyclic.

<u>Theorem(6-9):</u> $\langle a \rangle = \langle a^{-1} \rangle \ \forall \ a \in G.$

Proof: $\langle a \rangle = \{ a^k, k \in \mathbb{Z} \} = \{ (a^{-1})^{-k}, -k \in \mathbb{Z} \}$

$$=\{(a^{-1})^m, m=-k \in \mathbb{Z}\}=\langle a^{-1}\rangle.$$

Theorem(6-10): If (G,*) is a finite group of order n generated by a, then $G =: \langle a \rangle = \{a^k, k \in \mathbb{Z}\} = \{a^1, a^2, ..., a^n = e\}$, such that n is the least positive integer $\exists a^n = e$, this means O(a) = n = O(G).

Example(6-11): Show that $(Z_n, +_n)$ is a cyclic group.

Solution: $Z_n = \{0,1,...,n-1\}$

$$O(Z_n) = n$$
, to prove $Z_n = \langle 1 \rangle$

$$\langle 1 \rangle = \{1^k, k \in \mathbb{Z}\} = \{1, 1^2, 1^3, \dots, 1^n = 0\}$$

$$= \{1,2,3,...,n = 0\} = Z_n$$

$$\Rightarrow Z_n = \langle 1 \rangle$$
 and $O(Z_n) = O(1) = n$.

Definition(6-12): (Division Algorithm for \mathbb{Z})

If a, b are integers, with b > 0. Then there is a unique pair of integers $q, r \ni a = bq + r, 0 \le r < b$.

The number q is called the quotient and r is called the remainder when a is divided by b.

Example(6-13): Find the quotient q and remainder r, when 38 is divided by 7 according to the division algorithm.

Solution: $38 = 7(5) + 3, 0 \le 3 < 7$

$$\Rightarrow q = 5, r = 3.$$

Example(6-14): a = 23, b = 7.

Solution: $23 = 7(3) + 2, 0 \le 2 < 7$

$$\Rightarrow q = 3, r = 2.$$

Example(6-15): a = 15, b = 2.

Solution: $15 = 2(7) + 1, 0 \le 1 < 2$

 $\Rightarrow q = 7, r = 1.$

Theorem(6-16): A subgroup of a cyclic group is a cyclic.

Proof: let G be a cyclic group generated by a and let H be a subgroup of G

If $H = \{e\}$, then $H = \langle e \rangle$ is a cyclic

If $H \neq \{e\}$ and $H \neq G$ (H is a proper subgroup), then

$$x \in H \Longrightarrow x = a^m, m \in \mathbb{Z}$$

$$x^{-1}\in H\Longrightarrow x^{-1}=a^{-m},-m\in\mathbb{Z}$$

Let m be a least positive integer such that $a^m \in H$

to prove
$$H = \langle a^m \rangle = \{(a^m)^g : g \in \mathbb{Z}\}$$

to prove
$$H \subseteq \langle a^m \rangle, \langle a^m \rangle \subseteq \langle a^m \rangle$$

let
$$y \in H \Longrightarrow y = a^s, s \in \mathbb{Z}$$

by division algorithm of s and m

$$s = mg + r \Longrightarrow r = s - mg$$

$$a^r = a^{s-mg} = a^s * (a^{-m})^g, 0 \le r < m$$

$$a^r \in H$$
 but $0 \le r < m \Longrightarrow r = 0 \Longrightarrow s = mg$

$$a^s = (a^m)^g \in \langle a^m \rangle$$

$$y=a^s\in\langle a^m\rangle\Longrightarrow H\subseteq\langle a^m\rangle$$

To prove $\langle a^m \rangle \subseteq H$

Let
$$x \in \langle a^m \rangle \Longrightarrow x = (a^m)^g, g \in \mathbb{Z}$$

$$a^m \in H \Longrightarrow (a^m)^g \in H \Longrightarrow x \in H \Longrightarrow \langle a^m \rangle \subseteq H$$

 \Rightarrow (*H*,*) is a cyclic subgroup.

<u>Corollary(6-17):</u> If (G,*) is a finite cyclic group of order n generated by a, then every subgroup of G is a cyclic generated by $a^m \ni \frac{n}{m}$.

Proof: suppose (G,*) is a finite, O(G) = n

$$G = \langle a \rangle = \{a, a^2, \dots, a^n = e\}$$

Let (H,*) be a subgroup of (G,*), then(H,*) is a cyclic

such that
$$H = \langle a^m \rangle$$
, to prove $\frac{n}{m}$ $(n = mg, g \in \mathbb{Z})$

 $e \in H \implies a^n \in H$, by division algorithm of n, m

$$\Rightarrow n = mg + r, 0 \le r < m$$

$$r = n - mg \Longrightarrow a^r = a^n * (a^m)^{-g}$$

$$a^r \in H$$
, but $0 \le r < m$

If
$$r = 0 \Longrightarrow n = mg \Longrightarrow \frac{n}{m}$$
.

Example(6-18): Find all subgroups of $(Z_{15}, +_{15})$.

Solution: $O(Z_{15}) = 15, H = \langle 1^m \rangle, \frac{15}{m}$

If
$$m=1 \Longrightarrow H_1=Z_{15}$$

If
$$m = 3 \implies H_2 = \{3,6,9,12\}$$

If
$$m = 5 \Longrightarrow H_3 = \{5,10,0\}$$

If
$$m = 15 \Longrightarrow H_4 = \{0\}.$$

Corollary(6-19): If (G,*) is a finite cyclic group of prime order, then G has no a proper subgroup.

Proof: let (G,*) be a finite group such that

O(G) = p (p is a prime number)

$$G = \langle a \rangle = \{a, a^2, \dots, a^p = e\}$$

Let (H,*) be a cyclic subgroup

$$H = \langle a^m \rangle \ni \frac{p}{m} \Longrightarrow m = 1 \text{ or } m = p$$

If $m = 1 \Rightarrow H = \langle a \rangle = G$ (not a proper subgroup)

If $m = p \Longrightarrow H = \langle a^p = e \rangle = \{e\}$ (not a proper subgroup)

 \implies *G* has no a proper subgroup.

Example(6-20): Find all subgroup of $(Z_7, +_7)$.

Solution: $O(Z_7) = 7$

Let
$$H = \langle 1^m \rangle$$
, $\frac{7}{m} \Longrightarrow m = 1$ or $m = 7$

If
$$m = 1 \Longrightarrow H_1 = \langle 1 \rangle = Z_7$$

If
$$m = 7 \Longrightarrow H_2 = \langle 1^7 \rangle = \{0\}.$$

<u>Definition(6-21):</u> A positive integer c is said to be a greatest common divisor of two non-zero numbers x, y iff

1.
$$\frac{x}{c}$$
, $\frac{y}{c}$

2. If
$$\frac{x}{a}$$
, $\frac{y}{a} \Longrightarrow \frac{c}{a}$.

Example(6-22): Find g. c. d. (12,18).

Solution: g. c. d. (12,18) = 6, since

1.
$$\frac{12}{6}$$
, $\frac{18}{6}$

2.
$$\frac{12}{3}$$
, $\frac{18}{3} \Rightarrow \frac{6}{3}$

$$\frac{12}{1}$$
, $\frac{18}{1} \Rightarrow \frac{6}{1}$

$$\frac{12}{2}$$
, $\frac{18}{2} \Rightarrow \frac{6}{2}$.

Remark(6-23): If (G,*) is a finite cyclic group of order n generated by a, then the generator of G is $a^k \ni g.c.d.(k,n) = 1$.

Example(6-24): Find all generators of $(Z_6, +_6)$.

Solution: $O(Z_6) = 6$, $Z_6 = \langle 1 \rangle$

$$Z_6 = \langle 1^k \rangle \ni \text{g. c. d.}(k, 6) = 1, k = 1,2,3,4,5$$

$$k = 1 \Longrightarrow g. c. d. (1,6) = 1 \Longrightarrow Z_6 = \langle 1 \rangle$$

$$k = 2 \implies g. c. d. (2,6) \neq 1 \implies Z_6 \neq \langle 1^2 \rangle = \langle 2 \rangle$$

$$k = 3 \Rightarrow g. c. d. (3,6) \neq 1 \Rightarrow Z_6 \neq \langle 1^3 \rangle = \langle 3 \rangle$$

$$k = 4 \implies g. c. d. (4,6) \neq 1 \implies Z_6 \neq \langle 1^4 \rangle = \langle 4 \rangle$$

$$k = 5 \implies g. c. d. (5,6) = 1 \implies Z_6 = \langle 1^5 \rangle = \langle 5 \rangle$$

therefore, the generators of Z_6 are 1,5.

Theorem(6-25): If (G,*) is an infinite cyclic group generated by a, then:

- 1. The numbers a, a^{-1} are only generators of G;
- 2. Every subgroup of G except $\{e\}$ is an infinite subgroup.

Proof: (1) suppose $G = \langle a \rangle$, to prove $G = \langle a^{-1} \rangle$

Let
$$a \in G \ni G = \langle a \rangle = \{..., a^{-2}, a^{-1}, a^0, a^1, a^2, ...\}$$

Let
$$b \in G \ni G = \langle b \rangle = \{..., b^{-2}, b^{-1}, b^0, b^1, b^2, ...\}$$

$$a \in G = \langle a \rangle \Longrightarrow a = b^r, r \in \mathbb{Z} \dots 1$$

$$b \in G = \langle a \rangle \Longrightarrow b = a^s, s \in \mathbb{Z} \dots 2$$

Substitute 1 in 2, we get $b = (b^r)^s \implies b^1 = b^{rs}$

$$1 = rs \implies r = s = 1$$
 or $r = s = -1$

If
$$r = s = 1 \Rightarrow a = b \Rightarrow G = \langle a \rangle$$

If
$$r = s = -1 \Rightarrow b = a^{-1} \Rightarrow G = \langle a^{-1} \rangle$$
.

(2) let (H,*) be a subgroup of $(G,*) \ni H \neq \{e\}$

To prove (H,*) is an infinite

Suppose that (H,*) is a finite such that O(H) = k

(H,*) is a cyclic subgroup

$$H = \langle a^m \rangle = \{(a^m)^1, (a^m)^2, ... (a^m)^k = e\}$$

 $a^{mk} = e \Rightarrow O(a) = mk \Rightarrow O(a) = O(G)$, but this is contradiction

 $(G = \langle a \rangle, G \text{ is a finite})$

Thus, (H,*) is an infinite.

<u>Definition(6-26):</u> Let (H,*) be a subgroup of a group (G,*). The set $a*H = \{a*h: h \in H\}$ of G is the left coset of H containing a, while the subset $H*a = \{h*a: h \in H\}$ is the right coset of H containing a.

Example(6-27): If $(Z_6, +_6)$, $a = 1, H = \{0,2,4\}$, then

$$1 +_6 H = \{1,3,5\}, H +_6 1 = \{1,3,5\}$$

$$3+_6H = \{3,5,1\}, \ H+_63 = \{3,5,1\}$$

Notes(6-28):

1. a * H is not subgroup (in general), give an example (**Homework**);

2. $a * H \neq H * a$ (in general), for example

$$(S_3, \circ), \quad H = \{f_1, f_4\}, \quad a = f_2$$

$$f_2 \circ H = \{f_2, f_5\}, \quad H \circ f_2 = \{f_2, f_6\}$$

$$\implies f_2 \circ H \neq H \circ f_2.$$

Theorem(6-29): Let (H,*) be a subgroup of (G,*) and $a \in G$, then

1. H is itself left coset of H in G.

Proof: $e \in G$, $e * H = \{e * h : h \in H\} = H$.

2. If (G,*) is an abelian group, then a*H=H*a.

Proof: $a * H = \{a * h : h \in H\} = \{h * a : h \in H\} = H * a$.

The converse of above theorem is not true in general, for example

$$(S_3,\circ), H = \{f_1, f_2, f_3\}, a = f_4$$

$$f_4 \circ H = \{f_4, f_5, f_6\}, \qquad H \circ f_4 = \{f_4, f_6, f_5\}$$

$$\implies f_2 \circ H = H \circ f_2$$
, but (S_3, \circ) is not an abelian.

3.
$$a \in a * H$$

Proof: $a = a * e \in a * H$.

4.
$$a * H = H \text{ iff } a \in H$$

Proof: (\Longrightarrow) suppose that a * H = H, then by $3 \Longrightarrow a \in H$.

 (\Leftarrow) suppose that $a \in H$, to prove a * H = H

This means $a * H \subseteq H$ and $H \subseteq a * H$

Let
$$x \in a * H \Rightarrow x = a * h \in H \Rightarrow a * H \subseteq H$$

To prove $H \subseteq a * H$

Let
$$b \in H \Longrightarrow b = e * b = (a * a^{-1}) * b = a * (a^{-1} * b) \Longrightarrow b \in a * H$$

$$\Rightarrow H \subseteq a * H \Rightarrow H = a * H.$$

5.
$$a * H = b * H \text{ iff } a^{-1} * b \in H$$

Proof:
$$(\Longrightarrow) a * H = b * H$$

$$a^{-1} * (a * H) = a^{-1} * (b * H)$$

$$(a^{-1} * a) * H = (a^{-1} * b) * H)$$

$$H = (a^{-1} * a) * H$$
, by $4 \Longrightarrow a^{-1} * b \in H$

$$(\Leftarrow)$$
 suppose that $a^{-1} * b \in H$

by
$$4 \Rightarrow (a^{-1} * b) * H = H \Rightarrow b * H = a * H$$
.

6.
$$a * H = b * H$$
 or $(a * H) \cap (b * H) = \emptyset$

Proof: suppose that $(a * H) \cap (b * H) \neq \emptyset$

To prove a * H = b * H

$$\exists x \ni x \in a * H \text{ and } x \in b * H$$

$$x = a * h_1 \text{ and } x = b * h_2 \ni h_1, h_2 \in H$$

$$a * h_1 = b * h_2 \Longrightarrow h_1 = a^{-1} * b * h_2$$

$$\implies h_1 * h_2^{-1} = a^{-1} * b \in H$$

by
$$5 \Rightarrow a * H = b * H$$

or suppose $a * H \neq b * H$

to prove
$$(a * H) \cap (b * H) = \emptyset$$

suppose
$$(a * H) \cap (b * H) \neq \emptyset$$

 $\exists x \in a * H \text{ and } x \in b * H$

$$x = a * h_1 \text{ and } x = b * h_2$$

$$a^{-1} * b = h_1 * h_2^{-1} \Longrightarrow a^{-1} * b \in H$$

 $\Rightarrow a * H = b * H$, but this is contradiction

$$\Rightarrow$$
 $(a * H) \cap (b * H) = \emptyset.$

7. The set of all distinct left coset of H in G form a partition on G.

Proof: to prove $G = \bigcup_{a \in G} a * H$ and $a_i * H \cap a_j * H = \emptyset$

$$a_i * H, a_j * H$$
 are distinct $\implies a_i * H \cap a_j * H = \emptyset$

To prove $G = \bigcup_{a \in G} a * H$

 $a * H \subseteq G \forall a \in G$ (by definition of a coset)

$$\Rightarrow \bigcup_{\alpha \in C} \alpha * H \subseteq G \dots 1$$

$$\forall a \in G \Longrightarrow a \in a * H \Longrightarrow a \in \bigcup_{a \in G} a * H$$

$$\Rightarrow G \subseteq \bigcup_{a \in G} a * H \dots 2$$

From 1,2, we have $G = \bigcup_{a \in G} a * H$.

Note(6-30): Every coset (left or right) of a subgroup H of a group (G,*) has the same number of elements as H.

Example(6-31): The group $(Z_6, +_6)$ is an abelian. Find the partition of Z_6 into coset of the subgroup $H = \{0,3\}$.

Solution: $0 + H = \{0,3\} = H$

$$1 + H = \{1,4\}$$

$$2 + H = \{2,5\}$$

$$3 + H = \{3,0\}$$

$$4 + H = \{4,1\}$$

$$5 + H = \{5,2\}$$

All the cosets of H are $\{0,3\},\{1,4\},\{2,5\}$ and since $(Z_6,+_6)$ is an abelian group, then the left coset is an equal to the right coset.

Example(6-32): In (S_3, \circ) , let $H = \{f_1, f_4\}$. Find the partition of S_3 into left coset of H and the partition into right coset of H. (**Homework**)

Definition(6-33): Let (H,*) be a subgroup of a group (G,*). The number of left cosets or right cosets of H in G is called the index of H in G and denoted by [G:H].

Note(6-34): If (G,*) is a finite group, then $[G:H] = \frac{o(G)}{o(H)}$.

Example(6-35): $(S_3, \circ), H = \{f_1, f_2, f_3\}$

$$\Rightarrow [S_3:H] = \frac{O(S_3)}{O(H)} = \frac{6}{3} = 2$$

Example(6-36): $(Z_6, +_6), H = \{0,3\}$

$$\Rightarrow [Z_6: H] = \frac{O(Z_6)}{O(H)} = \frac{6}{2} = 3$$

Theorem(6-37): (Lagrange Theorem)

Let H be a subgroup of a finite group (G,*). Then the order of H is a divisor of the order of G.

Proof: let G be a finite group $\ni O(G) = n$ and H be a subgroup of $G \ni O(H) = m$

To prove
$$\frac{O(G)}{O(H)}$$
 (to prove $\frac{n}{m}$, $n = mk$)

Since G is a finite \Longrightarrow [G: H] = k

Let $a_1 * H$, $a_2 * H$, ..., $a_k * H$ are left cosets of H

$$a_1 * H \cup a_2 * H \cup ... \cup a_k * H = G$$
 and $a_i * H \cap a_j * H = \emptyset$

$$O(a_1 * H) + O(a_2 * H) + \dots + O(a_k * H) = O(G)$$

$$m + m + \dots + m \ (k\text{-times}) = n$$

$$mk = n \Longrightarrow \frac{n}{m} \Longrightarrow \frac{O(G)}{O(H)}$$

Corollary(6-38): If (G,*) is a finite group, then the order of any element of G divides the order of G.

Proof: suppose that (G,*) is a finite such that O(G) = n

Let $a \in G \implies a$ has a finite order such that O(a) = m

To prove such that $\frac{o(G)}{o(a)}$

Since $a \in G \Rightarrow H = \langle a \rangle$ is a cyclic group

$$H = \{a, a^2, ..., a^m = e\}, O(a) = m \Longrightarrow \frac{O(G)}{O(H)}$$
 (by Lagrange Theorem)

$$\Rightarrow \frac{O(G)}{O(a)}$$

Corollary(6-39): If (G,*) is a finite group, then $a^{O(G)} = e \ \forall a \in G$.

Proof: suppose that O(G) = n

Let $a \in G \ni O(a) = m$ (by Corollary of Lagrange)

$$\Rightarrow \frac{O(G)}{O(a)} \Rightarrow \frac{n}{m} \Rightarrow n = mk$$

$$a^{O(G)} = a^n = (a^m)^k = e^k = e$$

$$\Rightarrow a^{O(G)} = e \ \forall a \in G.$$

Corollary(6-40): Every group of prime order is a cyclic.

Proof: let (G,*) be a finite $\ni O(G) = p \Longrightarrow \frac{p}{O(a)} \ \forall a \in G$

$$O(a) = 1$$
 or p

If
$$O(a) = 1 \Rightarrow a = e$$

If
$$O(a) = p \Rightarrow O(a) = O(G) \Rightarrow G = \langle a \rangle$$

 \Rightarrow G is a cyclic group.

Corollary(6-41): Every group of order less than 6 is an abelian.

Proof: let (G,*) be a finite group $\ni O(G) < 6$

$$O(G) = 1 \text{ or } 2 \text{ or } 3 \text{ or } 4 \text{ or } 5$$

If
$$O(G) = 1 \Rightarrow G = \{e\} \Rightarrow G$$
 is an abelian

If O(G) = 2 or 3 or $5 \Rightarrow G$ is a cyclic $\Rightarrow G$ is an abelian

If
$$O(G) = 4 \Rightarrow \frac{4}{O(a)} \Rightarrow O(a) = 1$$
 or 2 or 4

If
$$O(a) = 1 \Rightarrow a = e$$

If
$$O(a) = 2 \quad \forall a \in G \implies a^2 = e \implies a = a^{-1} \quad \forall a \in G$$

 \Rightarrow G is an abelian

If
$$O(a) = 4 \Rightarrow O(a) = O(G) \Rightarrow G = \langle a \rangle$$

 \Rightarrow G is a cyclic \Rightarrow G is an abelian.

7. Normal Subgroups and Quotient Groups

<u>Definition(7-1):</u> Let (G,*) be a group and $a,b \in G$, then a is a conjugate to b and denoted by $a \sim b$ iff $\exists x \in G \ni b = x * a * x^{-1}$ and $b \sim a$ iff $\exists x \in G \ni a = x * b * x^{-1}$.

$$a \neq b \text{ iff } b \neq x * a * x^{-1} \ \forall x \in G$$

Example(7-2): In (S_3, \circ) , is $f_3 \sim f_2$?

Solution:
$$x = f_1 \Longrightarrow f_1 \circ f_3 \circ f_1^{-1} = f_3 \ne f_2$$

$$x = f_2 \Longrightarrow f_2 \circ f_3 \circ f_2^{-1} = f_1 \circ f_2^{-1} = f_3 \ne f_2$$

$$x = f_3 \Longrightarrow f_3 \circ f_3 \circ f_3^{-1} = f_2 \circ f_2 = f_3 \ne f_2$$

$$x = f_4 \Longrightarrow f_4 \circ f_3 \circ f_4^{-1} = f_5 \circ f_4 = f_2$$

$$x = f_5 \Longrightarrow f_5 \circ f_3 \circ f_5^{-1} = f_6 \circ f_5 = f_2$$

$$x = f_6 \Rightarrow f_6 \circ f_3 \circ f_6^{-1} = f_4 \circ f_6 = f_2$$

$$\Rightarrow \exists x \in S_3 \ni x \circ f_3 \circ x^{-1} = f_2$$

$$\implies f_3 \sim f_2$$

Is $f_1 \sim f_2$ and $f_1 \sim f_1$? (**Homework**)

Example(7-3): In $(Z_4, +_4)$, is $1 \sim 2$?

Solution:
$$x = 1 \implies 1 + 41 + 41^{-1} = 2 + 43 = 5 = 1 \neq 2$$

$$x = 2 \Longrightarrow 2 + 41 + 42^{-1} = 3 + 42 = 5 = 1 \neq 2$$

$$x = 3 \Longrightarrow 3 + 41 + 43^{-1} = 3 + 41 = 4 = 0 \ne 2$$

$$x = 0 \Longrightarrow 0 + 41 + 40^{-1} = 1 \neq 2$$

$$\Rightarrow 1 \neq 2$$

Remark(7-4): If (G,*) is an abelian group and $a,b \in G$, then $a \sim b \iff a = b$.

Proof: suppose that $a \sim b \iff \exists x \in G \ni b = x * a * x^{-1}$

$$\Leftrightarrow b = x * x^{-1} * a \Leftrightarrow b = a$$

Theorem(7-5): The relation (conjugate) is an equivalent relation.

Proof: (1) reflexive

let $a \in G$, to prove $a \sim a$

$$\exists e \in G \ni a = e * a * e^{-1} \Longrightarrow a \sim a$$

(2) symmetric

Let $a, b \in G$ and $a \sim b$, to prove $b \sim a$

$$a \sim b \implies \exists x \in G \ni b = x * a * x^{-1}$$

$$\Rightarrow x^{-1} * b = a * x^{-1}$$

$$\Rightarrow x^{-1} * b * x = a \Rightarrow b \sim a$$

(3) transitive

Let $a, b, c \in G \ni a \sim b$ and $b \sim c$, to prove $a \sim c$

$$a{\sim}b\Longrightarrow \exists x\in G\ni b=x*a*x^{-1}\dots 1$$

$$b \sim c \implies \exists y \in G \ni c = y * b * y^{-1} \dots 2$$

Substitute 1 in 2, we get

$$c = y * (x * a * x^{-1}) * y^{-1}$$

$$c = (y * x) * a * (y * x)^{-1}$$

$$c = z * a * z^{-1}$$
 (where $z = y * x \in G$)

 $\Rightarrow a \sim c$.

Definition(7-6): Let (G,*) be a group and $a \in G$, then the conjugate of a is denoted by c(a) and defined as

$$c(a) = \{b \in G: a \sim b\}$$

or
$$c(a) = \{b \in G: a = x * a * b^{-1}\}$$

or
$$c(a) = \{x * a * b^{-1}, \forall x \in G\}$$

The set of all elements conjugate to a is called the conjugate class of a.

Examples(7-7): Find the conjugate class of each element in the following groups:

- 1. (S_3,\circ) (Homework)
- 2. $(G_{S,\circ})$ (Homework)
- 3. $(G = \{1, -1, i, -i\}, \cdot) \ni i^2 = -1.$

Solution: $c(i) = \{x \cdot i \cdot x^{-1}, \forall x \in G\}$

$$= \{1 \cdot i \cdot 1^{-1}, -1 \cdot i \cdot (-1)^{-1}, i \cdot i \cdot i^{-1}, -i \cdot i \cdot (-i)^{-1}\}$$

$$= \{i, i, i, i\} = \{i\}$$

$$c(1) = \{1\}, c(-1) = \{-1\}, c(-i) = \{-i\}.$$

Example(7-8): Find c(3) in $(Z_4, +_4)$.

Solution:
$$c(3) = \{0+43+40^{-1}, 1+43+41^{-1}, 2+43+42^{-1}, 3+43+43^{-1}\}$$

= {3} (by Remark if G is an abelian group and $a \sim b$, then a = b)

Note(7-9): Let (G,*) be a group and $a \in G$, then c(a) need not be a subgroup of (G,*), for example in (S_3,\circ) , $c(f_3) = \{f_2,f_3\}$ is not a subgroup of S_3 .

Theorem(7-10): Let (G,*) be a group and $a,b \in G$, then

1.
$$a \in c(a) \forall a \in G$$
.

Proof: since $a \sim a \ \forall a \in G \ (\sim \text{ is a reflexive})$

$$a \in c(a) \Rightarrow c(a) \neq \emptyset$$

2.
$$c(a) = c(b) \Leftrightarrow a \sim b \ \forall a, b \in G$$
.

Proof: (\Rightarrow) suppose that c(a) = c(b), to prove $a \sim b$

By
$$1, a \in c(a) = c(b) \Rightarrow a \in c(b) \Rightarrow a \sim b$$

 (\Leftarrow) suppose that $a \sim b$, to prove c(a) = c(b)

This means $c(a) \subseteq c(b)$ and $c(b) \subseteq c(a)$

Let $x \in c(b) \Rightarrow x \sim a$ and $a \sim b \Rightarrow x \sim b$

$$\Rightarrow x \in c(b) \Rightarrow c(a) \subseteq c(b) \dots 1$$

Let $x \in c(b) \Rightarrow x \sim b$ and $a \sim b \Rightarrow x \sim a$

$$\Rightarrow x \in c(a) \Rightarrow c(b) \subseteq c(a) \dots 2$$

From 1, 2, we get c(a) = c(b)

3.
$$c(a) \cap c(b) = \emptyset$$
 iff $a \neq b$ (Homework)

4.
$$c(a) \cap c(b) = \emptyset$$
 or $c(a) = c(b)$ (Homework)

5.
$$b \in c(a) \Leftrightarrow c(a) = c(b)$$

Proof: (\Longrightarrow) let $b \in c(a) \Longrightarrow b \sim a \Longrightarrow c(a) = c(b)$ (by Theorem)

$$(\Leftarrow) c(a) = c(b) \Rightarrow a \sim b \Rightarrow b \sim a \Rightarrow b \in c(a).$$

6.
$$c(a) = \{a\} \forall a \in G \iff G \text{ is an abelian group.}$$

Proof: $c(a) = \{a\} \ \forall a \in G \iff x * a * x^{-1} = a \ \forall a \in G$

 $\Leftrightarrow x * a = a * x \Leftrightarrow G$ is an abelian group.

7.
$$c(a) = \{a\} \iff a \in C(G)$$
 (Homework)

8.
$$c(e) = \{e\}$$
 (Homework)

Definition(7-11): Let (G,*) be a group and $a \in G$, then the normalizer of a is denoted by N(a) and defined as $N(a) = \{x \in G: x * a = a * x\}$.

Example(7-12): In $(Z_8, +_8)$. Find N(3).

Solution: $N(3) = \{x \in Z_8: x +_8 3 = 3 +_8 x\}$ = $\{0,1,2,3,4,5,6,7\} = Z_8$

Theorem(7-13): Let (G,*) be a group and $a \in G$, then

1. (N(a),*) is a subgroup of (G,*).

Proof: $N(a) = \{x \in G : x * a = a * x\} \subseteq G$

Since $e * a = a * e \Rightarrow e \in N(a) \Rightarrow N(a) \neq \emptyset$

Closure: let $x, y \in N(a)$, to prove $x * y \in N(a)$

$$x \in N(a) \Longrightarrow x * a = a * x$$

$$y \in N(a) \Longrightarrow y * a = a * y$$

$$(x * y) * a = x * (y * a) = x * (a * y) = (x * a) * y = (a * x) * y$$

$$= a * (x * y) \Rightarrow x * y \in N(a)$$

Let $x \in N(a)$, to prove $x^{-1} \in N(a)$

Since $x \in N(a) \Rightarrow x * a = a * x \Rightarrow x * a * x^{-1} = a$

 $\Rightarrow a * x^{-1} = x^{-1} * a \Rightarrow x^{-1} \in N(a) \Rightarrow (N(a),*)$ is a subgroup.

- 2. $C(G) = \cap N(a) \forall a \in G$ (Homework)
- 3. $N(a) = G \ \forall a \in G \Leftrightarrow (G,*)$ is an abelian.

Proof: (\Longrightarrow) suppose that $N(a) = G \ \forall a \in G$, to prove G is an abelian

$$\forall x \in G = N(a) \Longrightarrow x \in N(a) \ \forall a \in G$$

$$\Rightarrow x \in N(a) \ \forall x, a \in G \Rightarrow x * a = a * x \forall x, a \in G$$

 \implies (G,*) is an abelian

 (\Leftarrow) suppose that (G,*) is an abelian, to prove N(a) = G

This means $N(a) \subseteq G$ and $G \subseteq N(a)$

 $N(a) \subseteq G$ (by definition of N(a))

To prove $G \subseteq N(a)$

Let $x \in G$ and G is an abelian

$$\Rightarrow x * a = a * x \ \forall x, a \in G$$

$$\Rightarrow x \in N(a) \ \forall a \in G \Rightarrow G \subseteq N(a) \Rightarrow G = N(a) \ \forall a \in G$$

4.
$$N(a) = G \iff a \in G$$
 (Homework)

5.
$$c(a) = [G:N(a)]$$

Proof:
$$c(a) = \{x * a * x^{-1} : \forall x \in G\}$$

$$[G:N(a)] = \{x * N(a), \forall x \in G\}$$

Define
$$f: [G: N(a)] \rightarrow c(a) \ni f(x * N(a)) = x * a * x^{-1} \forall x \in G$$

To prove f is a map, f is an one to one, f is an onto (**Homework**)

6. If
$$(G,*)$$
 is a finite group, then $\frac{O(G)}{O(c(a))}$

Proof: by $1 \Rightarrow (N(a),*)$ is a subgroup of (G,*)

By Lagrange Theorem
$$\Rightarrow \frac{O(G)}{O(N(a))}$$

$$O(G = O(N(a)) \cdot [G:N(a)] = O(N(a)) \cdot O(c(a))$$

$$\Rightarrow \frac{O(G)}{O(c(a))}$$

<u>Definition(7-14):</u> Let (H,*), (K,*) are two subgroups of (G,*), then H is a conjugate subgroup of K iff $\exists x \in G \ni K = x * H * x^{-1}$ and denoted by $H \sim K$.

$$H \not\sim K \Leftrightarrow K \neq x * H * x^{-1} \forall x \in G$$

Example(7-15): In (S_3, \circ) , $H = \{f_1, f_6\}$, $K = \{f_1, f_5\}$. Is $H \sim K$?

Solution: this means, $\exists x \in S_3 \ni x \circ H \circ x^{-1} = K$?

$$x = f_1 \Longrightarrow f_1 \circ \{f_1, f_6\} \circ f_1^{-1} = \{f_1 \circ f_1 \circ f_1^{-1}, f_1 \circ f_6 \circ f_1^{-1}\}$$

$$=\{f_1,f_6\}\neq K$$

$$x = f_2 \Rightarrow f_2 \circ \{f_1, f_6\} \circ f_2^{-1} = \{f_2 \circ f_1 \circ f_2^{-1}, f_2 \circ f_6 \circ f_2^{-1}\}$$

$$= \{f_1, f_5\} = K$$

$$\Rightarrow \exists x = f_2 \ni H \sim K$$
.

Example(7-16): In $(Z_{12}, +_{12}), H = \{0,4,8\}, K = \{0,3,6,9\}$. Is $H \sim K$?

Solution: this means, $\exists x \in Z_{12} \ni x +_{12} H +_{12} x^{-1} = K$

$$x = 1 \Longrightarrow 1 +_{12} \{0,4,8\} +_{12} 1^{-1} = H \neq K$$

Since
$$x +_{12}H +_{12}x^{-1} = x +_{12}x^{-1} +_{12}H = H \neq K$$

 $\Rightarrow H + K.$

Example(7-17): In (G_S, \circ) , let $H = \{r_1, r_4\}, K = \{r_1, r_2\}$. Is $H \sim K$?

(Homework)

Theorem(7-18): Let (H,*), (K,*) are two subgroups of (G,*) and $H \sim K$, then O(H) = O(K).

Proof: since $H \sim K \implies \exists x \in G \ni K = x * H * x^{-1}$

To prove $O(H) = O(K) = O(x * H * x^{-1})$

Define
$$f: (H, *) \to (x * H * x^{-1}, *) \ni f(h) = x * h * x^{-1} \forall h \in H$$

To prove f is a map?

Let $h_1 = h_2$, to prove $f(h_1) = f(h_2)$

Since
$$h_1 = h_2 \implies x * h_1 * x^{-1} = x * h_2 * x^{-1} \implies f(h_1) = f(h_2)$$

 $\Rightarrow f$ is a map.

Is f an one to one ? let $f(h_1) = f(h_2)$

$$\Rightarrow x * h_1 * x^{-1} = x * h_2 * x^{-1}$$

 $\Rightarrow h_1 = h_2 \Rightarrow f$ is an one to one.

Is f an onto? $R_f = \{f(h): \forall h \in H\} = \{x * h * x^{-1}: \forall h \in H\}$

 $= x * H * x^{-1} \Longrightarrow f$ is an onto.

$$\Rightarrow O(H) = O(x * H * x^{-1}) = O(K).$$

<u>Theorem(7-19):</u> Let (H,*) be a subgroup of (G,*) and $x \in G$, then $(x * H * x^{-1},*)$ is a subgroup of (G,*).

Proof: $e \in G$ and $e * H * e^{-1} = H \neq \emptyset \Longrightarrow x * H * x^{-1} \neq \emptyset$

$$x*H*x^{-1} = \{x*h*x^{-1} \colon \forall h \in H\}$$

Let $a, b \in x * H * x^{-1}$, to prove $a * b^{-1} \in x * H * x^{-1}$

Let
$$a \in x * H * x^{-1} \implies a = x * h_1 * x^{-1} \ni h_1 \in H$$

Let
$$b \in x * H * x^{-1} \implies b = x * h_2 * x^{-1} \ni h_2 \in H$$

$$a * b^{-1} = (x * h_1 * x^{-1}) * (x * h_2 * x^{-1})^{-1}$$

$$= (x * h_1 * x^{-1}) * (x * h_2^{-1} * x^{-1})$$

$$= (x * h_1) * (x^{-1} * x) * (h_2^{-1} * x^{-1})$$

$$x * (h_1 * h_2^{-1}) * x^{-1} \in x * H * x^{-1}$$

 \Rightarrow $(x * H * x^{-1},*)$ is a subgroup of (G,*).

Note(7-20): The relation of conjugate is equivalent relation on the set of all subgroups of G. (**Homework**)

Definition(7-21): Let (H,*) be a subgroup of (G,*), then the conjugate class of H is denoted by C(H) and define as

$$C(H) = \{x * H * x^{-1} : \forall x \in G\}$$

Example(7-22) $(S_3, \circ), H = \{f_1, f_4\}$; find C(H).

Solution: $C(H) = \{x * H * x^{-1} : \forall x \in S_3\}$

=
$$\{f_1 \circ \{f_1, f_4\} \circ f_1^{-1}, f_2 \circ \{f_1, f_4\} \circ f_2^{-1}, \dots, f_6 \circ \{f_1, f_4\} \circ f_6^{-1}\}$$

$$= \{\{f_1, f_4\}, \{f_1, f_6\}, \dots, \{f_1, f_5\}\}$$

Example(7-23): $(G = \{e, a, b, c, d\}, *), a^2 = b^2 = c^2 = e$, is the four-Klien group. G is an abelian, $H = \{e, a\} \subseteq G$, find C(H).

Solution: $C(H) = \{x * H * x^{-1} : \forall x \in G\}$

$$= \{x * x^{-1} * H: \forall x \in G\} = H.$$

<u>Deffinition(7-24):</u> Let (H,*) be a subgroup of (G,*), then the normalizer of H is denoted by N(H) and defined as

$$N(H) = \{x \in G: x * H = H * x\}$$

Example(7-25): The group $(G_S, \circ), H = \{r_2, r_3\}, \text{ find } N(H).$

Solution: $N(H) = \{x \in G_S : x \circ H = H \circ x\}$

$$x = r_1 \Longrightarrow r_1 \circ H = H \circ r_1$$

$$x = r_2 \Longrightarrow r_2 \circ H = H \circ r_2$$

$$N(H) = \{r_1, r_2, r_3, r_4, h, v, D_1, D_2\} = G_S$$

Examples(7-26): Find C(H), N(H) to each of the following:

- 1. The group (S_3, \circ) , $H_1 = \{f_1, f_5\}$, $H_2 = \{f_1, f_4\}$. (**Homework**)
- 2. The group (G_S, \circ) , $H_1 = \{r_3, r_1, v, h\}$, $H_2 = \{r_1, D_1\}$. (**Homework**)
- 3. The group $(Z_{12}, +_{12}), H = \{0,4,8\}.$ (**Homework**)

Theorem(7-27): Let (H,*) be a subgroup of (G,*), then

1. (N(H),*) is a subgroup of (G,*) containing H.

Proof: since $e * H = H * e \Rightarrow e \in N(H) \neq \emptyset$

$$N(H) = \{x \in G \ni x * H = H * x\} \subseteq G$$

Let $a, b \in N(H)$, to prove $a * b^{-1} \in N(H)$

This means $(a * b^{-1}) * H = H * (a * b^{-1})$

Since $a \in N(H) \implies a * H = H * a$

$$b \in N(H) \Longrightarrow b * H = H * b$$

$$b * H * b^{-1} = H \Longrightarrow H * b^{-1} = b^{-1} * H \Longrightarrow b^{-1} \in N(H)$$

$$(a*b^{-1})*H = a*(b^{-1}*H) = a*(H*b^{-1}) (b^{-1} \in N(H))$$

$$= (a * H) * b^{-1} = (H * a) * b^{-1} = H * (a * b^{-1})$$

$$\Rightarrow a * b^{-1} \in N(H) \Rightarrow (N(H),*)$$
 is a subgroup of $(G,*)$

To prove $H \subseteq N(H)$

Let
$$a \in H \implies a * H = H$$
, $H * a = H \implies a * H = H * a$

$$\Rightarrow a \in N(H) \Rightarrow H \subseteq N(H)$$

2. If (G,*) is an abelian group, then N(H) = G.

Proof: suppose that G is an abelian group, to prove N(H) = G

This means $N(H) \subseteq G$, $G \subseteq N(H)$

By definition of $N(H) \Rightarrow N(H) \subseteq G$

Let
$$x \in G \implies x * H = H * x \implies x \in N(H) \implies G \subseteq N(H)$$

$$\Rightarrow G = N(H)$$

- 3. O(C(H)) = O([G:N(H)]) (Homework)
- 4. If (G,*) is a finite group, then $\frac{O(G)}{O(C(H))}$

Note(7-28): If N(H) = G, then (G,*) is an abelian group. (**Homework**)

<u>Definition(7-29):</u> A subgroup (H,*) is called a self-conjugate iff C(H) = H, this means $x * H * x^{-1} = H \ \forall x \in G$.

Example(7-30): In (S_3, \circ) , $H_1 = \{f_1, f_2, f_3\}$, $H_2 = \{f_1, f_5\}$

 $C(H_1) = H_1 \Longrightarrow H_1$ is a self-conjugate

 $C(H_2) \neq H_2 \Longrightarrow H_2$ is not a self-conjugate.

Definition(7-31): A subgroup (H,*) is called a normal subgroup of (G,*) denoted by $H\Delta G \Leftrightarrow H$ is a self-conjugate

Or
$$H \triangleright G \iff x * H * x^{-1} = H \ \forall x \in G$$

$$H \Leftrightarrow G \iff \exists x \in G \ni x * H * x^{-1} \neq H$$

Example(7-32): The group $(G_S, \circ), H = \{r_3, r_1, v, h\}$

$$C(H) = H \Longrightarrow H \rhd G_S$$

Example(7-33): The group (S_3, \circ) , $H = \{f_1, f_5\}$

$$C(H) \neq H \Longrightarrow H \not \Rightarrow S_3$$

Example(7-34): The group $(Z_4, +_4), H = \{0,4\}$

$$C(H) = H \Longrightarrow H \rhd Z_4$$

Theorem(7-35): Let (H,*) be a subgroup of (G,*), then

1.
$$H \triangleright G \iff x * H = H * x \ \forall x \in G$$
.

Proof: $H \triangleright G \iff x * H * x^{-1} = H \ \forall x \in G$

$$\Leftrightarrow x * H = H * x \ \forall x \in G$$

2.
$$H \triangleright G \iff N(H) = G$$

Proof: (\Longrightarrow) suppose that $H \rhd G$, to prove N(H) = G

This means $N(H) \subseteq G, G \subseteq N(H)$

 $N(H) \subseteq G$ (by definition of N(H))

To prove $G \subseteq N(H)$

Let $x \in G \implies x * H = H * x \implies x \in N(H) \implies G \subseteq N(H)$

$$\Rightarrow G = N(H)$$

 (\Leftarrow) suppose that G = N(H), to prove $H \rhd G$

$$\forall x \in G \Longrightarrow x \in N(H) \Longrightarrow x * H = H * x \Longrightarrow H \rhd G \text{ (by 1)}$$

3.
$$H \triangleright G \Leftrightarrow c(a) \subseteq H \ \forall a \in H$$

Proof: : (\Longrightarrow) suppose that $H \rhd G$, to prove $c(a) \subseteq H \ \forall a \in H$

Since $H \triangleright G$ by definition $x * H * x^{-1} = H \implies x * H * x^{-1} \subseteq H$

$$c(a) = \{x * a * x : \forall a \in H\} \subseteq H$$

 (\Leftarrow) suppose that $c(a) \subseteq H \ \forall a \in H$

To prove $H \triangleright G$, this means $x * H * x^{-1} = H$

Which is
$$x * H * x^{-1} \subseteq H$$
, $H \subseteq x * H * x^{-1}$

$$c(a) \subseteq H \Longrightarrow x * H * x^{-1} \subseteq H \dots 1$$

To prove $H \subseteq x * H * x^{-1}$

Let $b \in H \Longrightarrow b = e * b * e$

$$b = (x * x^{-1}) * b * (x * x^{-1}) = x * (x^{-1} * b * x) * x^{-1}$$

$$b = x * h * x^{-1} \in x * H * x^{-1}$$

$$\Rightarrow H \subseteq x * H * x^{-1} \dots 2$$

From 1,2, we get $H = x * H * x^{-1} \forall a \in G \Longrightarrow H \rhd G$

4.
$$H \triangleright G \Leftrightarrow (x * H) * (y * H) = (x * y) * H \forall x, y \in G$$

Proof: (\Longrightarrow) suppose that $H \rhd G \Longrightarrow H * x = x * H$

$$(x * H) * (y * H) = (x * H * y) * H = x * (H * y) * H$$

$$= x * (y * H) * H = (x * y) * (H * H) = (x * y) * H$$

 (\Leftarrow) suppose that $H \Leftrightarrow G \Rightarrow \exists x \in G \ni x * H * x^{-1} \neq H$

$$(x * H) * (x^{-1} * H) \neq H * H \Longrightarrow (x * x^{-1}) * H \neq H$$

 $\Rightarrow e * H \neq H$, but this is contradiction $\Rightarrow H \triangleright G$

Theorem(7-36): Let (G,*) be a group, then

- 1. $\{e\} \triangleright G$ (Homework)
- 2. $G \triangleright G$ (Homework)
- 3. $C(G) \triangleright G$ (Homework)

Theorem(7-37): Every subgroup of an abelian group is a normal subgroup.

Proof: let (G,*) be an abelian group and (H,*) be a subgroup of (G,*),

to prove $x * H * x^{-1} = H \forall x \in G$

$$x * H * x^{-1} = (x * x^{-1}) * H = e * H = H \Longrightarrow H \rhd G.$$

Note(7-38): The converse of above theorem is not true, for example

$$(G = \{\pm 1, \pm i, \pm j, \pm k\}, \cdot) \ni i^2 = j^2 = k^2 = -1$$

ij = k

 $ji = -k \implies ij \neq ji \implies G$ is not an abelian.

The subgroups of *G* are $\{1\}$, G, $\{\pm 1\}$, $\{\pm 1, \pm i\}$, $\{\pm 1, \pm j\}$, $\{\pm 1, \pm k\}$

Theorem(7-39): Let (H,*) be a subgroup of $(G,*) \ni [G:H] = 2$, then $H \triangleright G$.

Proof: since [G:H] = 2, then there are two distinct left (right) cosets of H in $G. H, a * H \ni a \in G - H$ (left cosets of H in G)

 $H, H * H \ni a \in G - H$ (right cosets of H in G)

$$H \cup a * H = G, H \cap a * H = \emptyset ... 1$$

$$H \cup H * a = G, H \cap H * a = \emptyset \dots 2$$

If
$$a \in H \Rightarrow a * H = H = H * a \Rightarrow a * H = H * a \forall a \in H$$

If
$$a \in G - H \Longrightarrow a * H = G - H = H * a \Longrightarrow a * H = H * a \forall a \in H$$

$$\Rightarrow a * H = H * a \forall a \in G \Rightarrow H \rhd G.$$

Note(7-40): The converse of above theorem is not true, for example

$$(G_S, \circ), H = \{r_1, r_4\}, H \rhd G_S, \text{ but } [G_S: H] = 4 \neq 2.$$

Note(7-41): If $H \triangleright G$, then $H \cap G \not \triangleright G$, $(H * K) \not \triangleright G$, where H, K are two subgroups of the group (G,*).

Consider
$$(S_3, \circ)$$
, $H = \{f_1\} \triangleright S_3$ and $K = \{f_1, f_4\} \not \supseteq S_3$

$$H * K = \{f_1, f_4\} \not \supseteq S_3$$
, since $C(H * K) \neq H * K$.

$$(G_S, \circ), H = \{r_1, r_3, h, v\}, K = \{r_1, v\}$$

$$H \cap K = \{r_1, v\} \not \supseteq G_S$$
, since $C(H * K) \neq H * K$

 $H \triangleright G_S, K \not \supseteq G_S.$

Definition(7-42): A group (G,*) is called a simple group iff G has no proper normal subgroup.

Examples(7-43):

- 1. The group (S_3, \circ) is not a simple, since $H = \{f_1, f_2, f_3\} \triangleright S_3$.
- 2. The group (G_S, \circ) is not a simple, since $H = \{r_1, r_3, h, v\} \triangleright G_S$.
- 3. The group $(Z_6, +_6)$ is not a simple, since $H = \{0,3\} \triangleright Z_6$.
- 4. The group $(Z_3, +_3)$ is a simple group, since Z_3 has no proper subgroup.

<u>Definition(7-44):</u> Let $H \triangleright G$ and $\frac{G}{H} = \{x * H : x \in G\}$. Define \otimes on $\frac{G}{H}$ as follows: $(x * H) \otimes (y * H) = (x * y) * H \ \forall x, y \in G, (\frac{G}{H}, \otimes)$ is called a quotient group of G by H.

Theorem(7-45): Let $H \triangleright G$, then $(\frac{G}{H}, \otimes)$ is a group.

Proof:
$$\frac{G}{H} = \{x * H : x \in G\}$$
, since $e * H = H \in \frac{G}{H} \neq \emptyset$

Closure: let
$$a * H, b * H \in \frac{G}{H}$$
, $(a * H) \otimes (b * H) = (a * b) * H \in \frac{G}{H}$

Associative: let $a * H, b * H, c * H \in \frac{G}{H}$

$$[(a*H)\otimes(b*H)]\otimes(c*H) = [(a*b)*H]\otimes(c*H)$$

$$= ((a*b)*c)*H = (a*(b*c))*H = (a*H)\otimes[(b*c)*H]$$

$$= (a*H) \otimes [(b*H) \otimes (c*H)]$$

Identity:
$$e * H = H \in \frac{G}{H}$$

$$(a*H)\otimes(e*H)=(a*e)*H=a*H \ \forall a*H\in\frac{G}{H}$$

$$(e*H)\otimes(a*H)=(e*a)*H=a*H$$

 $\Rightarrow e * H$ is an identity element of $\frac{G}{H}$

Inverse: let $a * H \in \frac{G}{H}$, to prove $(a * H)^{-1} = a^{-1} * H$

$$(a*H)\otimes(a^{-1}*H) = (a*a^{-1})*H = e*H = H$$

$$(a^{-1} * H) \otimes (a * H) = (a^{-1} * a) * H = e * H = H$$

$$\Rightarrow \forall a * H \in \frac{G}{H} \exists a^{-1} * H \in \frac{G}{H} \Rightarrow (\frac{G}{H}, \otimes)$$
 is a group.

Example(7-46): In the group $(Z_6, +_6)$, $H = \{0,3\}$, find $\frac{Z_6}{H}$ (if exist).

Solution: $H \triangleright Z_6 \Longrightarrow \frac{Z_6}{H}$ exist

$$o+_6H=H$$

$$1 +_6 H = \{1,4\}$$

$$2+_6H = \{2,5\}$$

$$3+_6H = \{3,0\} = H$$

$$4+_6H = \{4,1\} = 1+_6H$$

$$5+_6H = \{5,2\} = 2+_6H$$

$$\Rightarrow \frac{Z_6}{H} = \{H, 1+_6H, 2+_6H\}$$

$$O\left(\frac{Z_6}{H}\right) = 3$$

\otimes H 1+ ₆ H 2+ ₆ H	8	Н	1+ ₆ H	2+ ₆ H
---	---	---	-------------------	-------------------

Н	Н	1+ ₆ H	2+ ₆ H
1+ ₆ H	1+ ₆ H	2+ ₆ H	Н
2+ ₆ H	2+ ₆ H	Н	1+ ₆ H

 $\Rightarrow (\frac{Z_6}{H}, \otimes)$ is a quotient group, H is an identity.

$$(1+_6H)^{-1} = 1^{-1} +_6H = 5 +_6H = 2 +_6H$$

$$(2+_6H)^{-1} = 2^{-1}+_6H = 4+_6H = 1+_6H$$

Example(7-47): In the group $(Z_{20}, +_{20})$, $H = \langle 5 \rangle$, find $\frac{Z_{20}}{H}$ (if exist).(**Homework**)

Example(7-48): In the group (S_3,\circ) , $H = \{f_1, f_2, f_3\}$, find $\frac{S_3}{H}$ (if exist).

Solution: since $H \triangleright S_3 \Longrightarrow \frac{S_3}{H}$ exist

$$f_1 \circ H = H$$

$$f_2 \circ H = \{f_2, f_3, f_1\} = H$$

$$f_3 \circ H = \{f_3, f_1, f_2\} = H$$

$$f_4 \circ H = \{f_4, f_6, f_5\}$$

$$f_5 \circ H = \{f_5, f_4, f_6\} = f_4 \circ H$$

$$f_6\circ H=\{f_6,f_5,f_4\}=f_4\circ H$$

$$\Rightarrow \frac{S_3}{H} = \{H, f_4 \circ H\}$$

But if $H = \{f_1, f_4\}, H \Leftrightarrow S_3 \Longrightarrow \frac{S_3}{H}$ is not exist.

Theorem(7-49): The quotient group of an abelian is an abelian.

Proof: suppose that (G,*) is an abelian group and (H,*) is a subgroup of $(G,*) \ni H \rhd G \Longrightarrow \frac{G}{H}$ is a group

Let
$$a * H, b * H \in \frac{G}{H} \Longrightarrow (a * H) \otimes (b * H) = (a * b) * H$$

=
$$(b * a) * H = (b * H) \otimes (a * H) \Rightarrow (\frac{G}{H}, \otimes)$$
 is an abelian group.

Theorem(7-50): If (G,*) is a cyclic group, then $(\frac{G}{H}, \otimes)$ is a cyclic group.

Proof: suppose that (G,*) is a cyclic group, H is a subgroup of G.

$$\Rightarrow \exists a \in G \ni G = \langle a \rangle = \{a^k : k \in \mathbb{Z}\}, \text{ since } G \text{ is a cyclic} \Rightarrow G \text{ is an abelian}$$

$$\Rightarrow H \rhd G \Rightarrow \frac{G}{H}$$
 is a group. To prove $\frac{G}{H}$ is a cyclic group, this means there is $a * H \in$

$$\frac{G}{H} \ni \frac{G}{H} = \langle a * H \rangle = \{(a * H)^k : k \in \mathbb{Z}\}, \text{ to prove}$$

$$\tfrac{G}{H} \subseteq \langle a * H \rangle, \langle a * H \rangle \subseteq \tfrac{G}{H}, \ \text{let} \ x * H \in \tfrac{G}{H} \Longrightarrow x \in G = \langle a \rangle \Longrightarrow x = a^r, r \in \mathbb{Z}$$

$$x * H = a^r * H = (a * a * ... * a) * H(r-times)$$

$$= a * H \otimes ... \otimes a * H(r-times)$$

$$(a*H)^r \in \langle a*H \rangle \Longrightarrow x \in \langle a*H \rangle \Longrightarrow \frac{G}{H} \subseteq \langle a*H \rangle$$

To prove
$$\langle a * H \rangle \subseteq \frac{G}{H}$$
, let $y * H \in \langle a * H \rangle$

$$y*H=(a*H)^s\ni s\in\mathbb{Z}$$

$$y*H=a^s*H\in \frac{G}{H}\Longrightarrow y*H\in \frac{G}{H}\Longrightarrow \langle a*H\rangle\subseteq \frac{G}{H}\Longrightarrow \langle a*H\rangle=\frac{G}{H}$$

Therefore, $(\frac{G}{H}, \otimes)$ is a cyclic group.

Note(7-51): The converse of above theorem is not true, for example:

$$(S_3,\circ), H = \{f_1, f_2, f_3\} \triangleright S_3 \Longrightarrow \frac{S_3}{H} \text{ is a group, } \frac{S_3}{H} = \{H, f_4 \circ H\}$$

$$O\left(\frac{S_3}{H}\right) = 2$$
 (prime order), $\frac{S_3}{H}$ is a cyclic group, but (S_3, \circ) is not a cyclic

$$\frac{S_3}{H} = \langle f_4 \circ H \rangle = \{ f_4 \circ H, (f_4 \circ H)^2 \} = \{ f_4 \circ H, f_1 \circ H = H \}$$

Theorem(7-52): Let (G,*) be a group and $(\frac{G}{C(G)}, \otimes)$ is a cyclic group, then (G,*) is an abelian group.

Note(7-53): The converse of this theorem is not true, for example:

 $(G = \{e, a, b, c, d\}, *), a^2 = b^2 = c^2 = e, G \text{ is an abelian (not a cyclic)}$

$$C(G) = G \Longrightarrow \frac{G}{C(G)} = \frac{G}{G} = \{e, a, b, c, d\} \Longrightarrow \frac{G}{C(G)}$$
 is not a cyclic.

<u>Definition(7-54):</u> Let (G,*) be a group. If $a,b \in G$, then the commutator of a,b is $[a,b] = a*b*a^{-1}*b^{-1}$.

The commutator $[a,b] = e \Leftrightarrow a * b = b * a$, this means a,b are commute, the identity element e = [e,e] is a commutator.

Example(7-55): In the group(Z_4 , $+_4$).

$$[3,2] = 3 + 42 + 43^{-1} + 42^{-1} = 3 + 42 + 41 + 42 = 0$$

Example(7-56): In the group(\mathbb{Z} , +).

$$[5,4] = 5 + 4 + 5^{-1} + 4^{-1} = 5 + 4 - 5 - 4 = 0$$

Note(7-57): The commutator is an identity iff (G,*) is an abelian group.

<u>Definition(7-58):</u> Let (G,*) be a group, then the commutator subgroup of (G,*) denoted by [G,G] is the collection of all the finite products of commutators in G.

$$[G,G] = \left\{ \prod [a_i,b_i] \colon a_i,b_i \in G \right\} = \left\{ [a_1,b_1] * [a_2,b_2] * \dots * [a_k,b_k] \right\}$$

Theorem(7-59): The group ([G, G],*) is a normal subgroup.

Proof: to prove [G, G] is a subgroup of G.

$$[G,G] \neq \emptyset$$
, since $[e,e] \in [G,G], e \in G$

Let $x, y \in [G, G]$, to prove $x * y^{-1} \in [G, G]$

$$x = [a_1, b_1] * ... * [a_n, b_n]$$

$$y = [c_1, d_1] * ... * [c_n, d_n]$$

$$x * y^{-1} = [a_1, b_1] * \dots * [a_n, b_n] * ([c_1, d_1] * \dots * [c_n, d_n])^{-1}$$

$$= [a_1, b_1] * ... * [a_n, b_n] * [c_1, d_1] * ... * [c_n, d_n] \in [G, G]$$

Thus, $x * y^{-1} \in [G, G] \Longrightarrow [G, G]$ is a subgroup of G.

To prove [G, G] is a normal subgroup, let $x \in [G, G]$

To prove
$$x * [G, G] * x^{-1} \subseteq [G, G]$$
, let $a \in x * [G, G] * x^{-1}$

$$a = x * c * x^{-1}, c \in [G, G] = x * c * x^{-1} * e = x * c * x^{-1} * c^{-1} * c$$

$$= x * c * (x^{-1} * c^{-1}) * c = [x, c] * c$$

Therefore, $a \in [G, G] \Rightarrow [G, G]$ is a normal subgroup of G.

Theorem(7-60): Let (H,*) be a normal subgroup of G, then $(\frac{G}{H}, \otimes)$ is an abelian iff $[G,G] \subseteq H$.

Proof: suppose that $a * H, b * H \in \frac{G}{H}$ and $\frac{G}{H}$ is an abelian

$$\Leftrightarrow (a*b)*H = (b*a)*H \Leftrightarrow H*(a*b) = H*(b*a)$$

$$\Leftrightarrow a*b*(b*a)^{-1} \in H \Leftrightarrow [a,b] \in H$$

$$\Leftrightarrow [G,G]\subseteq H\ \forall [a,b]\in [G,G], a,b\in G.$$

<u>Corollary(7-61):</u> Prove that $(\frac{G}{[G,G]}, \otimes)$ is an abelian group. (**Homework**)

8. Homomorphism, Examples and Basic Concepts

<u>Definition(8-1):</u> Let $(G,*), (G',\circ)$ be two groups and $f:(G,*) \to (G',\circ)$ be a mapping, then f is called a homomorphism iff $f(a*b) = f(a) \circ f(b) \forall a,b \in G$.

Example(8-2): Let $f: (\mathbb{R}, +) \to (\mathbb{R}^+, \cdot), \ni f(a) = 2^a \ \forall a \in \mathbb{R}$. Is f a homo. ?

Solution: let $a, b \in \mathbb{R} \Longrightarrow f(a+b) = 2^{a+b} = 2^a \cdot 2^b = f(a) \cdot f(b)$

thus, f is a homo.

Example (8-3): Let $f: (\mathbb{Z}, +) \to (\mathbb{Z}, +), \exists f(x) = 3x + 2 \forall x \in \mathbb{Z}$. Is f a homo. ?

Solution: let $x, y \in \mathbb{Z} \Longrightarrow f(x + y) = 3(x + y) + 2$

$$= 3x + 3y + 2 \dots 1$$

$$f(x) + f(y) = (3x + 2) + (3y + 2) = 3x + 3y + 4 \dots 2$$

We have $1 \neq 2 \Longrightarrow f(x+y) \neq f(x) + f(y)$

Therefore, f is not a homo.

Example(8-4): Let $f:(S_3,\circ) \to (S_3,\circ), \ni f(x) = x \ \forall x \in S_3$. Is f a homo. ? (Homework)

Example(8-5): Let $f: (Z_6, +_6) \to (Z_6, +_6), \ni f(x) = x \ \forall x \in Z_6$. Is f a homo. ? (Homework)

Example(8-6): Let $f: (\mathbb{R}, +) \to (\mathbb{Z}, +), \exists f(a) = 2a - 1 \ \forall a \in \mathbb{R}$. Is f a homo. ?

Solution: $f(a + b) = 2(a + b) - 1 = 2a + 2b - 1 \dots 1$

$$f(a) + f(b) = (2a - 1) + (2b - 1) = 2a + 2b - 2 \dots 2$$

We have $1 \neq 2 \Longrightarrow f(a+b) \neq f(a) + f(b)$

Therefore, f is not a homo.

Example(8-7): Let $f: (\mathbb{Z}, +) \longrightarrow (\{1, -1\}, \cdot),$

$$\ni f(a) = \left\{ \begin{array}{cc} 1 & a \ even \\ -1 & a \ odd \end{array} \forall a \in \mathbb{Z}. \text{ Is } f \text{ a homo. } ? \right.$$

Solution: let $a, b \in \mathbb{Z}$

1. $a,b \in E$

$$f(a + b) = 1$$
, $(a + b \in E)$, $f(a) \cdot f(b) = 1 \cdot 1 = 1$

2.
$$a, b \in O \implies a + b \in E$$

$$f(a + b) = 1$$
, $(a + b \in E)$, $f(a) \cdot f(b) = -1 \cdot -1 = 1$

3. If $a \in E$, $b \in O \implies a + b \in O$

$$f(a+b) = -1$$
, $(a+b \in 0)$, $f(a) \cdot f(b) = 1 \cdot -1 = -1$

Therefore, $f(a + b) = f(a) \cdot f(b) \ \forall a, b \in \mathbb{Z} \implies f$ is a homo.

Example(8-8): Let $f: (G,*) \to (G,*) \ni f(a) = x * a * x^{-1} \forall a \in G$. Is f a homo.

Solution: let $a, b \in G \ni f(a * b) = x * (a * b) * x^{-1} ... 1$

$$f(a) * f(b) = (x * a * x^{-1}) * (x * b * x^{-1})$$

$$= x * (a * b) * x^{-1} ... 2$$

We have $1 = 2 \implies$ therefore, f is a homo.

Example(8-9): Let $f:(G,*) \to (G',\cdot) \ni f(a) = e' \ \forall a \in G$. Is f a homo. ?

Solution: let $a, b \in G \ni f(a * b) = e' = e' \cdot e' = f(a) \cdot f(b)$

 \Rightarrow Therefore, f is a trivial homo.

Example(8-10): Let $H \triangleright G$ and $f: (G,*) \rightarrow \left(\frac{G}{H}, \bigotimes\right) \ni f(a) = a * H \forall a \in G$. Is f a homo. ?

Solution: let $a, b \in G \ni f(a * b) = (a * b) * H \dots 1$

$$f(a) \otimes f(b) = (a * H) \otimes (b * H) = (a * b) * H \dots 2$$

We have $1 = 2 \implies$ Therefore, f is a natural homo.

<u>Definition(8-11):</u> Let $f:(G,*) \to (G',\circ)$ be a mapping, then

- 1. f is called a monomorphism (mono.) iff f is a homo. and one to one.
- 2. f is called an epimorphism (epi.) iff f is a homo. and onto.
- 3. f is called an isomorphism (iso.) iff f is a homo., one to one and onto.

<u>Definition(8-12):</u> Any two groups $(G,*), (G',\circ)$ are isomorphic iff there is an isomorphism map between them and denoted by $G \cong G'$.

This means, $G \cong G' \Leftrightarrow \exists f : (G,*) \to (G',\circ)$ and f is an isomorphism.

Example(8-13): Let $(G = \{2^n : n \in \mathbb{Z}\}, \cdot)$, show that $(\mathbb{Z}, +) \cong (G, \cdot)$.

Solution: define $f: (\mathbb{Z}, +) \to (G, \cdot) \ni f(n) = 2^n \ \forall n \in \mathbb{Z}$

Homo.? let $n_1, n_2 \in \mathbb{Z} \Longrightarrow f(n_1 + n_2)$

$$=2^{n_1+n_2}=2^{n_1}\cdot 2^{n_2}=f(n_1)\cdot f(n_2) \Rightarrow f \text{ is a homo.}$$

One to one? let $f(n_1) = f(n_2)$, to prove $n_1 = n_2$

$$2^{n_1} = 2^{n_2} \Longrightarrow n_1 = n_2 \Longrightarrow f$$
 is a one to one

Onto?
$$R_f = \{f(n): n \in \mathbb{Z}\} = \{2^n: n \in \mathbb{Z}\} = G \implies f \text{ is an onto}$$

 $\Rightarrow f$ is an isomorphism $\Rightarrow (\mathbb{Z}, +) \cong (G, \cdot)$

Theorem(8-14): Let $f:(G,*) \to (G',\cdot)$ be an isomorphism, then

1. f(e) = e' such that e the identity of G.

Proof: let $a \in G \Rightarrow a * e = a \Rightarrow f(a * e) = f(a)$

$$f(a) \cdot f(e) = f(a)$$

Let
$$f(a) \in G' \Rightarrow f(a) \cdot e' = f(a) \Rightarrow f(a) \cdot f(e) = f(a) \cdot e'$$

$$\Rightarrow f(e) = e'$$
.

2.
$$f(a^{-1}) = (f(a))^{-1} \forall a \in G$$

Proof: let
$$a \in G \implies a * a^{-1} = e \implies f(a * a^{-1}) = f(e) = e'$$

$$f(a) \cdot f(a^{-1}) = f(e) = e'$$

let
$$f(a) \in G' \Longrightarrow f(a) \cdot (f(a))^{-1} = e'$$

$$f(a) \cdot f(a^{-1}) = f(a) \cdot (f(a))^{-1} \Longrightarrow (a^{-1}) = (f(a))^{-1}.$$

3. If (H,*) is a subgroup of a group (G,*), then $(f(H),\cdot)$ is a subgroup of (G',\cdot) .

Proof: $f(H) = \{f(x) : x \in H\} \subseteq G'$

$$e \in H \Longrightarrow f(e) \in f(H) \Longrightarrow e' \in f(H) \neq \emptyset$$

Let $a, b \in f(H)$, to prove $a \cdot b^{-1} \in f(H)$

$$a \in f(H) \Longrightarrow a = f(x) \ni x \in H$$

$$b \in f(H) \Longrightarrow b = f(y) \ni y \in H$$

$$\Rightarrow x * y^{-1} \in H \Rightarrow a \cdot b^{-1} = f(x) \cdot \left(f(y)\right)^{-1} = f(x) \cdot f(y^{-1})$$

$$= f(x * y^{-1}) \Longrightarrow a \cdot b^{-1} = f(x * y^{-1}) \in f(H)$$

4. If (K,\cdot) is a subgroup of (G',\cdot) , then $(f^{-1}(K),*)$ is a subgroup of (G,*).

Proof:
$$f^{-1}(K) = \{x \in G: f(x) \in K\} \subseteq G$$

$$f(e) = e' \Longrightarrow e \in f^{-1}(K) \Longrightarrow f^{-1}(K) \neq \emptyset$$

Let
$$x, y \in f^{-1}(K)$$
, to prove $x * y^{-1} \in f^{-1}(K)$

$$x \in f^{-1}(K) \Longrightarrow f(x) \in K$$

$$y \in f^{-1}(K) \Longrightarrow f(y) \in K$$

$$f(x)\cdot \big(f(y)\big)^{-1}\in K \Longrightarrow f(x)\cdot f(y^{-1})\in K \Longrightarrow f(x*y^{-1})\in K$$

$$\Rightarrow x * y^{-1} \in f^{-1}(K) \Rightarrow (f^{-1}(K),*)$$
 is a subgroup of $(G,*)$.

5. If $H \triangleright G$ and f an onto, then $f(H) \triangleright G'$.

Proof: let $y \in G'$, $a \in f(H)$, to prove $y \cdot a \cdot y^{-1} \in f(H)$

$$y \in G'$$
 and f is an onto $\Longrightarrow \exists x \in G \ni f(x) = y$

$$a \in f(H) \Longrightarrow a = f(h) \ni h \in H$$

$$x \in G, h \in H \text{ and } H \rhd G \Longrightarrow x * h * x^{-1} \in H$$

$$\Rightarrow f(x * h * x^{-1}) \in f(H) \Rightarrow f(x) \cdot f(h) \cdot f(x^{-1}) \in f(H)$$

$$\Rightarrow y \cdot a \cdot y^{-1} \in f(H) \Rightarrow f(H) \rhd G'.$$

6. If
$$K \triangleright G'$$
, then $f^{-1}(K) \triangleright G$.

Proof: $(f^{-1}(K),*)$ is a subgroup of (G,*), to prove $f^{-1}(K) \triangleright G$

Let
$$x \in G \Longrightarrow f(x) = y \in G'$$

$$a \in f^{-1}(K) \Longrightarrow f(a) \in K$$

$$f(x) \in G'$$
, $f(a) \in K$ and $K \triangleright G'$

$$f(x) \cdot f(a) \cdot (f(x))^{-1} \in K \Longrightarrow f(x) \cdot f(a) \cdot f(x^{-1}) \in K$$

$$\Rightarrow f(x*a*x^{-1}) \in K \Rightarrow x*a*x^{-1} \in f^{-1}(K) \Rightarrow f^{-1}(K) \rhd G.$$

Theorem(8-15): The relation of isomorphic is an equivalent.

Proof: Reflexive: to prove $(G,*) \cong (G,*)$, $\exists i: (G,*) \to (G,*) \ni i(x) = x \ \forall x \in G$ and i is a homomorphism, one to one and onto, thus i is an isomorphism $\Longrightarrow (G,*) \cong (G,*)$.

Symmetric: let $(G,*) \cong (G',\cdot)$, to prove $(G',\cdot) \cong (G,*)$, $\exists f: (G,*) \rightarrow (G',\cdot) \ni f$ is an isomorphism, f is a bijective

 $\Rightarrow \exists f^{-1}: (G', \cdot) \to (G, *) \Rightarrow f^{-1}$ is an one to one and onto, to prove f^{-1} is a homomorphism, let $a, b \in G', f$ is an onto $\Rightarrow \exists x, y \in G \ni f(x) = a, f(y) = b, f^{-1}(a \cdot b) = f^{-1}(f(x) \cdot f(y)) = f^{-1}(f(x * y)) = x * y = f^{-1}(a) * f^{-1}(b)$

Thus, f^{-1} is a homomorphism, f^{-1} is an isomorphism,

$$\Rightarrow$$
 $(G',\cdot) \cong (G,*).$

Transitive: let $(G,*) \cong (G',\cdot)$ and $(G',\cdot) \cong (G'',\odot)$, to prove

 $(G,*)\cong (G'', \odot), \exists f:(G,*)\to (G', \circ)\ni f$ is an isomorphism, $\exists g:(G', \circ)\to (G'', \odot)\ni g$ is an isomorphism. $\exists g\circ f:(G,*)\to (G'', \odot)\ni g\circ f$ is a bijective. Let $a,b\in G,(g\circ f)(a*b)=g\big(f(a*b)\big)=g\big(f(a)\cdot f(b)\big)=g\big(f(a)\big)\odot g\big(f(b)\big)=(g\circ f)(a)\odot (g\circ f)(b)$

Hence, $g \circ f$ is a homomorphism $\Rightarrow g \circ f$ is an isomorphism

 \Rightarrow $(G,*) \cong (G'', \odot) \Rightarrow \cong$ is an equivalent relation.

Theorem(8-16): Prove that

1. Every two finite cyclic group of the same order are isomorphic.

Proof: let $(G,*), (G',\cdot)$ are two finite cyclic groups, $\ni O(G) = O(G') = n$ G is a cyclic $\Longrightarrow \exists a \in G \ni G = \langle a \rangle = \{a^k, k \in \mathbb{Z}\} = \{a^1, a^2, ..., a^k = e\}$ G' is a cyclic $\Longrightarrow \exists b \in G' \ni G' = \langle b \rangle = \{b^n, n \in \mathbb{Z}\} = \{b, b^2, ..., b^n = e\}$

Define $f: (G,*) \to (G', \cdot) \ni f(a^k) = b^k \forall k \in \mathbb{Z}$, let $a^r = a^s \Longrightarrow r \equiv s \pmod{n} \Longrightarrow r - s = ng \ni g \in \mathbb{Z} \Longrightarrow r = ng + s \Longrightarrow b^r = b^{ng+s} = (b^n)^g \cdot b^s \Longrightarrow b^r = b^s$, thus f is a map.

Let $f(a^r) = f(a^s) \Rightarrow b^r = b^s \Rightarrow r \equiv s \pmod{n} \Rightarrow r - s = ng \Rightarrow r = ng + s \Rightarrow a^r = (a^n)^g \cdot a^s \Rightarrow a^r = a^s \Rightarrow f \text{ is a one to one.}$

 $R_f = \{f(a^k): \forall k \in \mathbb{Z}\} = \{b^k: \forall k \in \mathbb{Z}\} = G' \Longrightarrow f \text{ is an onto.}$

$$f(a^r * a^s) = f(a^{r+s}) = b^{r+s} = b^r \cdot b^s = f(a^r) \cdot f(a^s) \implies f$$
 is an isomorphism $\implies G \cong G'$.

2. Every finite cyclic group is an isomorphism to $(Z_n, +_n)$.

Proof: let (G,*) be a finite cyclic group $\ni O(G) = m$

$$G = \langle a \rangle = \{a^1, a^2, ..., a^m = e\}$$

- (1) if $m < n \Rightarrow O(G) < O(Z_n) \Rightarrow f$ is not an onto $\Rightarrow G \not\cong Z_n$
- $(2) \quad \text{if } m = n \Longrightarrow G \cong Z_n \$

define $f: (G,*) \to (Z_n, +_n) \ni f(a^k) = k \ \forall k \in \mathbb{Z}^+$, let $a^r = a^s \Rightarrow r \equiv s \pmod{n} \Rightarrow r = s \Rightarrow f(a^r) = f(a^s) \Rightarrow f \text{ is a map.}$

Let $f(a^r) = f(a^s) \Rightarrow r \equiv s \pmod{n} \Rightarrow r = ng + s \Rightarrow a^r = a^s \Rightarrow f$ is an one to one.

 $f(a^r * a^s) = f(a^{r+s}) = r + s = r + s = f(a^r) + f(a^s) \implies f$ is a homomorphism.

 $R_f = \{f(a^k): \forall k \in \mathbb{Z}^+\} = \{k: \forall k \in \mathbb{Z}^+\} = Z_n \Longrightarrow f \text{ is an onto} \Longrightarrow f \text{ is an isomorphism} \Longrightarrow (G,*) \cong (Z_n,+_n).$

3. Every two infinite cyclic group are isomorphic.

Proof: let $(G,*), (G', \cdot)$ are infinite cyclic groups.

$$G = \langle a \rangle = \{ \dots, a^{-2}, a^{-1}, a^0, a^1, a^2, \dots \}$$

$$G' = \langle b \rangle = \{ \dots, b^{-2}, b^{-1}, b^0, b^1, b^2, \dots \}$$

Define $f: (G,*) \to (G',\cdot) \ni f(a^k) = b^k \forall k \in \mathbb{Z}$

- f is a map (Homework)
- f is an one to one (Homework)
- f is an onto (**Homework**)
- f is a homomorphism (Homework)
 - 4. Every infinite cyclic group is an isomorphic to (Z, +).

Proof: since G is a cyclic $\Longrightarrow G = \langle a \rangle = \{..., a^{-2}, a^{-1}, a^0, a^1, a^2, ...\}$

$$G \longrightarrow \cdots, a^{-2}, a^{-1}, a^{0}, a^{1}, a^{2}, \dots$$

$$\mathbb{Z} \longrightarrow \cdots, a^{-2}, a^{-1}, a^0, a^1, a^2, \dots$$

Define $f: (G,*) \to (\mathbb{Z},+) \ni f(a^k) = k \forall k \in \mathbb{Z}$ (check)

Definition(8-17): Let (G,*) be a group, define

- (1) $\operatorname{Hom}(G) = \{f : f : (G,*) \to (G,*) \ni f \text{ is a homomorphism}\}$
- (2) Aut(G) = $\{f: f: (G,*) \rightarrow (G,*) \ni f \text{ is an isomorphism}\}$

Theorem(8-18): Let (G,*) be a group, then

(Aut(G),∘) is a group.

Proof: 1,2 and 3 (check)

Inverse: let $f:(G,*) \to (G,*)$, f is an isomorphism, since f is a bijective $\Rightarrow \exists f^{-1}:(G,*) \to (G,*)$ and since f is an isomorphism $\Rightarrow f^{-1}$ is an isomorphism $\Rightarrow f^{-1} \in \operatorname{Aut}(G)$ and $f \circ f^{-1} = f^{-1} \circ f = i \Rightarrow (\operatorname{Aut}(G), \circ)$ is a group.

(2) (Aut(G),∘) is a subgroup of (Symm(G),∘).

Proof: Aut(G) = { $f: f: (G,*) \rightarrow (G,*) \ni f$ is an isomorphism}

$$Symm(G) = \{f: f: (G,*) \to (G,*) \ni f \text{ is a bijective}\}\$$

 $\operatorname{Aut}(G) \neq \emptyset$, since $\exists i : (G,*) \rightarrow (G,*) \ni i$ is an isomorphism

 $Aut(G) \subseteq Symm(G)$ and $(Aut(G), \circ)$ is a group

 \Rightarrow (Aut(G), \circ) is a subgroup of (Symm(G), \circ).

<u>Definition(8-19):</u> Let (G,*) be a group and $x \in G$. Define $f_x: (G,*) \to (G,*) \ni f_x(a) = x * a * x^{-1}, \forall a \in G$, then f_x is called an inner automorphism of G and $Inn(G) = \{f_x: \forall x \in G\}$ or $I(G) = \{f_x: \forall x \in G\}$.

Theorem(8-20): Let (G,*) be a group and $x \in G$, then:

(1) f_x is an isomorphism map.

Proof:
$$f_x(a) * f_x(b) = (x * a * x^{-1}) * (x * b * x^{-1})$$

$$= x * a * (x^{-1} * x) * b * x^{-1} = x * a * b * x^{-1} = f_x(a * b)$$

Thus, f_x is a homomorphism.

Let
$$f_x(a) = f_x(b) \Rightarrow x * a * x^{-1} = x * b * x^{-1} \Rightarrow a = b \Rightarrow f_x$$
 is an one to one.

$$R_{f_x} = \{f_x(a) : \forall a \in G\} = G \implies f_x \text{ is an isomorphism map.}$$

(2) $(I(G), \circ)$ is a subgroup of $(Aut(G), \circ)$.

Proof: $I(G) = \{f_x : f_x : (G,*) \to (G,*) \ni f_x \text{ is an isomorphism}\}\$

$$\operatorname{Aut}(G) = \{f : f : (G,*) \to (G,*) \ni f \text{ is an isomorphism}\}\$$

$$a \in G \Longrightarrow f_e \in I(G) \neq \emptyset$$

$$f_e(a) = e * a * e^{-1} = a \Longrightarrow I(G) \subseteq Aut(G)$$

Closure: let
$$f_x, f_y \in I(G), (f_x \circ f_y)(a) = f_x(f_y(a)) = f_x(y * a * y^{-1}) = x * (y * a * y^{-1}) * x^{-1} = (x * y) * a * (x * y)^{-1} = f_{x*y}(a)$$

Inverse: let $f_x \in I(G)$, $x^{-1} \in G \Rightarrow f_{x^{-1}} \in I(G)$, $f_x \circ f_{x^{-1}} = f_{x*x^{-1}} = f_e \Rightarrow f_{x^{-1}} \circ f_x = f_{x^{-1}*x} = f_e \Rightarrow (f_x)^{-1} = f_{x^{-1}} \Rightarrow (I(G), \circ)$ is a subgroup of $(Aut(G), \circ)$.

(3) $I(G) \triangleright Aut(G)$

Proof: $I(G) = \{f_x : f_x : (G,*) \rightarrow (G,*) \ni f_x \text{ is an isomorphism}\}\$

 $Aut(G) = \{f: f: (G,*) \rightarrow (G,*) \ni f \text{ is an isomorphism}\}\$

Let $g \in \text{Aut}(G), f_x \in I(G), (g \circ f_x \circ g^{-1})(a) = g \circ f_x(g^{-1}(a)) = g(f_x(g^{-1}(a))) = g(x * g^{-1}(a) * x^{-1}) = g(x) * a * g(x^{-1}) = g(x) * a * (g(x))^{-1} = f_{g(x)}(a) \in I(G) \Rightarrow I(G) \Rightarrow \text{Aut}(G).$

<u>Definition(8-21):</u> Let $f:(G,*) \to (G',\cdot)$ be a group homomorphism, then the kernel of f denoted by $\ker f$ and defined by $\ker f = \{x \in G: f(x) = e'\}$

Example(8-22): let $f:(\mathbb{R},+) \to (\mathbb{R}^+,\cdot) \ni f(x) = 3^x$, find ker $f \forall x \in \mathbb{R}$.

Solution: f is a homomorphism (check) \Longrightarrow kerf an exist,

 $\ker f = \{x \in \mathbb{R}: f(x) = 1\} = \{x \in \mathbb{R}: 3^x = 1\} = \{x = 0\}$

Example(8-23): Let $f:(G,*) \to (G',\cdot) \ni f$ is a trivial homomorphism, find $\ker f \ \forall x \in G$.

Solution: $f(x) = e' \ \forall x \in G, f \text{ is a homomorphism} \Rightarrow \ker f \text{ is an exist.}$

 $\ker f = \{x \in G: f(x) = e'\} = G.$

Example (8-24): let $f: (\mathbb{Z}, +) \to (Z_3, +_3) \ni f(x) = [x] \ \forall x \in \mathbb{Z}$, find ker $f \ \forall x \in \mathbb{Z}$.

Solution: f is a homomorphism (check)

 $Ker f = \{x \in \mathbb{Z}: f(x) = [0]\} = \{x \in \mathbb{Z}: [x] = [0]\} = \{x \in \mathbb{Z}: x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z}: x = 3k \ \forall k \in \mathbb{Z}\} = \{0, \pm 3, \pm 6, \dots\} \subseteq \mathbb{Z}.$

Theorem(8-25): Let $f:(G,*) \to (G',\cdot)$ be a group homomorphism, then:

(1) (Ker f,*) is a subgroup of (G,*).

Proof: $\ker f = \{x \in G : f(x) = e'\} \subseteq G, f(e) = e' \Longrightarrow e \in \ker f \neq \emptyset.$

Let $a, b \in \ker f$, $f(a * b^{-1}) = f(a) \cdot f(b^{-1}) = f(a) \cdot f(b))^{-1} = e' \cdot (e')^{-1} = e' \Rightarrow f(a * b^{-1}) = e' \Rightarrow a * b^{-1} \in \ker f \Rightarrow (\operatorname{Ker} f, *) \text{ is a subgroup of } (G, *).$

(2) $\operatorname{Ker} f \triangleright G$

Proof: (Kerf,*) is a subgroup of (G,*).

Let $x \in G, a \in \operatorname{Ker} f, f(x * a * x^{-1}) = f(x) \cdot f(a) \cdot f(x^{-1}) = f(x) \cdot e' \cdot (f(x))^{-1} = e' \Rightarrow x * a * x^{-1} \in \operatorname{Ker} f \Rightarrow G.$

(3) $\operatorname{Ker} f = \{e\} \operatorname{iff} f \text{ is an one to one.}$

Proof: (\Longrightarrow) suppose that Ker $f = \{e\}$

Let
$$f(a) = f(b) \Rightarrow f(a) \cdot (f(b))^{-1}$$

$$= f(b) \cdot (f(b))^{-1} \Longrightarrow f(a) \cdot f(b^{-1}) = e'$$

$$\Rightarrow f(a*b^{-1}) = e' \Rightarrow a*b^{-1} \in \operatorname{Ker} f \Rightarrow a*b^{-1} = e \ \Rightarrow a = b$$

 (\Leftarrow) let $a \in \text{Ker} f$

$$f(a) = f(e) \Rightarrow a = e \Rightarrow \text{Ker} f = \{e\}.$$

9. Fundamental Theorems of Homomorphism

The First Fundamental Theorem of Isomorphism:

Theorem(9-1): Let $f:(G,*) \to (G',\cdot)$ be an onto, homomorphism, then

$$(\frac{G}{\ker f}, \otimes) \cong (G', \cdot).$$

Proof: f is an onto $\Longrightarrow R_f = \{f(a) : a \in G\} = G'$

 $\ker f \rhd G \Longrightarrow \frac{G}{\ker f}$ is a group.

Define
$$\left(\frac{G}{\ker f}, \otimes\right) \to (G', \circ) \ni g(a * \ker f) = f(a) \ \forall a \in G$$

Let $a * \ker f = b * \ker f \Rightarrow a^{-1} * b \in \ker f \Rightarrow f(a^{-1} * b) = e'$

$$\Rightarrow f(a^{-1}) \cdot f(b) = e' \Rightarrow (f(a))^{-1} \cdot f(b) = e' \Rightarrow f(b) = f(a)$$

$$\Rightarrow g(a * \ker f) = g(b * \ker f) \Rightarrow g \text{ is a map.}$$

Let
$$g(a * \ker f) = g(b * \ker f) \Rightarrow f(a) = f(b)$$

$$\Rightarrow e' = \left(f(a)\right)^{-1} \cdot f(b) = f(a^{-1}) \cdot f(b) \Rightarrow e' = f(a^{-1} * b)$$

$$\Rightarrow a^{-1} * b \in \ker f \Rightarrow a * \ker f = b * \ker f \Rightarrow g$$
 is an one to one.

$$R_g = \{g(a * \ker f) : a \in G = \{f(a) : a \in G\} = G' \implies g \text{ is onto.}$$

$$g[(a * \ker f) \otimes (b * \ker f)] = g((a * b) * \ker f)$$

$$= f(a * b) = f(a) \cdot f(b) = g(a * \ker f) \cdot g(a * \ker f)$$

 \Rightarrow g is a homomorphism, hence g is an isomorphism

$$\Rightarrow (\frac{G}{\ker f}, \otimes) \cong (G', \cdot)$$

Example(9-2): Let
$$f: (\mathbb{Z}, +) \longrightarrow (\{1, -1\}, \cdot) \ni f(a) = \begin{cases} 1 & a \in E \\ -1 & a \in O \end{cases}$$

 $\forall a \in \mathbb{Z}$, show that $(Z_2, +_2) \cong (\{1, -1\}, \cdot)$ by two ways.

- (1) Since $O(Z_2) = O(\{1, -1\}) = 2$ and $(Z_2, +_2), (\{1, -1\}, \cdot)$ are cyclic groups $\Rightarrow (Z_2, +_2) \cong (\{1, -1\}, \cdot)$
- (2) By use the first theorem of isomorphism if is clear that f is a homomorphism. $R_g = \{f(a) : a \in \mathbb{Z}\} = \{1, -1\} = \operatorname{Cod} f$

$$\Rightarrow f \text{ is an onto } \Rightarrow (\frac{\mathbb{Z}}{\ker f}, \otimes) \cong (\{1, -1\}, \cdot)$$

$$\ker f = \{a \in \mathbb{Z}: f(a) = 1\} = E \Longrightarrow (\frac{\mathbb{Z}}{E}, \otimes) \cong (\{1, -1\}, \cdot)$$

 $(\mathbb{Z}, +)$ is a cyclic group $\Longrightarrow (\frac{\mathbb{Z}}{E}, \bigotimes)$ is a cyclic

$$O\left(\frac{\mathbb{Z}}{E}\right) = 2 \Longrightarrow (Z_2, +_2) \cong (\frac{\mathbb{Z}}{E}, \otimes) \Longrightarrow (Z_2, +_2) \cong (\{1, -1\}, \cdot)$$

Corollary(9-3): Let (G,*) be a group, then $(\frac{G}{Z(G)}, \otimes) \cong (I(G), \circ)$, where Z(G) is a center of G.

Proof: define $g:(G,*) \to (I(G),\circ) \ni g(x) = f_x \forall x \in G$

$$I(G) = \{f_x : x \in G\}$$

Let
$$x = y \Rightarrow x + a = y + a \Rightarrow x * a * x^{-1} = y * a * y^{-1}$$

$$\Rightarrow f_x(a) = f_y(a) \Rightarrow g(x) = g(y) \Rightarrow g$$
 is a map.

$$g(x * y) = f_{x*y} = f_x \circ f_y = g(x) \circ g(y) \Longrightarrow g$$
 is a homomorphism.

$$R_g = \{g(x) : x \in G\} = \{f_x : \forall x \in G\} = I(G) \Longrightarrow g \text{ is an onto.}$$

By the first theorem of isomorphism $\Rightarrow (\frac{G}{kerf}, \otimes) \cong (I(G), \circ)$

$$\begin{aligned} kerf &= \{x \in G \colon g(x) = e'\} = \{x \in G \colon f_x(a) = f_e(a) \\ &= \{x \in G \colon x \ast a \ast x^{-1} = a \ \forall a \in G\} = \{x \in G \colon x \ast a = a \ast x \ \forall a \in G\} \\ &= Z(G) \Longrightarrow (\frac{G}{Z(G)}, \otimes) \cong (I(G), \circ) \end{aligned}$$

The Second Theorem of Isomorphism:

Theorem(9-4): Let (H,*), (K,*) be two subgroups of $(G,*) \ni K \triangleright H$, then

- (1) (H * K,*) is a subgroup of (G,*)
- (2) $K \triangleright H * K$
- (3) $(H \cap K) \triangleright H$
- $(4) \quad \left(\frac{H*K}{K}, \otimes\right) \cong \left(\frac{H}{H \cap K}, \otimes\right)$

Proof: since $K > H * K \Longrightarrow (\frac{H * K}{K}, \bigotimes)$ is a group.

And since $(H \cap K) \triangleright H \Rightarrow (\frac{H}{H \cap K}, \otimes)$ is a group.

Define
$$f: (H * K,*) \rightarrow \left(\frac{H}{H \cap K}, \bigotimes\right) \ni f(a * b) = a * (H \cap K) \forall a \in H$$

$$a * b = c * d \Rightarrow c^{-1} * a = d * b^{-1} \Rightarrow c^{-1} * a \in H, c^{-1} * a \in K$$

$$\Rightarrow c^{-1} * a \in H \cap K \Rightarrow c * (H \cap K) = a * (H \cap K)$$

$$\Rightarrow f(c*d) = f(a*b) \Rightarrow f \text{ is a map.}$$

$$R_f = \{f(a * b) : \forall a \in H\} = \{a * (H \cap K) : a \in H\} = \frac{H}{H \cap K}$$

Thus, f is an onto.

$$f[(a*b)*(c*d)] = f[(a*c*c^{-1}*b)*(c*d)]$$

$$= f[(a*c)*(c^{-1}*b*c)*d]$$

Since $c \in G, b \in K, K \rhd G \Longrightarrow c * b * c^{-1} \in K$

Let
$$c * b * c^{-1} = r \in K$$

$$f[(a*b)*(c*d)] = f[(a*c)*(r*d)] = (a*c)*(H \cap K)$$

$$= [a * (H \cap K)] \otimes [c * (H \cap K)] = f(a * b) \otimes f(c * d) \Longrightarrow f \text{ is a homo.}$$

By the first theorem of isomorphism $\Rightarrow \frac{H*K}{kerf} \cong \frac{H}{H \cap K}$

$$kerf = \{a * b \in H * K \ni f(a * b) = e'\}$$

$$= \{a * b \in H * K \ni a * (H \cap K) = H \cap K\}$$

$$= \{a * b \in H * K \ni a \in H \cap K\}$$

$$=\{a*b\in H*K\ni a\in H, a\in K\}$$

$$= \{a * b \in H * K \ni a \in K, b \in K\} = K$$

Therefore,
$$\frac{H*K}{K} \cong \frac{H}{H \cap K}$$

The Third Fundamental Theorem of Isomorphism:

Theorem(9-5): Let (H,*), (K,*) be two normal subgroups of $(G,*) \ni H \subseteq K$, then:

- (1) $H \triangleright K$
- (2) $\binom{K}{H}, \otimes$ $\triangleright \binom{G}{H}, \otimes$
- $(3) \quad \left(\frac{\frac{G}{H}}{\frac{K}{H}}, \otimes\right) \cong \left(\frac{G}{K}, \otimes\right)$

Proof: 1. Since (H,*), (K,*) are subgroups and $H \subseteq K$

 \Rightarrow (*H*,*) is a subgroup of (*K*,*)

Let $x \in K$, $a \in H$, $x \in K \subseteq G \Longrightarrow x \in G$, $a \in H$, $H \rhd G \Longrightarrow x * a * x^{-1} \in H$

Thus, $H \triangleright K$.

Proof: 2. since $H > K \Longrightarrow (\frac{K}{H}, \bigotimes)$ is a group

Since
$$H \triangleright G \Longrightarrow (\frac{G}{H}, \bigotimes)$$
 is a group

$$\frac{K}{H} = \{a * H : a \in K\} \subseteq \{a * H : a \in G\} = \frac{G}{H}$$

$$\frac{K}{H} \subseteq \frac{G}{H} \Longrightarrow (\frac{K}{H}, \otimes)$$
 is a subgroup of $(\frac{G}{H}, \otimes)$

Let
$$x * H \in \frac{G}{H}$$
, $\alpha * H \in \frac{K}{H}$

$$(x*H)\otimes(a*H)\otimes(x*H)^{-1}$$

$$= ((x*a)*H) \otimes (x^{-1}*H) = (x*a*x^{-1})*H$$

$$\Rightarrow (x*a*x^{-1})*H \in \frac{K}{H} \Rightarrow (\frac{K}{H}, \otimes) \rhd (\frac{G}{H}, \otimes)$$

Proof: 3.
$$\frac{K}{H} \triangleright \frac{G}{H} \Longrightarrow (\frac{\frac{G}{H}}{\frac{K}{H}}, \bigotimes)$$
 is a group.

$$K \rhd G \Longrightarrow (\frac{G}{H}, \bigotimes)$$
 is a group.

Define
$$f: \left(\frac{G}{H}, \bigotimes\right) \to \left(\frac{G}{K}, \bigotimes\right) \ni f(a * H) = a * K \forall a \in G$$

$$a*H=b*H\Longrightarrow a^{-1}*b\in H\subseteq K\Longrightarrow a^{-1}*b\in K\Longrightarrow a*K=b*K$$

$$\Rightarrow f(a * H) = f(b * H) \Rightarrow f \text{ is a map.}$$

$$R_f = \{f(a * H) : a \in G\} = \{a * K : a \in G\} = \frac{G}{K} \Longrightarrow f \text{ is an onto.}$$

$$f[(a*H)\otimes(b*H)] = f[(a*b)*H = (a*b)*K = (a*K)\otimes(b*K)$$

$$= f(a * H) \otimes f(b * H) \Rightarrow f$$
 is a homomorphism.

By the first theorem of isomorphism
$$\Rightarrow (\frac{\frac{G}{H}}{kerf}, \otimes) \cong (\frac{G}{K}, \otimes)$$

$$\ker f = \{a * H : f(a * H) = e' = \{a * H : a * K = K\}$$

$$= a * H \in \frac{G}{H} : a \in K\} = \frac{K}{H}$$

Therefore,
$$(\frac{\frac{G}{H}}{\frac{K}{H}}, \bigotimes) \cong (\frac{G}{K}, \bigotimes)$$
.

10. The Jordan-Holder Theorem and Related Concepts.

Definition(10-1):

By a *chain* for a group (G,*) is meant any finite sequence of subsets of

 $G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$ descending from G to $\{e\}$ with the property that all the pairs $(H_{i,*})$ are subgroups of (G,*).

Remark(10-2):

The integer n is called the length of the chain. When n = 1, then the chain in definition (1-1) will called the trivial.

Example(10-3):

Find all chains in a group $(Z_4, +_4)$.

Solution: The subgroups of a group $(Z_4, +_4)$ are :

- $H_1 = (Z_4, +_4)$
- $H_2 = (\{0\}, +_4)$
- $H_3 = (\langle 2 \rangle, +_4) = (\{0,2\}, +_4)$

The chains of a group $(Z_4, +_4)$ are

 $Z_4 \supset \{0\}$ is a chain of length one

 $Z_4 \supset \langle 2 \rangle \supset \{0\}$ is a chain of length two.

Example(10-4):

In the group $(Z_{12}, +_{12})$ of integers modulo 12, the following chains are normal chains:

$$Z_{12} \supset \langle 6 \rangle \supset \{0\},\$$

$$Z_{12}\supset \langle 2\rangle\supset \langle 4\rangle\supset \{0\},$$

$$Z_{12} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \{0\},$$

$$Z_{12} \supset \langle 2 \rangle \supset \langle 6 \rangle \supset \{0\}.$$

All subgroups are normal, since $(Z_{12}, +_{12})$ is a commutative group.

<u>Definition(10-5):</u> (Normal Chain)

If $(H_i,*)$ is a normal subgroup of a group (G,*) for all i=1,...,n, then the chain $G=H_0\supset H_1\supset \cdots \supset H_{n-1}\supset H_n=\{e\}$ is called a *normal chain*.

Example(10-6):

Find all chains in the following groups and determine their length and type.

- (Z₆, +₆);
- (Z₈, +₈);
- (Z₁₈, +₁₈) (Homework);
- (Z₂₁, +₂₁) (Homework).

Solution: The subgroups of a group $(Z_6, +_6)$ are :

$$H_1 = (Z_6, +_6)$$

$$H_2 = (\{0\}, +_6)$$

$$H_3 = (\langle 2 \rangle, +_6) = (\{0, 2, 4\}, +_6)$$

$$H_4 = (\langle 3 \rangle, +_6) = (\{0,3\}, +_6)$$

Then the chains in $(Z_6, +_6)$ are:

 $Z_6 \supset \{0\}$ is a trivial chain of length one

 $Z_6 \supset \langle 2 \rangle \supset \{0\}$ is a normal chain of length two

 $Z_6 \supset \langle 3 \rangle \supset \{0\}$ is a normal chain of length two.

The subgroups of a group $(Z_8, +_8)$ are :

$$H_1 = (Z_8, +_8)$$

$$H_2 = (\{0\}, +_8)$$

$$H_3 = (\langle 2 \rangle, +_8) = (\{0, 2, 4, 6\}, +_8)$$

$$H_4 = (\langle 4 \rangle, +_6) = (\{0,4\}, +_8)$$

Then the chains in $(Z_8, +_8)$ are:

 $Z_8 \supset \{0\}$ is a trivial chain of length one

 $Z_8 \supset \langle 2 \rangle \supset \{0\}$ is a normal chain of length two

 $Z_8 \supset \langle 4 \rangle \supset \{0\}$ is a normal chain of length two

 $Z_8 \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \{0\}$ is a normal chain of length three.

Definition(10-7): (Composition Chain)

In the group (G,*), the descending sequence of sets

$$G=H_0\supset H_1\supset \cdots\supset H_{n-1}\supset H_n=\{e\}$$

forms a composition chain for (G,*) provided

- 1. $(H_i,*)$ is a subgroup of (G,*),
- 2. $(H_{i,*})$ is a normal subgroup of $(H_{i-1,*})$,
- 3. The inclusion $H_{i-1} \supseteq K \supseteq H_i$, where (K,*) is a normal subgroup of $(H_{i-1},*)$, implies either $K = H_{i-1}$ or $K = H_i$.

Remark(10-8):

Every composition chain is a normal, but the converse is not true in general, the following example shows that.

Example(10-9):

In the group $(Z_{24}, +_{24})$, the normal chain

$$Z_{24} \supset \langle 2 \rangle \supset \langle 12 \rangle \supset \{0\}$$

is not a composition chain, since it may be further refined by inserting of the set(4) or (6). On other hand,

$$Z_{24} \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \langle 8 \rangle \supset \{0\}$$

and

$$Z_{24} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$$

are both composition chains for $(Z_{24}, +_{24})$.

Example(10-10):

Find all chains in the following groups and determine their length and type.

- (Z₈, +₈);
- (Z₁₂, +₁₂);
- (Z₁₈, +₁₈) (Homework).

Solution: The subgroups of a group $(Z_8, +_8)$ are :

$$H_1 = (Z_8, +_8)$$

$$H_2 = (\{0\}, +_8)$$

$$H_3 = (\langle 2 \rangle, +_8) = (\{0, 2, 4, 6\}, +_8)$$

$$H_4 = (\langle 4 \rangle, +_8) = (\{0,4\}, +_8)$$

Then the chains in $(Z_8, +_8)$ are:

 $Z_8 \supset \{0\}$ is a trivial chain of length one.

 $Z_8 \supset \langle 2 \rangle \supset \{0\}$ is a normal chain of length two, but it is not composition chain, since there is a normal subgroup $\langle 4 \rangle$ in Z_8 , such that $\langle 2 \rangle \supset \langle 4 \rangle$.

 $Z_8 \supset \langle 4 \rangle \supset \{0\}$ is a normal chain of length two, but it is not composition chain, since there is a normal subgroup $\langle 2 \rangle$ in Z_8 , such that $\langle 2 \rangle \supset \langle 4 \rangle$.

 $Z_8 \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \{0\}$ is a composition chain of length three.

The subgroups of a group $(Z_{12}, +_{12})$ are :

$$H_1 = (Z_{12}, +_{12})$$

$$H_2 = (\{0\}, +_{12})$$

$$H_3 = (\langle 2 \rangle, +_{12}) = (\{0, 2, 4, 6, 8, 10\}, +_{12})$$

$$H_4 = (\langle 3 \rangle, +_{12}) = (\{0,3,6,9\}, +_{12})$$

$$H_5 = (\langle 4 \rangle, +_{12}) = (\{0,4,8\}, +_{12})$$

$$H_6 = (\langle 6 \rangle, +_{12}) = (\{0,6\}, +_{12})$$

Then the chains in $(Z_{12}, +_{12})$ are:

 $Z_{12} \supset \{0\}$ is a trivial chain of length one.

 $Z_{12} \supset \langle 2 \rangle \supset \{0\}$ is a normal chain of length two.

 $Z_{12} \supset \langle 3 \rangle \supset \{0\}$ is a normal chain of length two.

 $Z_{12} \supset \langle 4 \rangle \supset \{0\}$ is a normal chain of length two.

 $Z_{12} \supset \langle 6 \rangle \supset \{0\}$ is a normal chain of length two.

 $Z_{12} \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \{0\}$ is a composition chain of length three.

 $Z_{12} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \{0\}$ is a composition chain of length three.

Example(10-11):

Let (G,*) be the group of symmetries of the square.

A normal chain for (G,*) which fails to be a composition chain is

$$G \supset \{R_{180}, R_{360}\} \supset \{R_{360}\}.$$

Example(10-12): (Homework)

Determine the following chain whether normal, composition:

$$G \supset \{R_{90}, R_{180}, R_{270}, R_{360}\} \supset \{R_{180}, R_{360}\} \supset \{R_{360}\}.$$

Example(10-13):

The group (Z, +) has no a composition chain, since the normal subgroups of (Z, +) are the cyclic subgroups $(\langle n \rangle), +)$, n a nonnegative integer, Since the inclusion $(kn) \subseteq \langle n \rangle$ holds for all $k \in Z_+$, there always exists a proper subgroup of any given group.

Definition(10-14):

A normal subgroup (H,*) is called a *maximal normal subgroup* of the group (G,*) if $H \neq G$ and there exists no normal subgroup (K,*) of (G,*) such that $H \subset K \subset G$.

Example(10-15):

In the group $(Z_{24}, +_{24})$, the cyclic subgroups $(\langle 2 \rangle, +_{24})$ and $(\langle 3 \rangle, +_{24})$ are both maximal normal with orders 12 and 8, respectively.

Example(10-16):

Determine the maximal normal subgroups in the group $(Z_{12}, +_{12})$.

Solution: The normal subgroups of $(Z_{12}, +_{12})$ are:

$$H_1 = (\langle 2 \rangle, +_{12}) = (\{0, 2, 4, 6, 8, 10\}, +_{12})$$

$$H_2 = (\langle 3 \rangle, +_{12}) = (\{0,3,6,9\}, +_{12})$$

$$H_3 = (\langle 4 \rangle, +_{12}) = (\{0,4,8\}, +_{12})$$

$$H_4 = (\langle 6 \rangle, +_{12}) = (\{0,6\}, +_{12})$$

The maximal normal subgroups of $(Z_{12}, +_{12})$ are H_1 and H_2 , since there is no normal subgroup in Z_{12} containing H_1 and H_2 .

Remark(10-17):

A chain $G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$ is a composition of a group (G,*), if each normal subgroup $(H_i,*)$ is a maximal normal subgroup of $(H_{i-1},*)$, for all $i = 1, \ldots, n$.

Example(10-18);

In the group $(Z_{12},+_{12})$ the chains $Z_{12}\supset \langle 2\rangle\supset \langle 4\rangle\supset \{0\}$ is a composition of Z_{12} , since

- $\langle 2 \rangle$ is a maximal normal subgroup of Z_{12} ,
- (4) is a maximal normal subgroup of (2),
- {0} is a maximal normal subgroup of (4), and

 $Z_{12} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \{0\}$ is a composition of Z_{12} , since

- (3) is a maximal normal subgroup of Z₁₂,
- (6) is a maximal normal subgroup of (3),
- {0} is a maximal normal subgroup of (6).

Theorem(10-19):

A normal subgroup (H,*) of the group (G,*) is a maximal if and only if the quotient $(G/H, \otimes)$ is a simple.

Proof:

$$\Rightarrow$$
) Let $H \supseteq K \Rightarrow \frac{K}{H} \supseteq \frac{G}{H} \Rightarrow H = K \text{ or } K = G$

Since H is a maximal, $\Rightarrow \frac{K}{H} = H$ or $\frac{K}{H} = \frac{G}{H} \Rightarrow \frac{G}{H}$ is a simple

 \Leftarrow) let $G/_H$ be a simple

 \Rightarrow $^{G}/_{H}$ has two normal subgroups which are e*H and $^{G}/_{H}$, but e*H=H

Therefore H is a maximal

Corollary(10-20):

The group $(^G/_H, \otimes)$ is a simple, if $|^G/_H|$ is a prime number.

Examples(10-21);

- 1. Show that $(\langle 2 \rangle, +_{12})$ is a maximal normal subgroup of $(Z_{12}, +_{12})$.
- Show that ((3), +₁₅) is a maximal normal subgroup of (Z₁₅, +₁₅).
 (Homework)

Solution(1): $(\langle 2 \rangle, +_{12}) = (\{0, 2, 4, 6, 8, 10\}, +_{12})$

 $|G/H| = \frac{|G|}{|H|} = \frac{|Z_{12}|}{|(2)|} = \frac{12}{6} = 2$ is a prime $\Rightarrow \frac{Z_{12}}{(2)}$ is a simple (by Corollary (10-20)).

From Theorem (10-19), we get that $\langle 2 \rangle$ is a maximal normal subgroup of \mathbb{Z}_{12} .

Corollary(10-22):

A normal chain $G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$ is a composition of a group (G,*), if $\binom{H_i}{H_{i-1}}, \otimes$ is a simple group for all $i=1,\ldots,n$.

Example(10-23);

Show that $Z_{60} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$ is a composition chain of a group $(Z_{60}, +_{60})$.

Solution: $\frac{|Z_{60}|}{|(3)|} = \frac{60}{20} = 3$ is a prime $\Rightarrow \frac{Z_{60}}{(3)}$ is a simple.

So, we get that $\langle 3 \rangle$ is a maximal normal subgroup of \mathbb{Z}_{60} .

$$\frac{|\langle 3 \rangle|}{|\langle 6 \rangle|} = \frac{20}{10} = 2$$
 is a prime $\Rightarrow \frac{\langle 3 \rangle}{\langle 6 \rangle}$ is a simple.

So, we get that (6) is a maximal normal subgroup of (3).

$$\frac{|\langle 6 \rangle|}{|\langle 12 \rangle|} = \frac{10}{5} = 2$$
 is a prime $\Rightarrow \frac{\langle 6 \rangle}{\langle 12 \rangle}$ is a simple.

So, we get that $\langle 12 \rangle$ is a maximal normal subgroup of $\langle 6 \rangle$.

$$\frac{|\langle 12 \rangle|}{|\langle 0 \rangle|} = \frac{5}{1} = 5$$
 is a prime $\Rightarrow \frac{\langle 12 \rangle}{\langle 0 \rangle}$ is a simple.

So, we get that $\{0\}$ is a maximal normal subgroup of $\langle 12 \rangle$.

By corollaries (10-19) and (1-21), we have that $Z_{60} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$ is a composition chain of a group $(Z_{60}, +_{60})$.

Theorem(10-24):

Every finite group (G,*) with more than one element has a composition chain.

Theorem(10-25): (Jordan-Holder)

In a finite group (G,*) with more than one element, any two composition chains are equivalent.

Example(10-26):

In a group $(Z_{60}, +_{60})$, show that the two chains

$$Z_{60} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$$

$$Z_{60}\supset\langle 2\rangle\supset\langle 6\rangle\supset\langle 30\rangle\supset\{0\},$$

are compositions and equivalent.

Solution:

$$({}^{\mathbb{Z}_{60}}/_{\langle 3 \rangle}, \otimes) \cong ({}^{\langle 2 \rangle}/_{\langle 6 \rangle}, \otimes), \text{ since } \left|{}^{\mathbb{Z}_{60}}/_{\langle 3 \rangle}\right| = \frac{60}{20} = 3 = \left|{}^{\langle 2 \rangle}/_{\langle 6 \rangle}\right| = \frac{30}{10},$$

$$(\stackrel{\langle 3 \rangle}{}/_{\langle 6 \rangle}, \otimes) \cong (\stackrel{Z_{60}}{}/_{\langle 2 \rangle}, \otimes), \text{ since } \left| \stackrel{\langle 3 \rangle}{}/_{\langle 6 \rangle} \right| = \frac{20}{10} = 2 = \left| \stackrel{Z_{60}}{}/_{\langle 2 \rangle} \right| = \frac{60}{30},$$

$$(\stackrel{\langle 6 \rangle}{}/_{\langle 12 \rangle}, \otimes) \cong (\stackrel{\langle 30 \rangle}{}/_{\{0\}}, \otimes), \text{ since } \left| \stackrel{\langle 6 \rangle}{}/_{\langle 12 \rangle} \right| = \frac{10}{5} = 2 = \left| \stackrel{\langle 30 \rangle}{}/_{\{0\}} \right| = \frac{2}{1},$$

$$(\stackrel{\langle 12 \rangle}{}/_{\{0\}}, \otimes) \cong (\stackrel{\langle 6 \rangle}{}/_{\langle 30 \rangle}, \otimes), \text{ since } \left| \stackrel{\langle 12 \rangle}{}/_{\{0\}} \right| = \frac{5}{1} = 5 = \left| \stackrel{\langle 6 \rangle}{}/_{\langle 30 \rangle} \right| = \frac{10}{2}.$$

Therefore, by Jordan-Holder theorem the two chains

$$Z_{60} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$$

$$Z_{60}\supset\langle 2\rangle\supset\langle 6\rangle\supset\langle 30\rangle\supset\{0\},$$

are compositions and equivalent.

Exercises(10-27):

- Check that the following chains represent composition chains for the indicated group.
- a. For $(Z_{36}, +_{36})$, the group of integers modulo 36:

$$Z_{36} \supset \langle 3 \rangle \supset \langle 9 \rangle \supset \langle 18 \rangle \supset \{0\}.$$

b. For $(G_s,*)$, the group of symmetries of the square:

$$G \supset \{R_{180}, R_{360}, D_1, D_2\} \supset \{R_{360}, D_1\} \supset \{R_{360}\}.$$

c. For $(\langle a \rangle, *)$, a cyclic group of order 30:

$$\langle a \rangle \supset \langle a^5 \rangle \supset \langle a^{10} \rangle \supset \{e\}.$$

d. For (S_3, \circ) , the symmetric group on 3 symbols:

$$S_3 \supset \{i, (123), (132)\} \supset \{i\}.$$

- Find a composition chain for the symmetric group (S₄,°).
- Prove that the cyclic subgroup (\(\lambda n \rangle, + \rangle \) is a maximal normal subgroup of (Z, +) if and only if n is a prime number.

 Establish that the following two composition chains for (Z₃₆,+₃₆) are equivalent:

$$Z_{24} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\},$$

$$\mathbb{Z}_{24}\supset \langle 2\rangle\supset \langle 4\rangle\supset \langle 12\rangle\supset \{0\}.$$

- Find all composition chains for (Z₃₆, +₃₆).
- Find all composition chains for (G_s,*).

11. P- Groups and Related Concepts.

Definition(11-1): (p- Group)

A finite group (G,*) is said to be p-group if and only if the order of each element of G is a power of fixed prime p.

Definition(11-2): (p- Group)

A finite group (G,*) is said to be p-group if and only if $|G| = p^k$, $k \in \mathbb{Z}$, where p is a prime number.

Example(11-3):

Show that $(Z_4, +_4)$ is a p-group.

Solution: $Z_4 = \{0,1,2,3\}$ and $|Z_4| = 4 = 2^2$

⇒ Z₄ is a 2- group, with

$$o(0) = 1 = 2^0$$

$$o(1) = 4 = 2^2$$

$$o(2) = 2 = 2^1$$
,

$$o(3) = 4 = 2^2$$
.

Example(11-4):

Determine whether $(Z_6, +_6)$ is a p-group.

Solution: $Z_6 = \{0,1,2,3,4,5\}$ and $|Z_6| = 6 \neq P^k$

 \Rightarrow Z₆ is not p- group.

Example(11-5): (Homework)

Determine whether (G_s, \circ) is a p-group.

Examples(11-6):

- $(Z_8, +_8)$ is a 2- group, since $|Z_8| = 8 = 2^3$,
- $(Z_9, +_9)$ is a 3- group, since $|Z_9| = 9 = 3^2$,
- $(Z_{25}, +_{25})$ is a 5- group, since $|Z_{25}| = 25 = 5^2$.

Theorem(11-7):

Let $H\Delta G$, then G is a p-group if and only if H and G/H are p-groups.

<u>Proof:</u> (\Rightarrow) Assume that G is a p- group, to prove that H and $^{G}/_{H}$ are p- groups.

Since G is a p-group \Rightarrow o(a) = p^x , for some $x \in Z^+$, $\forall a \in G$.

Since $H \subseteq G \Longrightarrow \forall a \in H \text{ group} \Longrightarrow o(a) = p^x$, for some $x \in Z^+$.

So, H is a p- group.

To prove G/H is a p- group.

Let $a * H \in {}^{G}/_{H}$, to prove o(a * H) is a power of p.

$$(a * H)^{p^x} = a^{p^x} * H = e * H = H, (a^{p^x} = e \text{ since G is a p-group})$$

$$\Rightarrow$$
 o(a * H) = p^x

 (\Leftarrow) Suppose that H and G/H are p-groups, to prove G is a p-group.

Let $a \in G$, to prove o(a) is a power of p.

$$(a * H)^{p^x} = H ... (1) (G/H)$$
 is a p-group)

$$(a * H)^{p^x} = a^{p^x} * H \dots (2)$$

From (1) and (2), we have $a^{p^x} * H = H \implies a^{p^x} \in H$ and H is a p-group,

$$\Rightarrow o(a^{p^x}) = p^r, r \in Z^+$$

$$\Rightarrow (a^{p^x})^{p^r} = e \Rightarrow a^{p^{x+r}} = e, x + r \in \mathbb{Z}^+,$$

$$\Rightarrow o(a) = p^{x+r}$$

Therefore, G is a p- group ■

Examples(11-8):

Apply theorem(2-7) on $(Z_{32}, +_{32})$.

Solution:

$$|Z_{32}| = 32 = 2^5$$
 is a 2- group.

By theorem (2-7), H and $^{\rm G}/_{H}$ are 2- groups.

$$o(G)/o(H) \implies o(H) = 2^x, 0 \le x \le 5.$$

$$o(H) = 2^0$$
 or 2^1 or 2^2 or 2^3 or 2^4 or 2^5 ,

$$o(H) = 2^{\circ}$$
 is a 2-group $\Longrightarrow o(G/H) = \frac{o(G)}{o(H)} = \frac{2^{\circ}}{2^{\circ}} = 2^{\circ}$ is a 2-group.

$$o(H) = 2^1$$
 is a 2-group $\Rightarrow o(G)/o(H) = 2^4$

$$o(H) = 2^2$$
 is a 2-group $\Rightarrow o(G)/o(H) = 2^3$

$$o(H) = 2^3$$
 is a 2-group $\Rightarrow o(G)/o(H) = 2^2$

$$o(H) = 2^4$$
 is a 2-group $\Rightarrow o(G)/o(H) = 2$

$$o(H) = 2^5$$
 is a 2-group $\Rightarrow o(G)/o(H) = 1$.

Remark(11-9);

If G is a non-trivial p-group, then $Cent(G) \neq e$.

Theorem(11-10):

Every group of order p2 is an abelian.

Proof: Let G be a group of order p², to prove G is an abelian.

Let Cent(G) is a subgroup of G.

By Lagrange Theorem o(G)/o(Cent(G)),

$$\Rightarrow p^2 /_{o(Cent(G))}$$

$$\Rightarrow o(Cent(G)) = p^0 \text{ or } p^1 \text{ or } p^2$$

If $o(\text{Cent}(G)) = p^0 \implies \text{Cent}(G) = \{e\}$, but this is contradiction with remark(2-9), so $o(\text{Cent}(G)) \neq p^0$.

If
$$o(Cent(G)) = p^2 = o(G) \Longrightarrow Cent(G) = G$$

 \implies G is an abelian.

If
$$o(Cent(G)) = p^1 \Rightarrow o(G/Cent(G)) = \frac{p^2}{p^1} = p$$

G/Cent(G) is a cyclic.

Therefore, G is an abelian

Remark(11-11):

The converse of theorem(2-10) is not true in general, for example $(Z_8, +_8)$ is an abelian, but $o((Z_8) = 2^3 \neq p^2)$.

Exercises(11-12):

- Let P and Q be two normal p-subgroups of a finite group G. Show that PQ is a normal p-subgroup of G.
- Determine whether (Z₁₂₅, +₁₂₅) is a p-group.
- Determine whether (Z₁₂₁, +₁₂₁) is a p-group.
- Determine whether (Z₄₁, +₄₁) is a p-group.
- Determine whether (Z₁₆, +₁₆) is a p-group.
- Determine whether (Z₆₂₅, +₆₂₅) is a p-group.
- Determine whether (Z₁₈₅, +₁₈₅) is a p-group.
- Determine whether (Z₁₂₈, +₁₂₈) is a p-group.
- Determine whether (Z₂₅₆, +₂₅₆) is a p-group.
- Determine whether (Z₁₀₀, +₁₀₀) is a p-group.
- Show that $G_{\ell} = \{\pm 1, \pm i, \pm j, \pm k\}$, is a p-group.

12. Sylow Theorems

Definition(12-1): (Sylow p- Subgroup)

Let (G,*) be a finite group and p is a prime number, a subgroup (H,*) of a group G is called *sylow p- subgroup* if

- 1. (H,*) is a p- group,
- (H,*) is not contained in any other p- subgroup of G for the same prime number p.

Example(12-2);

Find sylow 2- subgroups and sylow 3- subgroup of the group $(Z_{24}, +_{24})$.

Solution: The proper subgroups of the group $(Z_{24}, +_{24})$ are

- 1. $(\langle 2 \rangle, +_{24}) \Rightarrow o(\langle 2 \rangle) = 12 \neq P^k \Rightarrow \langle 2 \rangle$ is not p-subgroup.
- 2. $(\langle 3 \rangle, +_{24}) \Rightarrow o(\langle 3 \rangle) = 8 = 2^3 \Rightarrow \langle 3 \rangle$ is a 2-subgroup.
- 3. $(\langle 4 \rangle, +_{24}) \Rightarrow o(\langle 4 \rangle) = 6 \neq P^k \Rightarrow \langle 4 \rangle$ is not p-subgroup.
- 4. $(\langle 6 \rangle, +_{24}) \Rightarrow o(\langle 6 \rangle) = 4 = 2^2 \Rightarrow \langle 6 \rangle$ is a 2-subgroup.
- 5. $(\langle 8 \rangle, +_{24}) \Rightarrow o(\langle 8 \rangle) = 3 = 3^1 \Rightarrow \langle 8 \rangle$ is a 3-subgroup.
- 6. $(\langle 12 \rangle, +_{24}) \Rightarrow o(\langle 12 \rangle) = 2 = 2^1 \Rightarrow \langle 12 \rangle$ is a 2-subgroup.

<u>Theorem(12-3): (First Sylow Theorem)</u>

Let (G,*) be a finite group of order p^kq , where p is a prime number is not dividing q, then G has sylow p- subgroup of order p^k .

Example(12-4):

Find sylow 2- subgroup of the group $(Z_{12}, +_{12})$.

Solution:
$$o(Z_{12}) = 12 = (4)(3) = (2^2)(3)$$
, and $2 \nmid 3$

- \Rightarrow by first sylow theorem, the group $(Z_{12}, +_{12})$ has sylow 2- subgroup of order 2^2 .
- \Rightarrow ((3), $+_{12}$) is a sylow 2- subgroup.

Example(12-5):

Find sylow 7- subgroup of the group $(Z_{42}, +_{42})$.

Solution:
$$o(Z_{42}) = 42 = (7)(6)$$
, and $7 \nmid 6$

- \Rightarrow by first sylow theorem, the group $(Z_{42}, +_{42})$ has sylow 7- subgroup of order 7^1 .
- \Rightarrow ((6), +42) is a sylow 7- subgroup.

Example(12-6):

Find sylow 3- subgroup of the group $(Z_{24}, +_{24})$.

Solution:
$$o(Z_{24}) = 24 = (3)(8) = (3^1)(8)$$
, and $3 \nmid 8$

 \Rightarrow by first sylow theorem, the group $(Z_{24}, +_{24})$ has sylow 3- subgroup of order 3^1 .

$$\Rightarrow$$
 ((8), +₂₄) is a sylow 3- Subgroup.

Theorem(12-7):

Let p a prime number and G be a finite group such that $p^x \setminus o(G), x \ge 1$, then G has a subgroup of order p^x which is called sylow p- subgroup of G.

Example(12-8):

Are the following groups (S_3,\circ) and (G_s,\circ) have sylow p- subgroups.

Solution:

$$(S_3, \circ), O(S_3) = 6 = (2)(3),$$

 $2 \setminus 6 \Rightarrow \exists$ a subgroup H such that o(H) = 2 which is called sylow 2- subgroup.

Also, $3 \setminus 6 \Rightarrow \exists$ a subgroup K such that o(K) = 3 which is called sylow 3-subgroup.

$$(G_s, \circ)$$
, $o(G_s) = 2^3$ is 2-subgroup.

Every subgroup of G_s is 2-subgroup, $o(H) = 2^0$ or 2^1 or 2^2 or 2^3 .

<u>Theorem(12-9):</u> (Second Sylow Theorem)

The number of distinct sylow p-subgroups is k = 1 + tp, t = 0,1,... which is divide the order of G.

Example(12-10):

Find the distinct sylow p-subgroups of (S_3,\circ) .

Solution:

$$o(S_3) = 6 = (2)(3),$$

 $2 \setminus 6 \Rightarrow \exists$ a subgroup *H* such that o(H) = 2.

The number of sylow 2-subgroups is $k_1 = 1 + 2t$, t = 0,1,... and $k_1 \setminus 6$

if
$$t = 0 \Longrightarrow k_1 = 1$$
 and $1 \setminus 6$

if
$$t = 1 \Longrightarrow k_1 = 3$$
 and $3 \setminus 6$

if
$$t = 2 \Longrightarrow k_1 = 5$$
 and $5 \nmid 6$

if
$$t = 3 \Longrightarrow k_1 = 7$$
 and $7 \nmid 6$

so, there are two sylow 2-subgroups.

 $3 \setminus 6 \Rightarrow \exists$ a subgroup K such that o(K) = 3.

The number of sylow 3-subgroups is $k_2 = 1 + 3t$, t = 0,1,... and $k_2 \setminus 6$

if
$$t = 0 \implies k_2 = 1$$
 and $1 \setminus 6$

if
$$t = 1 \implies k_2 = 4$$
 and $4 \nmid 6$

if
$$t = 2 \Longrightarrow k_2 = 7$$
 and $7 \nmid 6$

So, there is one sylow 3-subgroup.

Example(12-11):

Find the number of sylow p-subgroups of G such that o(G) = 12.

Solution:
$$o(G) = 12 = (3)(2^2)$$

 $3 \setminus 12 \Rightarrow \exists$ a subgroup H such that o(H) = 3.

The number of sylow 3-subgroups is $k_1 = 1 + 3t$, t = 0,1,... and $k_1 \setminus 12$

if
$$t = 0 \Longrightarrow k_1 = 1$$
 and $1 \setminus 12$

if
$$t = 1 \Longrightarrow k_1 = 4$$
 and $4 \setminus 12$

if
$$t = 2 \Longrightarrow k_1 = 7$$
 and $7 \nmid 12$

if
$$t = 3 \Longrightarrow k_1 = 10$$
 and $10 \nmid 12$

So, there are two sylow 3-subgroups of G.

The number of sylow 2-subgroups is $k_2 = 1 + 2t$, t = 0,1, ... and $k_2 \setminus 12$

if
$$t = 0 \implies k_2 = 1$$
 and $1 \setminus 12$

if
$$t = 1 \Longrightarrow k_2 = 3$$
 and $3 \setminus 12$

if
$$t = 2 \Longrightarrow k_2 = 5$$
 and $5 \nmid 12$

if
$$t = 3 \Longrightarrow k_2 = 7$$
 and $7 \nmid 12$

So, there are two sylow 2-subgroups of G.

Remark(12-12):

The group G has exactly one sylow p-subgroup H if and only if $H\Delta G$.

Example(12-13):

$$(S_3, \circ), H = \{f_1 = i, f_2 = (123), f_3 = (132)\}$$

 $H\Delta G \Rightarrow H$ is a sylow 3-subgroup of S_3 ,

So, there is one sylow 3-subgroup of S_3 .

Exercises(12-14);

- Show that there is no simple group of order 200.
- Show that there is no simple group of order 56.
- · Show that there is no simple group of order 20.
- Show that whether (G_ℓ,·) is a sylow.

13. Solvable Groups and Their Applications

Definition(13-1):

A group (G,*) is called a solvable group if and only if, there is a finite collection of subgroups of (G,*), $H_0, H_1, ..., H_n$ such that

1.
$$G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\},\$$

2.
$$H_{i+1}\Delta H_i \ \forall i = 0, ..., n-1,$$

3.
$$H_i/H_{i+1}$$
 is a commutative group $\forall i = 0, ..., n-1$.

Theorem(13-2):

Every commutative group is a solvable group.

Proof:

Suppose that (G,*) is a commutative, to show that (G,*) is a solvable.

Let
$$G = H_0$$
 and $H_1 = \{e\}$

- 1. $G = H_0 \supset H_1 = \{e\}$
- 2. $H_1\Delta H_0$ satisfies, since $\{e\}\Delta G$, or (every subgroup of commutative group is a normal)
- 3. $G/\{e\} \cong G$ is a commutative group, or (the quotient of commutative group is a commutative)

So, (G,*) is a solvable group,

Example(13-3):

Show that (S_3, \circ) is a solvable group.

Solution: let
$$H_0 = S_3$$
, $H_1 = \{f_1 = i, f_2 = (123), f_3 = (132)\}$, $H_2 = \{f_1\}$

- 1. $S_3 = H_0 \supset H_1 \supset H_2 = \{e\}$
- 2. $H_2\Delta H_1$ satisfies, since $\{f_1\}\Delta\{f_1, f_2, f_3\}$, $H_1\Delta H_0$ is true,

3. To prove H_i/H_{i+1} is a commutative group $\forall i = 0,1$

$$o\left(\frac{H_1}{H_2}\right) = \frac{o(H_1)}{o(H_2)} = \frac{3}{1} = 3 < 6 \Longrightarrow \frac{H_1}{H_2}$$
 is a commutative group

$$o\left(\frac{H_0}{H_1}\right) = \frac{o(H_0)}{o(H_1)} = \frac{6}{3} = 2 < 6 \Longrightarrow \frac{H_0}{H_1}$$
 is a commutative group

Therefore, (S_3, \circ) is a solvable group.

Example(13-4): (Homework)

Show that (G_s, \circ) is a solvable group.

Theorem(13-5):

Every subgroup of a solvable group is a solvable.

Proof: let (H,*) be a subgroup of (G,*) and (G,*) is a solvable group.

To prove (H,*) is a solvable.

Since G is a solvable \Longrightarrow

there is a finite collection of subgroups of (G,*), $G_0, G_1, ..., G_n$ such that

1.
$$G = G_0 \supset G_1 \supset \cdots \supset G_{n-1} \supset G_n = \{e\},\$$

$$2. \ G_{i+1}\Delta G_i \ \forall i=0,\dots,n-1,$$

3.
$$G_i/G_{i+1}$$
 is a commutative group $\forall i = 0, ..., n-1$.

Let
$$H_i = H \cap G_i$$
, $i = 0, ..., n$

$$H_0=H\cap G_0, H_1=H\cap G_1, \dots, H_n=H\cap G_n=\{e\}$$

Each H_i is a subgroup of (G,*).

1.
$$H = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$$
 is hold

2.
$$H_{i+1}\Delta H_i \quad \forall i=0,\ldots,n-1,$$
 $H_i=H\cap G_i,\ H_{i+1}=H\cap G_{i+1}, \quad \text{since}$ $G_{i+1}\Delta G_i \Longrightarrow H_{i+1}\Delta H_i$

3. To prove H_i/H_{i+1} is a commutative group $\forall i = 0, ..., n-1$.

Let
$$f_i: H_i \longrightarrow {^G_i}/{_{G_{i+1}}}$$
, $i=0,\ldots,n-1$ such that $f_i(x)=x*G_{i+1} \forall x\in H_i\subseteq G_i$.

To prove f_i is a homomorphism,

$$f_i(x * y) = f_i(x) \otimes f_i(y)$$
?

$$f_i(x * y) = x * y * G_{i+1} = (x * G_{i+1}) \otimes (y * G_{i+1}) = f_i(x) \otimes f_i(y)$$

So, f_i is a homomorphism

 f_i is onto?

$$R_{f_i} = \{f_i(x) : x \in H_i\} = \{x * G_{i+1} : x \in H_i\} = f_i(H_i) \neq \frac{G_i}{G_{i+1}}$$

$$f_i(H_i) \subseteq {^G_i}/_{G_{i+1}} \Longrightarrow f_i$$
 is not onto

$$H_i/_{\ker f_i} \cong f_i(H_i)$$
 (by theorem of homomorphism)

$$\ker f_i = \{x \in H_i : f_i(x) = e'\} = \{x \in H_i : x * G_{i+1} = G_{i+1}\} = \{x \in H_i : x \in G_{i+1}\}$$
$$= \{x \in H_i : x \in H \cap G_{i+1}\} = H_{i+1}$$

so,
$$\binom{H_i}{H_{i+1}}$$
, \otimes \cong $(f_i(H_i), \otimes)$

$$f_i(H_i) \subseteq {}^{G_i}/{}_{G_{i+1}}$$
 and ${}^{G_i}/{}_{G_{i+1}}$ is a commutative

Hence, $f_i(H_i)$ is a commutative

Therefore, H_i/H_{i+1} is a commutative

So, (H,*) is a solvable

Theorem(13-6):

Let $H\Delta G$ and G is a solvable, then G/H is a solvable.

Theorem(13-7):

Let $H\Delta G$ and both H, G/H are solvable, then (G,*) is a solvable.

Proof: since (H,*) is a solvable \Rightarrow

there is a finite collection of subgroups of (G,*), $H_0, H_1, ..., H_n$ such that

1.
$$G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\},\$$

2.
$$H_{i+1}\Delta H_i \quad \forall i=0,\ldots,n-1,$$

3.
$$H_i/H_{i+1}$$
 is a commutative group $\forall i = 0, ..., n-1$.

Since $(G/_H, \otimes)$ is a solvable \Rightarrow

there is a finite collection of subgroups of (G,*), $\frac{G_0}{H}$, $\frac{G_1}{H}$, ..., $\frac{G_r}{H}$ such that

1.
$$\frac{G}{H} = \frac{G_0}{H} \supset \frac{G_1}{H} \supset \cdots \supset \frac{G_r}{H} = \{e\} = H$$
,

2.
$$\frac{G_{i+1}}{H}\Delta \frac{G_i}{H} \quad \forall i=0,\dots,r-1,$$

3.
$$\frac{G_i}{H} / \frac{G_{i+1}}{H}$$
 is a commutative group $\forall i = 0, ..., r-1$.

To prove (G,*) is a solvable group.

$$\frac{G}{H} = \frac{G_0}{H} \Longrightarrow G = G_0$$

$$\frac{G_r}{H} = H \Longrightarrow G_r = \{e\} \text{ or } G_r = H$$

$$H\Delta G_r \Longrightarrow H \subseteq G_r \Longrightarrow G_r = H$$

So, there is a finite collection $G_0, G_1, \dots, G_r = H_0, H_1, \dots, H_n$ such that

$$1. \ G=G_0\supset G_1\supset \cdots\supset G_r=H=H_0\supset H_1\supset \cdots\supset H_n=\{e\}.$$

2. To prove
$$G_{i+1}\Delta G_i \quad \forall i=0,\ldots,r-1$$

Let $x \in G_i$ and $a \in G_{i+1}$ to prove $x * a * x^{-1} \in G_{i+1}$

$$x \in G_i \Longrightarrow x * H \in \frac{G_i}{H}$$

$$a \in G_{i+1} \Longrightarrow a * H \in \frac{G_{i+1}}{H}$$

$$\frac{G_{i+1}}{H} \Delta \frac{G_i}{H} \Longrightarrow (x * H) \otimes (a * H) \otimes (x * H)^{-1} \in \frac{G_{i+1}}{H}$$

$$\Rightarrow (x*a*x^{-1})*H \in \frac{G_{i+1}}{H} \Rightarrow x*a*x^{-1} \in G_{i+1} \Rightarrow G_{i+1} \Delta G_i$$

3. To prove $\frac{G_i}{G_{i+1}}$ is a commutative group $\forall i = 0, ..., r-1$

$$\frac{\frac{G_i}{H}}{\frac{G_{i+1}}{H}}$$
 is a commutative group and $\frac{\frac{G_i}{H}}{\frac{G_{i+1}}{H}} \cong \frac{G_i}{G_{i+1}} (\frac{\frac{G}{H}}{\frac{K}{H}} \cong \frac{G}{K})$

$$\Rightarrow \frac{G_i}{G_{i+1}}$$
 is a commutative group

Therefore, (G,*) is a solvable group \blacksquare

Exercises(13-8);

- Show that every p-group is a solvable group.
- Show that (S₄, °) is a solvable group.
- Show that (Z₄, +₄) is a solvable group.
- Show that (Z₈, +₈) is a solvable group.
- Show that (Z₅, +₅) is a solvable group.
- Show that $(Z_6, +_6)$ is a solvable group.
- Show that (Z₁₂, +₁₂) is a solvable group.

Show that (Z₂₄, +₂₄) is a solvable group.

14. Applications of Group Theory

14-1 Cayley Theorem

Theorem(14-1-1): (Cayley Theorem)

Every group is an isomorphic to a group of permutations.

This means if (G,*) is any group, then $(G,*) \cong (F_G,\circ)$, where $F_G = \{f_a : a \in G\}, f_a : G \longrightarrow G \ni f_a(x) = a * x, \forall x \in G.$

Proof: define $g: G \to F_G$ by $g(a) = f_a, \forall a \in G$

To prove g is a homomorphism, one to one and onto.

1. g is a homomorphism, let $a, b \in G$

 $g(a * b) = f_{a*b} = f_a \circ f_b = g(a) \circ g(b) \Rightarrow g$ is a homomorphism.

2. g is a one to one, let g(a) = g(b), $\forall a, b \in G$

$$\Rightarrow f_a = f_b \Rightarrow f_a(x) = f_b(x) \Rightarrow a * x = b * x \Rightarrow a = b$$

 \Rightarrow g is a one to one.

3.
$$g$$
 is a onto, $g(G) = \{g(a) : a \in G\} = \{f_a : a \in G\} = F_G$

Therefore, $G \cong F_G \blacksquare$

Corollary(14-1-2):

Every finite group (G,*) of order n is an isomorphic to (S_n,\circ) .

Example(14-1-3):

Consider the following Cayley table of a group $(G = \{e, a, b, c\}, *)$

Prof. Dr. Najm Al-Seraji, Abstract Algebra 1, 2023

*	e	а	b	С
e	е	а	b	с
а	а	e	с	b
b	b	c	е	а
С	с	b	а	e

Show that (G,*) is an isomorphic to a subgroup of (S_4,\circ) .

Solution:

$$f_e = \begin{pmatrix} e & a & b & c \\ e & a & b & c \end{pmatrix}, f_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = (1)(2)(3)(4) = (1)$$

$$f_a = \begin{pmatrix} e & a & b & c \\ a & e & c & b \end{pmatrix}, \quad f_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = (12)(34)$$

$$f_b = \begin{pmatrix} e & a & b & c \\ b & c & e & a \end{pmatrix}, \quad f_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = (13)(24)$$

$$f_c = \begin{pmatrix} e & a & b & c \\ c & b & a & e \end{pmatrix}, \quad f_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = (14)(23)$$

Hence, (G,*) is an isomorphic to the subgroup of (S_4,\circ) :

$$\{(1), (12)(34), (13)(24), (14)(23)\}.$$

Example(14-1-4): (Homework)

Let $(G = \{1, -1, i, -i\}, \cdot)$ be a group, apply Cayley Theorem on G.

Example(14-1-5): (Homework)

Show that $(Z_3, +_3)$ is an isomorphic to a subgroup of (S_3, \circ) .

Exercises(14-1-6):

- Apply Cayley Theorem on (Z₄, +₄).
- Apply Cayley Theorem on (G = {±1, ±i, ±j, ±k},·).

- Apply Cayley Theorem on (G = {1, −1},·).
- Apply Cayley Theorem on $(G = \{A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, D = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \cdot).$

14-2 Direct Product

Definition(14-2-1):

Let (H,*) and (K,*) be two normal subgroups of (G,*), then (G,*) is called an internal direct product of H and K (G is a decomposition by H and K) if and only if G = H * K and $H \cap K = \{e\}$.

Example(14-2-2):

Consider the following Cayley table of a group $(G = \{e, a, b, c\}, *), a^2 = b^2 = c^2 = e$

* (e	а	b	С	
e	е	а	b	с	
а	а	е	с	b	
b	b	С	е	а	
с	С	b	а	е	
25.0	5000		1280	0.73	

Let $H = \{e, a\}$ and $K = \{e, b\}$, show that $G = H \otimes K$ is a decomposition by H and K.

Solution: H, $K\Delta G$ since G is a commutative group

$$H * K = \{e, a, b, c\} \text{ and } H \cap K = \{e\}$$

Hence, $G = H \otimes K$ is decomposition by H and K.

Example(14-2-3):

Let (G,*) be any group with H = G and $K = \{e\}$, show that

 $G = H \otimes K$ is a decomposition by H and K.

Solution: $H, K\Delta G$

$$H*K=G*\{e\}=G$$

$$H \cap K = G \cap \{e\} = \{e\}$$

Therefore, $G = H \otimes K$ is a decomposition by H and K.

Example(14-2-4):

Let $(Z_4, +_4)$ be a group. Is Z_4 has a proper decomposition.

Solution: the subgroups of Z_4 are Z_4 , $\{0,2\}$, $\{0\}$

Let
$$H = Z_4$$
 and $K = \{0,2\}$

$$H \otimes_4 K = Z_4 \otimes_4 \{0,2\} = Z_4$$

$$H \cap K = Z_4 \cap \{0,2\} = \{0,2\}$$

So,
$$Z_4 \neq Z_4 \otimes \{0,2\}$$

Let
$$H = \{0\}$$
 and $K = \{0,2\}$

$$H \otimes_4 K = K \neq \mathbb{Z}_4$$

Therefore, Z₄ has no proper decomposition.

Theorem(14-2-5):

Let H and K be two subgroups of G and $G = H \otimes K$, then $G/H \cong K$ and $G/K \cong H$.

Proof:

Since
$$G = H \otimes K \Longrightarrow H * K = G$$
 and $H \cap K = \{e\}$

$$G_{H} = H * K_{H}$$
 and $H * K_{H} \cong K_{H \cap K}$ (by second theorem of isomorphic)

$$G/_H \cong K/_{\{e\}} \Longrightarrow G/_H \cong K$$
 and

$$G_{K} = H * K_{K}$$
 and $H * K_{K} \cong H_{H \cap K}$

$$^{\mathrm{G}}/_{K}\cong ^{\mathrm{H}}/_{\{e\}} \Longrightarrow ^{\mathrm{G}}/_{K}\cong Hlacksquare$$

Definition(14-2-6):

Let $(G_1,*)$ and (G_2,\circ) be two groups, define $G_1 \times G_2 = \{(a,b): a \in G_1, b \in G_2\}$ such that $(a,b)\odot(c,d) = (a*c,b\circ d) \ni a,c \in G_1,b,d \in G_2$. Then $(G_1 \times G_2,\odot)$ is a group which is called an external direct product of G_1 and G_2 .

Example(14-2-7): (Homework)

Show that $(G_1 \times G_2, \odot)$ is a group.

Example(14-2-8):

Let
$$G_1 = (Z_3, +_3)$$
 and $G_2 = (Z_2, +_2)$. Find $G_1 \times G_2$.

Solution:

$$G_1 \times G_2 = Z_3 \times Z_2 = \{(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)\}$$

$$(1,1)\odot(2,1) = (0,0)$$

$$o(Z_3 \times Z_2) = o(Z_3) \cdot o(Z_2) = 6.$$

Theorem(14-2-9):

Let $(G_1,*)$ and (G_2,\circ) be two groups, then

- 1. $(G_1 \times G_2, \odot)$ is an abelian if and only if both G_1 and G_2 are abelian.
- 2. $G_1 \times \{e_2\} \triangle G_1 \times G_2$.
- 3. $\{e_1\} \times G_2 \triangle G_1 \times G_2$.
- 4. $G_1 \cong G_1 \times \{e_1\}$.
- 5. $G_2 \cong \{e_2\} \times G_2$.

Proof:

1. (\Longrightarrow) suppose that $G_1 \times G_2$ is an abelian, to prove G_1 and G_2 are abelian.

Let
$$(a, e_2), (b, e_2) \in G_1 \times G_2 \ni a, b \in G_1, e_2 \in G_2$$

Since $G_1 \times G_2$ is an abelian, then

$$(a, e_2) \odot (b, e_2) = (b, e_2) \odot (a, e_2)$$

$$(a*b,e_2)=(b*a,e_2)\Longrightarrow a*b=b*a$$

Hence, $(G_1,*)$ is an abelian.

Similarly that $(G_2,*)$ is an abelian.

 (\Leftarrow) suppose that $(G_1,*)$ and (G_2,\circ) are abelian, to prove $G_1 \times G_2$ is an abelian.

Let
$$(a,b),(c,d) \in G_1 \times G_2$$
, to prove $(a,b) \odot (c,d) = (c,d) \odot (a,b)$

$$(a,b)\odot(c,d)=(a*c,b*d)$$

$$(c,d)\odot(a,b)=(c*a,d\circ b)$$

$$a * c = c * a$$
 (G_1 is an abelian)

 $b \circ d = d \circ b$ (G_2 is an abelian)

$$\Rightarrow$$
 $(a,b)\odot(c,d) = (c,d)\odot(a,b)$

Therefore, $G_1 \times G_2$ is an abelian.

2. To prove $G_1 \times \{e_2\} \triangle G_1 \times G_2$

$$G_1 \times \{e_2\} = \{(a, e_2) : a \in G_1\} \neq \emptyset$$

To prove $(G_1 \times \{e_2\}, \odot)$ is a subgroup of $G_1 \times G_2$

Let $(a, e_2), (b, e_2) \in G_1 \times \{e_2\}$

$$(a, e_2) \odot (b, e_2)^{-1} = (a, e_2) \odot (b^{-1}, e_2^{-1}) = (a * b^{-1}, e_2)$$

So, $(G_1 \times \{e_2\}, \odot)$ is a subgroup of $G_1 \times G_2$.

To prove $G_1 \times \{e_2\} \triangle G_1 \times G_2$

Let $(x, y) \in G_1 \times G_2$ and $(a, e_2) \in G_1 \times \{e_2\}$

To prove $(x, y) \odot (a, e_2) \odot (x, y)^{-1} \in G_1 \times \{e_2\}$

$$(x*a*x^{-1},y*e_2*y^{-1})=(x*a*x^{-1},e_2)\in G_1\times\{e_2\}$$

Hence, $G_1 \times \{e_2\} \triangle G_1 \times G_2$.

- 3. (Homework).
- 4. To prove $G_1 \cong G_1 \times \{e_2\}$.

Proof:

Define $f: (G_1, *) \longrightarrow (G_1 \times \{e_2\}, \odot) \ni f(a) = (a, e_2)$

f is a map? let $a_1, a_2 \in G_1$ and $a_1 = a_2 \Longrightarrow (a_1, e_2) = (a_2, e_2) \Longrightarrow f(a_1) = f(a_2)$, so f is a map

f is an one to one ? let $f(a_1) = f(a_2) \Longrightarrow (a_1, e_2) = (a_2, e_2) \Longrightarrow a_1 = a_2$, so f is a one to one.

f is a homomorphism ? $f(a*b) = (a*b,e_2) = (a,e_2) \odot (b,e_2) = f(a) \odot f(b)$, so f is a homomorphism

f is an onto? $R_f = \{f(a): a \in G_1\} = \{(a, e_2): a \in G_1\} = G_1 \times \{e_2\}$ so f is an onto.

Therefore, $(G_1,*) \cong (G_1 \times \{e_2\}, \odot) \blacksquare$

5. (Homework)

Theorem(14-2-10):

Let $(G_1,*)$ and (G_2,\circ) be two p-groups, then $(G_1 \times G_2, \odot)$ is a p-group.

Proof:

Since G_1 is p-group $\Longrightarrow o(G_1) = p^{k_1}, k_1 \in Z^+$

Since G_2 is p-group $\Longrightarrow o(G_2) = p^{k_2}, k_2 \in Z^+$

$$o(G_1 \times G_2) = o(G_2) \times o(G_1) = p^{k_1} \times p^{k_2} = p^{k_1 + k_2}, k_1 + k_2 \in Z^+$$

Therefore, $G_1 \times G_2$ is a p-group \blacksquare

Exercises(14-2-11):

- Let $H = \{0,2,4\}$ and $K = \{0,3\}$ are subgroups of $(Z_6, +_6)$, show that $Z_6 = H \otimes K$ is a decomposition.
- Let H = {0}, show that Z₇ = H ⊗ Z₇ is a decomposition.
- Find Z₃ × Z₇.
- Is S₃ × Z₂ an abelian?
- Is G_s × Z₂ an abelian?
- Is S₃ × G_S an abelian?
- Is {±1, ±i} × Z₂ an abelian?
- Is $Z_4 \times Z_8$ a *p*-group?
- Is Z₅ × Z₂₅ a *p*-group?
- Is Z₁₁ × Z₁₂₁ a p-group?
- Is Z₇ × Z₄₉ a p-group?
- Is Z₂₇ × Z₃ a *p*-group?
- Is Z₅ × Z₁₂₅ a p-group?

- Is Z₂ × Z₆₄ a p-group?
- Is Z₄ × Z₁₂₈ a p-group?
- Is Z₉ × Z₈₁ a p-group?
- Is Z₂₇ × Z₈₁ a p-group?
- Is Z₁₂₈ × Z₈ a p-group?
- Is Z₂ × Z₂₅₆ a p-group?