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1. Definition and Examples of Groups.

i
1.

i

1.

iii.

A set (15 a group 1f it is satisfying the following four axioms

3 a binary operation G X G ~— G (closure) (a,b) — ab
a(bc) = (ab)c Va, b, c € G (associativity),
JdJl1€Gst.al=a=1laVa€Eel

iv. Ya€G,da*eGst.aa=1=a"'a (inverse)

. (R* =R\ {0},) is a group.

Solution: Ya, b,c € R*, we have
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i.ab € R, ii. a(bc) = (ab)c,iii. 31 € R*3al=a=1la,iv.Va € R ,3a™ ' =
%ER‘ Saal=1=ala

2.(Q* = Q\ {0},) is a group.

3.(C° =C\ {0},) is a group.

Solution: i, ii are clear,

iii. 31 € C* 3 (a + ib)1 = a + ib = 1(a + ib),

a—ih

iv. (a+ib)~! =

al+b®

4.(GL(2,R),") is a group.

Solution: i, i are clear,ii. 3 (] J) e ®a (3 ))(* 2)=(* )=

i
d —-b
¢ 56 9= ) -(CRS)

ad—bc ad-bc

5. (83,°) 1s a group.

Solution: S5 = {i,(12), (13), (23), (123), (132)}

o i (12) (13) (23) (123) (132)

i i (12) (13) (23) (123) (132)
(12) (12) i (132) (123) (23) (13)
(13) ? 2 ? 1 7 ?
(23) ? 1 : ? ? 2
(123) ? ? ' ? ) ?
(132) ? /3 ? 7 ? ?

We note that axioms i, i1 and iii from above table are satisfy axiom iv.
a i (12) (13) (23) (123) (123)
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a-l

a

]

b

g

7

6. (G = {0,-1,1,2}, +) is not a group.
Solution: since 1 +2=3€& G

1.(G = {—1,1},’) 1s a group.

Solution:

8. Let G = {a, b, c,d} be a set. Define a binary operation * on G by the following

table
* a b d
a a b d
b b c a
¢ c d b
d d a c

Show that (G,*) is a group.

Solution: axioms i,ii are satisfy from above table, iii. The identity element is a,

axiom iv.

9. (G ={1,-1,i,—i},”) is a group.
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Solution:
1 -1 ] -1
1 ? ) y, ?
=1 ) * ? ?

10.LetG =Z,a+b =a+ b+ 2, show that (G,*) is a group.

Solution: Va,b,c € Z, wehaveiasb=a+b+2€ Z,

iiLa*(b*c)=a+*(b+c+2)=a+b+c+4(a+*b)*c=(a+b+2)=

c=a+b+c+4,
iiia*u=a+u+2=au=-2,

ivasz=—-2=a+z+2=-2=z=—-—0a—-4

11. Let G = {fy, fo. f3, fu} with f; st i= 1234 are mappings on R \ {0} s.L

[Lx) =x.(x) ==x,fa(x) = i,f,;(r) = —f. Show that(G,e) is a group.

Solution:

o fi fa fa fs
£ ? ? ? ?
fz ? ? ? ?
fa ? ? ? ?
fa ? ? ? ?

12. LetG =RxR={(a,b):a,beE R,a+0} and * be defined by (a,b)*

(c,d) = (ac, bc + d). Show that (G,*) is a group.
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Solution: i. (a,b) * (¢,d) = (ac,bc +d) €G

i. (a,b) = [(c,d) = (e, f)] = (a,b) = (ce,de + ) = (ace,bce + de +
f).l(a,b) = (c,d)] = (e, f) = (ac,bc + d) * (e, f) = (ace, bce + de + [),

il (l’.l,f])*{x,}') =(ﬂ,b):ﬁ(ﬂxibx+}f) =(ﬂ.b)¢x= 1,51’+}F=b‘=¢
b+y=b=y=0,

iv. (a,b) * (w,z) =(1,0) = (aw,bw + 2) = (1,0) > w = ;—,ba‘l +z=

~b
0=z=—
a

13. Let (G,*) be an arbitrary group, the set of the functions from G into G with the
composition (Fg,°) is forms a group, where F; = {f;:a € G}, fi:G+— G s.t.

fo.(x)=a+*x,x €ELG.

Solution: i. Let f, f, € Fy,a,b € G
(far f)X) = fa (X)) = falb=x) =ax(b=x) = (@a*h) *x = faup(x) € Fg
i (o fo) © fo = faob © o = Faspyoe'= fastioc) = @ fioee = fu® (fo )

i, £ i an et NENNNL 5 £ = s = fun S o o £

iv. the invesse of f; inFgis f_-1,since foo fo-1 = foup1-fo g =Far1ofa =

fe

14. Let n be a positive integer and take w = cos ?ﬁ} + isin[zn—ﬂ} € C, then (C,, =

2

{1,w,w*, ...,w™ 1},) is an abelian group.

Definition(1-3): A group (G,*) is an abelianifa*b=b=+a Va,b € .

Example(1-4): Determine whether the previous examples are abelian .
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Exercises:

1. Determine whether (G,*) an abelian group.

e G=Za*b=a+b+3
G=RxR={(ab):abeR}st(ab)+*(cd) =(a+bb+d+2bd)
o (G ={fi,fofu [ fs: fe)o) where f1(x) = x, fo(x) ==, () =1 -

1

%, fo(x) = ==, f5(x) = == fo(x) = —
e G={(ab)abeRa#0>b=%0}s.t (ab)*(cd) = (ab,bd)
o (G =fan:n€Z}+)

. E:Q‘ja*b:%

2. Show that, (G = [(; 0 .(_ﬂl é) .(_01 —nl)‘(fl] _l,]l)],-) is a group.

3.  Show that, (Cg,) is an abelian group.
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2. Some Properties of Groups
Theorem(2-1): It (G,*) a group, then the left and right cancellation laws hold in
G, that is:

. geabh=gep=2h=¢

2. bra=cr*ra=b=cVab,cEQG.
Proof: 1. Supposea*b =a+*c,then3a™' € G
da~lsx(a*b)=al+(a*c)
= (a l*a)*b=(a1*a)*c
= esbh=ex*c
= b =c.

(2) (Homework).

Theorem(2-2): In a group (G,*), there is exactly one element e in G such that

exa=a+e=avae€ G.

Proof: Assume that G has two identity elements e and e”, this means for all a €

G.,wehavea+*e =esa=aanda*e* " =e“*a=a
e*e'=¢g'*e=ceande*re=¢e*xe" =" = e=e¢e".

Theorem(2-3): In a group (G,*), the inverse element of each element of G is a

unique.

Proof: Let a € G and a has two inverses x andx ", such that
a*x=x*a=eanda*x"=x"*a=e
my=rsp=xslasxy’)=xxa)x =axx’=Xx"

Theorem(2-4): If (G,#) is a group, then
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N T
2. (@) '=ava€eG
3. (a*xb)y'=b'*a ' Va,beG

Proof: 1. lete ' =x
Yx*xg=psx=x..1
erx=x*e=e..2

Fromland2, x=e = ¢!

= e.

2@ t=@)  re=(a) =@ *a)
=((a)1+a"l) va Zeva=a.

(I)since(a*P)EG=(a*b)"1EG

(a*b)+*(a*b) *=(a*b)1+(axb)=¢e

(a*b)+(a+*b) l=e

al+s(asb)+(a*b) t=al+e

(al+a)*b*(axbyl=a?

exhs(asxb) =al

b= sbs(a*b)y '=b"1xq"!

ex(a*b)"'=b"1xq?

(@sb)y"t=b"wg™™

Theorem(2-5): Let (G,+) be a group, then

i. (a+*b)™' =a™'+b Viff G is an abelian group.

ii. Ifa = a1, then G is an abelian group.
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Proof: i. (=) let (G,*) beagroupand (a*b) ™ =a ' » b~}
To prove (G,+) is an abelian group.
Leta,b €EG,toprovea*b=b+a YVa,beEG
a*b=(a*b)™")™

= (b~ +a~1)"1

= (b~1)"1 + (a~1)"}

=b+a
(<=) let (G,*) be an abelian group, to prove (a*b)™* =a'« b1
(gaxB) l=breg  =a»b™.
(i) leta = a™ 1,
toprovea*b=b+a VYa,beG
a*b=(a*b)'=b"1+al=b=xa.

Remark(2-6): The converse of above part is not true, for example let (G =

{1,-1,i,—i}) be an abelian group witha =i = a ' =—-i=a=#a™.

Theorem(2-7); In a group (G,*), the equations a+x = b and y*a = b have a

unique solutions,
Proof:a+*x=0b
=al's(a*x)=a'=*b
= (a"t*a)*x=a"'=*b
= e*sx=a'#*b

=x=a"1#*b
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To show the solution is a unique
Lletx*€G3a+*x"=bh
= a*x'=a*x

=X =X.

The proof of y * a = b (Homework).
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3. Certain Elementary Theorems on Groups.
Definition(3-1): Let (G,*) be a group, the integer powersof a, a € G is
defined by:

l.a =a=*ax*..=*a(n-times)
2. a% =@
3.a"=(@*')Y"'nelZt

4. aq"*' =qa"»ra,nelt
Example(3-2): In (R, +), we have
=0
*=3+3=6
33 =3 =(-3N+(-N+(=3)=-9

Example(3-3): In (R,"), we have

20 =1,
23=2.2-2=8

1 111 3 1
P =" I — (Y = e e = —
%’ (2:' v N B S

Example(3-4): In (G = {1,—1,i, —i},"), we have
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Theorem(3-5): Let (G,*) beagroupand a € G,m,n € Z, then:

l.a"«a™ = a™™ ¥n,me€Z (Homework)
2. (a®)M=a™ ¥YnmeZt
3 at={a") - VneEL"

4. (a*b)" =a™ = b" ¥ n € Z & ( is an abelian group.
Proof: (2) let P(m): (a™)™ = a™™
ifm=1=P1):(@a™)!=aq™ = a™?
= P(1) is a true,

Suppose that P(k) is atrue with k € Z*¥, k <m
— (a")k = qnk
We have to prove that P(k + 1) is a true
P(k + 1): (@)1 = qntk+1)
(@M)k*+1 = (a™)k = (@)
— gk o an

— ank+n

— gnik+1)

= P(k + 1) is a true
By the principle of mathematical indication

= P(m)isatrueVm € Z™.
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(i =1=Prkd* P =ar=")"
Suppose that if n = k is a true
= P(k): (a™")* = (@")~*
We must prove P(k + 1) is a true
P(k + 1): (a~1)k*1 = (gk+1)-1
(@~1)k+1 = (g~ 1)k « (g~1)1

= (a*)~1 % (@)1

= (gk+1)-2
= P(k + 1) is a true
By the principle of mathematical indication
= P(n)isatrue Vn € Z*.
@ (=)ifn=2= (a*xb)?=a?=b?
(a*b)+*(a+*b)=a*ax+b=+b
ax*(bxa)*xb=ax(a*b)*b
(bxa)*b=(axb)+hb
bxa=a=*bh
= ( 1s an abelian group
(<) let G be an abelian group and P(n): (a = b)® = a™ = b™

Ifn=1= (a*b)! =al*blisatrue
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Suppose that P(k) isatrue withk € Z*, k <m
3 P(k): (a * b)* = a* = b*
We must prove P(k + 1) is a true
P(k + 1):(a*b)**! = (a*b)* » (a=*b)?
N Ty .
= (a**b*) * (b a)
=a®*(b¥«b) xa
= ak » q * pk+1
— k¥l 4 ph+l
= P(k+1)isatruevneZ".

Definition(3-6): (The order of a Group)

The number of elements of a group G is called the order of G and it is
denoted by |G| or O(G). The group G is called a finite if |G| < o0 and an

infinite group otherwise.
Definition(3-7): (The order of an element)

The order of an element a, a € G is the least positive integer n such that
a™ = e where e is the identity element of G. We denoted to order a by |al

or 0(a). This means |a| =n if a® = e, n € Z".

Example(3-8): (Z, +) is an infinite group.
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Example(3-9): The trivial group G = {0}, |G| = 1, G is the only group of

order one,

Example(3-10): Find the order of ¢ and the order of their elements,
whereG = {1,-1,i,—i}.

Solution: |G| =4and |1| =1, |-1| = 2
li| = 4 and |—i| = 4.
Exercises:

¢ Find the order of (G = {1, —1},-) and the order of their elements.

¢ Find the order of (Cg,") and the order of their elements.

¢ Find the order of (S5,0) and the order of their elements.

e Let G = {a,b,c,d} be a set. Define a binary operation * on G by the

following table

* a b c d
a a b c d
b b c d a
c c d a b
d d a b c

Find the order of ¢ and their elements




Prof. Dr. Najm Al-Seraji, Abstract Algebra 1, 2023

4. Two Important Groups

Definition(4-1): Leta,b,n € Z, n > 0. Then a is congruent to b modulo n if a —

b =nk,k € Z and denotedbya = bora = b (mod n).

Examples(4-2):

1. 17 =5 (mod 6), since 17 = 5 = 12 = (6)(2).

2. 8= 4 (mod 2), since 8 — 4 = 4 = (2)(2).

3. =12 = 3 (mod 3), since =12 — 3 = =15 = (3)(=5):
4. 52 (mod 2),since5-2=3#(2)(k),YkKkEL.

Theorem(4-3): The congruence modulo n is an equivalence relation on the set of

integers,

Proof: leta,b,c,n€Z, n> 0
a—-a=0=Mn)0)=a=a(modn)
= the reflexive is a true,

If a = b (modn), toprove b = a (modn)
a=b(modn)=a-b=nk, k€ so
b-—a=-nk=n(-k),—-k €Z=b=a(modn)
= the symmetric is a true.

If a = b (modn)and b = ¢ (mod n), to prove a = ¢ (mod n)
Since a = b (mod n), thena — b = nk and

b = ¢ (modn), thenb — ¢ = nk*
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By adding these two equations
=a—-c=nk+k*)k+k*€el

= a = ¢ (modn)

= the transitive is a true.

= the congruence modulo n 1s an equivalent relation.

Definition(4-4): let a € Z,n > 0. The congruence class of a modulo n, denoted

by [a] is the set of all integers that are congruent to a modulo n.
This means, [a] = {z € Z: z = a ( mod n)}
={z€Z:z=a+knk €Z}

Example(4-5): if n = 2, find [0] and [1].

Solution: [0] ={z € Z:z =0+ 2k, k € Z}
={0,+2, 14, ...}
[1]={z€Z:z=1(mod 2)}
={zeliz=1+2kk € T}
= {£1,£3,15, ... }.

Example(4-6): if n = 3, find [1] and [7].

Solution: [1] = {z € Z:z = 1 ( mod 3)}
={z€Z:z=1+ 3k, k € T}
= {1,-2,4,7,-5, ...}

[7] ( Homework)
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Definition(4-7): The set of all congruence classes modulo n is denoted by Z,, (

which is read Z mod n). Thus,

Zn = {10,111 12], ..., [n - 1]}

OrZ,=1{012 ..,n-1}

Zn has n elements.

Example(4-8): Z; = {0}.Z, = {0,1}, Z3 = {0,1,3}.

Now, we define the addition on Z, ( write +, ) by the following: for any
[a], [b] € Z,, [a] +, [b] = [a+,D].

Similarly, we define the multiplication on £, ( write -, ) by the following: for any

[ﬂ}l: [b] € Ly, [{1] 'n [h] = [ﬂ-‘u *’ljl']m"""|a [ﬂ]-[b] €2

It is easy to note that (Z;,, +,) is an abelian group with identity [0] and for every
la] € Z,,[a]™* = [n — a]. This group is called the additive group of integers

modulo n.

Example(d-9): (Zy, +4). Zs = {0,1,2,3)

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0
3 3 0 1 2
1. The closure 1s a true.
il. The associative 1s a true.

iii. 0 is an identity element.
iv. Theinverse:1 ' =4~1=321=4-2=23"'=4-3=1.
V. An abelian: 14,2 =3 = 2+4+,1,14+,3 =0 = 3+,1.
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Example(4-10): (Z,,"4),

L2 It = 9
= = = = 2
%] [ = | =
[ ] o) B = B
— [ S 1 R 5 =

It is clear that we cannot have a group, since the number 1 is an identity, but the

numbers 0 and 2 have no inverses. Thus (£4,"4) isnot group.
The Permutations:

Definition(4-11): A permutation or symmetric of a set A is a function from A into

A that is both one to one and onto. f:A+~— A ( one to one and onto) and
Symm(A) = {f: f: A — A, f one to one and onto} the set of all permutation on A.
If A is the finite set {1,2, ...,n}, then the set of all permutation of A is denoted by
5,, where 0(5,,) = n!, wheren! = n(n - 1) ... (3)(2)(1).

Example(4-12): let A = {1,2}. Write all permutation on A.

Solution: f, = (1 g), fa = (; i)

S5, =Symm(d) = { f, = G g) 2= é ?)}

Example(4-13): let A = {1,2,3}. Write all permutation on A.

sowion = (2 2 5= 2 D= 2 D)

G2 A=G 2D A=( 2D

53 =Symm(A) = { fy, [, fa. fas [5: f6}. 0(S3) = (3)(2) = 6.
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Theorem(4-14): If A # @, then the set of all permutation on A forms a group
with composition of mapping. This means, let A # @, then (Symm(A),*) is a

group.

Proof: Symm(A) = {f: f: A ~— A is a mapping}

Since there is i4: A =— A a permutation on A

iy € Symm(A) = Symm(A) # @

(1) Closure: let f,g € Symm(A)

frA— A gA— A= fog:Ar— A= fog € Symm(A)

(i1) The associative is a true, since the composition of the mappings is an
associative,

(i) The identity: since iy € Symm(A) and igo f = foi, = f, forall f in
Symm(A) = iy, is an identity element.

(iv) The inverse: VY fiAw— A3 f1A— A= f~! € Symm(A) and
fofl=f"1of=[4= (Symm(A),e)isa group.

Example(4-15): let A = {1,2,3}, then S5 = { f1, fo. f5. fa. f5. fe} and (S3,0) is a

group. This group is called a symmetric group.

@ fi fa fi fi fs fe
f fi f2 f3 fa f5 fe
f2 f2 fa fi fs fe fa
f3 fi fi fa fe fa fs
fa fa fe fs fi fa fz
fs fs fa fe fa fi f3
fe fe fs fa fa fa h

(53,2) is not an abelian group.

Definition(4-16): (The dihedral group D,, of order 2n)

14
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The n-th dihedral group is the group of symmetries of the regular n-gon, 0(D,,) =
2n.

Dy: is the third dihedral group. 0(D3) = (2)(3) = 6.

Example(4-17): the group of symmetries of square Dy or Gg,0(D,) = 8, G =

D, = {ry, 15, 13,13, 0, h, Dy, D5}, where r; is a clockwise rotation.

(1) Write all elements of G¢ as a permutation. (Homework)

(ii) Is (Gg,2) an abelian? Use table (Homework).

Definition(4-18): A permutation f of a set A is a cycle of length n if there exist
@y, az,...,8n € A such thatf(a,) = ap, f(az) = as, .wiflan=y) = a,, flay) =

a; and f(x) = xforx € Abut x € {a,,as, ..., a,}. we write f = (aq,az, ..., a,).

Example(d-19): If A = {1,2,3,4,5}, then

3
G 2 s

; 2) = (1,354) o (2) = (1,354)

Observe that,

(1,3,54) = (3,54,1) =(5,4,1,3) = (4,1,3,5).

Example(4-20): Let A = {1,2,3,4,5,6} be a set of a group S;. Then

1 2 3_.48% @\ _ L - .
(2322 8=0142:03) 66 =142):56)

And
12345 6_ ; v
(6 23835 9)=0600245003) =(16)(245)

These permutations above are not cycles.

Theorem(4-21): Every permutation f of a finite set A is a product of disjoint

cycles.
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Definition(4-22): A cycle of length two is a transposition.

Example(4-23): The permutation f = G i g ;) = (24) is a transposition.

Propertv(4-24): Any permutation can be expressed as the product of
transpositions. This means (a,,as, ...,a,) = (a,az)(a;az) ... (a;a,). Therefore

any cycle is a product of transposition.

Example(4-25): We note that (16)(253) = (16)(25)(23).

Definition(4-26): A permutation is even or odd according as it can be written as

the product of an even or odd number of transpositions.

2 3

Example(d-27): Let f =(; e

) € S3. Is f even or odd permutation.

Solution: = ( f §)=(132}= (13)(12)

f has two transpositions, thus f is an even permutation.

Example(4-28): Determine an even and odd permutation of D,. (Homework)

Definition(4-29): (Alternating group)

The Alternating group on n letters denoted by A,, is the group consisting of all

even permutations in the symmetric group S,.

|
04,) =5 Ay < S,

_w_LExﬂm le(4-30): Let 53 = {fli fZJ fSJ f4! fEifﬁ}" then A? = {I, fZJﬁi} 15 a Huhgmup
of $3. 0(A;) =2 =3

Example(4-31): Find A, from 5,. (Homework)
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5. Subgroups and Their Properties

Definition(5-1): Let (G,*) be a group and H € G, H a non-empty subset of G.
Then (H,*) is a subgroup of (G,*), if (H,*) is itself a group.

Definition(3-2): Let (G,*) be a group and H € G, then (H,+) is a subgroup of
(G,#) if,

l. Vab eH=a+b€H;
2. The identity element of G is an elementof H, (e € G = e € H);
3. VaeH=al€H.

Remark(5-3): Each group (G,*) has at least two subgroups ({e},*) and (G,*),
these subgroups are known trivial subgroups and improper, any subgroup different

from these subgroups known proper subgroup.
Example(5-4): (Z, +) is a proper subgroup of (R, +).
Example(5-5): (H = {—1,1},) is a proper subgroup of (G = {—-1,1, =i, 1},").

Example(5-6): (H = {0,2},+4) is a proper subgroup of (Z4,+4), but (H =
{0,3}, +4) not subgroup of (Z,, +,).

Example(5-7): (Q \ {0},) is a subgroup of (R \ {0},).

Theorem(5-8): Let (G,+) be a group and H € G, then (H,*) is a subgroup of (G,*
Yiff a*b™ €H, Ya,b €H.

Proof; (=) let (H,*) be a subgroup of (G,*) and a,b € H, then a,b™ € H =
a*b™' €H

(=) leta b~ € H, to prove (H,*) be a subgroup of (G,*)

l. Since H#@=3b€eH 3b*b'€eH =e€H:
2. Sincehbe HandeeH =exb e H=b"1eH:;
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3. leta€H and b'eH=a+(b ') 'eEH=a+beEH=(Hx) is a

subgroup of (G,*).

Example(5-9): Let (Z,+) be a group and H = {5a:a € Z}. Show that (H,+) is a

subgroup of (Z, +).

Solution: let x,y € H,toprovex + y ' € H
xEH=x=5aa€Z

YVEH=y=5bbeL

x+y '=5a+((5b)'=5a+5(-b)=5(a-b)EH
= (H, +) is a subgroup of (Z, +).

Theorem(5-10): If (H;,#) is the collection of subgroup of (G,#), then (N H;,*) is
also subgroup of (G,*).

Proof: 1. Since Je € H;,,Vi = e €N H, =N H; + 0;
2.letx,y €N H;, to prove x * y~1 €n H;

Since x,y ENH, =x,yEH, Vi=x+y™ ' € H, Vi
= x*y ' €N H; = (N H,,*) is a subgroup of (G,*).

Theorem(5-11): Let (H;,*) be the collection of subgroups of (G,+) and let H;, and
H; € {H;} such that there is H, € {H;}, H, & Hyand H; & Hg, then (UH;,*) is

also subgroup of (G,*).

Proof: 1. Since 3e € H; for somei = e € UH; = UH; # 0:
2.letx,y € UH;, thenx,y € Hyorx,y € H;,sox,y € H;
=x+y e Hr=x+y 1 € UH,

= (UH;,*) is a subgroup of (G,*).
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Theorem(5-12): let(H,,*) and (H;,*) are two subgroups of (G,®). then
(H,UH,,#) is a subgroup of (G,#) iff H, c H, or H, € H,.

Proof: (=) let (H,UH,,*) is a subgroup of (G,*),

to prove H, € H, or H, € H,

suppose that H, & H, and H, & H,

— Ja€H,a€ Hand3b € H,,b & H;

=abeH,UH, =a+b™ "' € HUH,

= a+bleHora+sb ' €EH,

= a,b € H, or a,b € H,, but this is contradiction

= H; € H, or H, € H,

(=)letH; c H,or H;, ¢ H;

To prove (H;UH,,*) is a subgroup of (G ,*)

If H, € H, = H,UH, = H, is a subgroup of (G,*)

If H, ¢ H; = H,UH, = H, is a subgroup of (G,*)

= (H,UH,,*) is a subgroup of (G ,*).

Remark(5-13): (H;UH;,*) need not be a subgroup of (G,*), for example:
H; = {ry,r3} is a subgroup of Gs

H; = {ry, v} is a subgroup of Gs

HiUH; = {ry, 3, v} is not a subgroup of Gg, sincery o v =h & H;UH;.

Definition(5-14): Let (G,*) be a group and (H,*), (K,*) are two subgroups of (G ,*
). then the product of H and K is the set:

Al
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H+K={h+k:he€HkeK)

Notes(5-15):

1

[

3

H + H is write H?:
IftH={a},then H+*K =a+K . If K ={b},thenH +* K = H +b;
HUK € H =K.

Theorem(5-16): Let (,*) be a group and (H,*), (K,*) are two subgroups of (G,=

). then

1

2
3
4

H+K#Qand H=+K S G.
HESH+Kand K S H+K.
(H * K,*) is a subgroup of (G,*) iff H+*K =K = H.

. If (G,*) is an abelian group, then (H * K,*) is a subgroup of (G,*).

Proof:

1.

e€EH and eEK = exe=e€EH+K=H+K+0, and let x€EH *
K=x=a+*b3aeHCEG,andbeEKEG=a€G,andbeElG =a+*
b=x€G=H=+KcaG.
letxEH=x=x*e€cH+sK=x€EH+*K=HGCH=+=K, simlarly,
KEH=+K.

(=) suppose (H * K,*) is a subgroup of (G,*), to prove H*K =K+ H,
this means H* K S K+H and KsHES H+*K, letxEH*K=x=a=*
b3a€Hand b€ K, since H + K is a subgroup of G = x"' € H + K, let
¥l=c+*dd3c€EH andd €K, x=(x"V)1=(crd)y*=d +c '3
d'€K andc'€EH=x=d '+c'€EK+H=H+KCSK+H, to

prove K * H € H * K (Homework).
(=) letH * K = K # H, to prove (H = K,*) is a subgroup of (G,*)

H+*K+@andH +K S G (by 1)
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Letx,yEH+K,toprovex*y '€H=+K

xXEH+*K=x=a+*+b3a€Handbe H

yvEH+K=y=c+*d3c€Handd € H

x*y l=(ash)*(c*d)™"
=(@a*b)*(d 1+c™})
=a*(bxd V) +c?

= (b+d VDsrcleK+H=H=+K

= (b+d VDsc'eH+K

= 3IpeEH,gEK3(b+xd N+c =pxg

=a*(bsrdV)s*cl=a+p+qeH=+K

= x*y leH=+K

= (H * K,*) is a subgroup of (G,*).

4 H+K #0,letx, yEH=*K
Toprovex*y '€ Hs+ K
xEH+rK=x=a+*b3a€eHandbeEK
YyEH+*K =y=c+*d3c€EHandd €K
xxy t=(asb)*(cxd)”?

= (axb)*(d"ltc"lj
=(a*b)*(c'+d™?)
=a+(bect)xd™?

=(a*cVH+(bxd™)
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= x*y leH=K
= (H += K,*) is a subgroup of (G,*).

Example(5-17): In (£, +4). let H = {0,4} and K = {0,2,4,6}. Find H+4K.

Solution: H+ ;K = {0,2,4,6}.
Note(5-18): Let (H,*) and (K ,*) are two subgroups of (G,*), then:

1. H+*K # K = H;
2. (H * K,*) need not be a subgroup of (G,*), give example (Homework).

Example(5-18): Is H = {0,6} is a subgroup of (Zg, +5)? (Homework).
Example(5-19): Is H = {0,12} is a subgroup of (Z4, +4)? (Homework).

Definition(5-20): The center of a group (G,+*) denoted by Cent(G) or C(G) is
thesetC(G) ={c€EG:c*x=x=+c,¥V X E G}

Note(5-21): C(G) # Q.sinceJe €E G Ierx =x+e VX EG = e € ((G).

Example(5-22): The group (R\ {0},), C(R) = R, since (R\ {0},") is an

abelian group.

Example(5-23): The group (S3,0), C(S3) = {f1}, since

C(S3)={f€Ss:fog=gef Vg€ S3}={fi}

Theorem(5-24): Let (G,*) be a group. Then(C (G ),*) 1s a subgroup of (G,*).

Proof: C(G) # 0.C(G) ={a€G:x+*+a=a*x,VXEG}IS G
leta,b € C(G).toprovea *b~! € C(G)
a€EC(G)=a+x=x+aVx€EG

beC(G)=b+x=x+bV¥x€EG
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Toprove (a*b ™) *x=x+*(a*b"') VXEG
(a*b ) xx=a*(b"1*x)
=ax*(x"'+b)"?
=aw{bsx )1
=ax*(x*b7")
=(a*x)*b!
=(x*a)+b™?!
=x+(axb™')
= (a*b™1) € C(G)
= (C(G),*) is a subgroup of (G,*).

Theorem(5-25): Let (G,*) be a group, then C(G) = G iff G is an abelian
group.

Proof: (=)Va€ G =ae€ C(G)

= a*x=x*aVx€EGl

= a*x=x*aVx,a€G

= ( is an abelian group.

(<) suppose that G is an abelian group, to prove C(G) = G
This means C(G) € G and G € C(G)

By definition of C(G), C(G) S G

To prove G € C(G)

Let x € G, G is an abelian group
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= x*a=a*x Vaei
= x € C(G)
= 0 < C(G)

= C(G) = 6.
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6. More Results of Subgroups
Cyclic Group:

Definition(6-1)Let (G,*) be a group and a € G, the cyclic subgroup of G
generated by a is denoted by {a) and defined as

(a) = {a“: ke Z})={...at,a%al,..}
If G = {(a), then G is called a cyclic group.

Definition(6-2): A group (G,*) is called cyclic group generated by a iff Ja € ¢ 3
G = (a) = {a“: k € Z}.

Example(6-3): In (Z,5, +4). find the cyclic subgroup generated by 2,3,1.
Solution: {(2) = (2%, ke Z}={.., 273,272,271, ¥, 2%, 24,23, ...}
={...3.5,7,0,246, ..} ={0,1,2,.. 8} =24
= Zg 1s a cyclic group generated by 2.
{3y =1..,37%,37%,37%,3%,3,3%,5,...]
={...,3,6,0,3,6, ...}
= {0,3,6} 1s a cyclic subgroup of Z,.
=L 0N 3 1511517, .
={...6,7,80,1,2,3,..}
= Zg 1s generated by 1.
Example(6-4): In (Z, +). find a cyclic group generated by 1,2, —1.
Solution: (1) = {1, k€ Z} ={..,173,175,171,1%,1%, 12,13, ..}

={..,—3,-2,-1,01,23,..} =2
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2)={2%keT}={.,273,272,271,20,21,22,23,..)
={..,=6,-4,-2,02,46,..} # Z,

(=1) = {(-1)*, k € 2}
={..,.(-1)73, (=14 (-1 (D% (-1 (-1)% (-1)3,...}
={..,21,0,-1,-2,..}=Z

= (Z,+) is a cyclic group generated by 1 and —1.
Example(6-5): Is(53,2) a cyclic group?
Solution: {f,) = {fi*, k€ Z} = (... AL A LA LA AL AR )
={h}# 5,
) ={p" " ket}= (. L LN A1 )
={.. 3 f1. fos fas -}
={fufufs} # 53
(fad = {fu fa. f3)} # 53
(o) = U fi) # 53
(fs) = 1. s} # 53
(fe) =1 fs} # 53
= (§3,°) is not a cyclic group.
Example(6-6): In (Zg, +¢), find a cyclic subgroup generated by 1,2,5. (Homework)
Theorem(6-7): Every cyclic group is an abelian.
Proof: let (G,*) be a cyclic group, = 3a € G 3 G = (a) = {a*, k € Z}

To prove G is an abelian group
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letx,yEG,toprovex*y=y*xVx,YVEG
xEG={a)=>x=am"3me &
yeEG={a)=y=a"2ne L

ek U W i el ot i T

= ( is an abelian group.

Note(6-8): The converse of above theorem is not true in general, for example.
(G={e,abcl)a3a’=b=c?=¢
=e=ara=p=a"=u
PP=e=bsb=e=bl=b

t=g=mcnc=e=c 1=

gz pmyprlay Yy

= (G,#) is an abelian group, but (G,*) is not a cyclic group, since
ey ={e}+ G

(a) = {a*, ke Z}={e,a} #G

(by={b* ke B} ={e,b}#GC

() ={c%keZ}={ec}+G

= (G,*) is not a cyclic.

Theorem(6-9): {(a) = {(a '} Va €.

Proof: (a) = {a*, k € Z} = {(a™ )%, -k € 7}

={(aY",m=-k€eZ}=(a").




Prof. Dr. Najm Al-Seraji, Abstract Algebra 1, 2023

Theorem(6-10): If (G,*) is a finite group of order n generated by a, then G =: {a) =
{a® kel}= {al,az, ...,a™ = e}, such that n is the least positive integer 3 a" = e,

this means 0(a) = n = 0(G).

Example(6-11): Show that (Z,,, +,,) is a cyclic group.
Solution: Z,, = {0,1,...,n— 1}

0(Z,) =n,toprove Z, = (1}

(L ={%kkel}={11%1 . ..1"=0)
={123,..,n=0}=2Z,

= Z, ={1)and 0(Z,) = 0(1) =n.

Definition(6-12): (Division Algorithm for Z)

If a,b are integers, with b > 0. Then there is a unique pair of integersq,r 3 a =

bg+r,0<r<b.

The number g is called the quotient and r is called the remainder when a is divided

by b.

Example(6-13): Find the quotient g and remainder r, when 38 is divided by 7

according to the division algorithm.
Solution: 38=7(5)+3,0<3<7
=qg=5 r=3.

Example(6-14): a = 23,b = 7.
Solution: 23 =7(3)+2,0<2<7
=qg=3 r=_2

Example(6-15): a = 15,b = 2.
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Solution: 15=2(7)+1,0<1<2

=qg=7 r=1.

Theorem(6-16): A subgroup of a cyclic group is a cyclic.
Proof: let G be a cyclic group generated by a and let H be a subgroup of G
If H = {e}, then H = (e) is a cyclic

If H # {e} and H # G (H is a proper subgroup), then
XEH=x=a"mel
xleH=x1=a™-meZ

Let m be a least positive integer such that a™ € H

to prove H = (a™) = {(a™)9: g € £}

to prove H € (a™),{a™) € (a™)
letyeEH=y=a’s€L

by division algorithm of s and m
s=mg+r=r=s5—mg

a=a""" =q’ x(a"™)0,0<r<m

a eEHhmil<r<m=r=0=s=mg
a®*=(a™)4 € (a™)

y=a*€e (g™ =HS {a™)

To prove (a™) € H

letxe{a™)=x=(a@m)9,gelk

a"€H = (@) €H=x€H= {(@a™)SH
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=» (H,*) is a cyclic subgroup.

Corollary(6-17): If (G,#) is a finite cyclic group of order n generated by a, then

every subgroup of G is a cyclic generated by a™ 3 nl;
Proof: suppose (G,*) is a finite, 0(G) = n

G = {(a) = {a,a%,..,a" = ¢}

Let (H,#) be a subgroup of (G,*), then(H,+) is a cyclic
such that H = {a™), to pmve% (n=mg, g €Z)

e € H = a" € H, by division algorithm of n, m
=n=mg+r,0<sr<m

r=n-mg=a =a"*(@m)™?

a" EH,butd<r<m

Irr=[]=&n=mg=:-%.

Example(6-18); Find all subgroups of (Z,5, +15).
Solution: 0(Z;5) = 15, H = (1™), E
Ifm=1=H; =2,

Ifm=3=H, ={3,69,12}

Ifm =5 = H; ={5,10,0}

If m =15 = H, = {0}.

Corollary(6-19): If (G,+) is a finite cyclic group of prime order, then G has no a

proper subgroup.
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Proof: let (G,*) be a finite group such that

0(G) = p (p is a prime number)

G = {a) = {a,a?,...,aP = e}

Let (H,*) be a cyclic subgroup
H={ﬂm}3£_—:}m= lorm=p

Ifm=1= H = {a) = G (not a proper subgroup)
Ifm=p= H = {aP = e) = {e} (not a proper subgroup)
= ( has no a proper subgroup.

Example(6-20): Find all subgroup of (Z5,+7).
Solution: 0(Z;) =7

LetH=(1"), ==m=1or m=7
Ifm=1=H,=(1)= 2,

Ifm=7= H, =(17) = {0}

Definition(6-21): A positive integer ¢ is said to be a greatest common divisor of two

non-zero numbers x, y iff

L
T

E]

o C
2. f2 £=2%
[1} il il

Example(6-22): Find g. ¢. d. (12,18).

Solution: g. c. d. (12,18) = 6, since
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12 18
2. = T=

R | o

12 1
Tra

=]

=

12 1f
_l -—=
2 2

Ll

Remark(6-23): If (G,*) is a finite cyclic group of order n generated by a, then the

generator of G is a* 3g.cd(kn)=1.
Example(6-24): Find all generators of (£, +4).
Solution: O(Z,) = 6, Z, = (1)

Z,={1%) agcd(k6)=1k=12345
k=1=g.cd(1,6)=1= 24 =(1)
k=2=g.0d.(2,6) # 1 = Z; # (12) =(2)
k=3=pg0d.(36) #1=Z; #(1%)=(3)
k=4=gcd(46)+1=2Z,#(1%) =(4)
k=5=gcd(56)=I'=2, = (1°) = {5)
therefore, the generators of Z are 1,5.
Theorem(6-25): It (G,+) is an infinite cyclic group generated by a, then:

|. The numbers a,a™! are only generators of G;

2. Every subgroup of G except {e} is an infinite subgroup.
Proof: (1) suppose G = (a), to prove G = {(a™ 1)
Leta€G 3G ={a)={..,a%a1,a%al,a?..}

Letb€G3G ={b)={...,b7%,b71,b° b, b%, ..}




Prof. Dr. Najm Al-Seraji, Abstract Algebra 1, 2023

aeEG={a)=a=b",rel..1
beG={ay=b=a*se€l..2

Substitute 1 in 2, we get b = (b")* = bl = p™*
l=rs=r=5=1 o r=s=-1
r=s=1=ag=0=04=(a)

Ity =ge—] s bag ey f={a).

(2) let (H,*) be a subgroup of (G,*) 3 H # {e}
To prove (H,#) is an infinite

Suppose that (H,#) is a finite such that O(H) = k
(H,*) is a cyclic subgroup

H = (@) = {(@™)*, @™)?,...@")* = e)

a™* = ¢ = 0(a) = mk = 0(a) = O(G). but this is contradiction
(G = {a), G is a finite)

Thus, (H,*) is an infinite.

Definition(6-26): Let (H,*) be a subgroup of a group (G,#). The seta+ H = {a *

h:h € H} of G is the left coset of H containing a, while the subset H +a ={h+

a: h € H} is the right coset of H containing a.

Example(6-27): If (Z;,+4),a = 1,H = {0,2,4}, then

14¢H = {1,3,5)}, H+¢1 = {1,3,5}

3+6H = {3,5,1}, H+43 = {3,5,1}
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Notes(6-28):

|. a =+ H is not subgroup ( in general), give an example (Homework);

2. a+*H # H *a (in general), for example
(S3°), H={fufil a=f
LeH={fufs}, Hefy={2fs)
= foboH#Hof,,

Theorem(6-29): Let (H,+) be a subgroup of (G,*) and a € G, then

1. H is itself left coset of H in G.
Proof:e €EG,e+H={e+h:he H}=H.

2. If (G,#) is an abelian group, thena * H = H * a.
Proof:a*H ={a*h:heH}={(h+a:h€H}=H*a.
The converse of above theorem is not true in general, for example
(Sa0),  H={fi,fa.i a=fs
facH={fs.fs.fs},  Hefo=1{fs.fe [5}

= f, o H = H e f,, but (55,°) is not an abelian.
3.aca*H
Proof:a=a*e€a=+H.
4. a*H=Hiffa€e H
Proof: (=) suppose thata + H = H,thenby3 = a € H.
(=) suppose thata € H,toprovea * H = H

Thismeansa*HC HandHC a*+ H
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letx€a+*H=x=a+*+heEH=a+*HCEH

Toprove HESa+H

letheH =b=e+«b=(a*a ' )+*+b=a+*(a*+*b)=b€a+H

=HGCasxH=H=a+H.
5.a*H=b=+Hiffa '+beH

Proof: (=)a+H =b+H

alsx(asH)=a'l+(b=*H)

(at*a)*H=(a"t+b)+H)

H=(a'*a)*H.by4=a '+b€H

() suppose thata™ ' =bh € H

by4=(a '*b)+*+H=H=bs+H=q+H.
6. a*H=bs+Hor (a+H)n(b=H)=0

Proof: suppose that (a* H)n(b+H)# 0

Toprovea+*H =b+H

dx3x€a+*Handx€b+H

x=a*handx=b+h, 3h;,h, €H

ashy=bs+h,=hy=a'+b=+h,

= h,*+h, "=al+beH

byS=a+*H=b+H

orsupposea*H b+ H

toprove(a*H)Nn(b+*H) =0




Prof. Dr. Najm Al-Seraji, Abstract Algebra 1, 2023

suppose (a *H)N(b+H) # 0
dx€Ea*Handx € b+ H
x=axhyandx=b=h,
alsb=h*+h, "=a'+beH
= a*H = b+ H, but this is contradiction
= (a+H)n(b+H) = 0.
7. The set of all distinct left coset of H in G form a partition on G.
Proof: oprove G = Ugega*Handa; *Hnag;+H=10
a; * H,a; * H are distinct = a;*HnNa;j«H =0
Toprove G = U ega+H

a*H S G Va € G (by definition of a coset)

=}Ua*HEG...1

acl

YVaeEG=acea+*H=ae€ Ua*H

=
:«GEU&*H...E

acls

From 1,2, we have (G = Ugeca+ H.

Note(6-30): Every coset (left or right) of a subgroup H of a group (G,+) has the same

number of elements as H.

Example(6-31): The group (Zg, +¢) is an abelian. Find the partition of Z; into coset
of the subgroup H = {0,3}.

Solution: 0 + H ={03}=H
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14+ H ={1,4)
2 4+ H ={2,5)
3+ H = {3,0}
4+ H = {4,1)
5+ H = {52}

All the cosets of H are {0,3},{1,4},{2,5} and since (Z;, +¢) is an abelian group, then

the left coset is an equal to the right coset.

Example(6-32): In (53,0), let H = {f}, fs}. Find the partition of §; into left coset of

H and the partition into right coset of H. (Homework)

Definition(6-33): Let (H,*) be a subgroup of a group (G,*). The number of left

cosets or right cosets of H in G is called the index of H in G and denoted by [G: H].

Note(6-34): If (G,#) is a finite group, then [G: H] = %.

Example(6-35): (S3,2), H = {fi1. [ f3}

Example(6-36): (Zs, +¢), H = {0,3}

0(Z) 6
O(H) 2~

= [Zs:H] = 3

Theorem(6-37): (Lagrange Theorem)

Let H be a subgroup of a finite group (G,*). Then the order of H is a divisor of the
order of G.

Proof: let G be a finite group 3 O(G) = n and H be a subgroup of G 3 O(H) = m
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To prove %(m pmva}%,n = mk)

Since G is a finite = [G: H] = k

Leta, *H,a, * H,...,a; » H are left cosets of H
a,*HUa,*HU ..VUa,*H=Ganda;*HnNna;+*H=0
O(a, *H) + O(ay * H)+ -+ 0(a, * H) = 0(G)

m+m+ -+ m(k-times) =n

- n 0(G)
A SN R = )
Corollarv(6-38): If (G,#) is a finite group, then the order of any element of G

divides the order of G.
Proof: suppose that (G,#) is a finite such that O(G) = n
Let a € G = a has a finite order such that O(a) = m

To prove such that = @)

Since a € G = H = (a) is a cyclic group

H=4ag,a, %, a%=¢},0(a) =m = EE{h:r Lagrange Theorem)

0(H)
oy 0(G)
O(a)
Corollary(6-39): If (G,#) is a finite group, then a”(“) = ¢ Va € G.

Proof: suppose that 0(G) =n

Leta € G 3 0(a) = m (by Corollary of Lagrange)
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o(G) n ot
#W—_-}E:#n—m

{IG(E}={I"={:ﬂmk=Ek=E
= a%%) = ¢ Vg € G.

Corollary(6-40): Every group of prime order is a cyclic.

Proof: let (G,*) be a finite 3 0(G) = p = % Ya € G

O(a)=1or p

f0(a)=1=a=e

If0(a) =p= 0(a) =0(G) = G = (a)
= G is a cyclic group.

Corollary(6-41): Every group of order less than 6 is an abelian.

Proof: let (G,#) be a finite group 3 0(G) < 6

0(G)=1or 2 or 3or4d or 5

If0(G) = 1= G = {e} = G is an abelian

IfO(G) =2 or 3 or 5= G isacyclic = G is an abelian

4
Ifﬂ(6)=4=>ﬁ=—>ﬂ(a]=l or 2 or 4

fO0(a)=1=a=e

If0(a)=2 VaeG=a’=e=a=a'Va€el
= ( is an abelian

If0(a) =4= 0(a) =0(G) = G ={a)

= (5 is a cyclic = G is an abelian.
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7. Normal Subgroups and Quotient Groups

Definition(7-1):Let (G,*) be a group and a, b € G, then a is a conjugate to b and

denoted by a~b iff IxEG3b=x*a+*x'and b~aiff IxEG3a=x+b+

X

a+biffb#x*a+*x"! Vx€G
Example(7-2): In (§3,0), 18 fa~f3?
Solution: x = f; = fi ¢ f5 ufl_l =fiizf;
x=h=fhefach ' =hichh ' =fizh
x=fi=ficfofi =fhofi=fi#f
x=fi=fichofi =fiofi=f
x=fs=foofacfs =foofs=fa
x=fo=feofiofs '=facfe=rFs
= 3xE€S3I3x0faoxi=f,
= fa~fa
Is fi~f,; and f;~f;" (Homework)
Example(7-3): In (24, +4), 1s 1~27
Solution: x =1 = 14+,14+,1"1=24,3=5=1=#2
x=2=24,14,27"1=34+,2=5=1%2
x=3=3+,14+,3"1=3+,1=4=0++2
x=0=0+,14+4,001=1%2

= 1=+2
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Remark(7-4): If (G,+) is an abelian groupand a,b € G, then a~b < a = b.

Proof: suppose thata~bh < Ix€EGIb=x+a+x"’

1

=S h=x*»2x""*a=b=a

Theorem(7-5): The relation (conjugate) is an equivalent relation.

Proof: (1) reflexive

leta € G, to prove a~a
JeeG3a=erare ! = a~a

(2) symmetric

Let a,b € G and a~b, to prove b~a
a~b=>3Ix€GIb=xrarx"?

= x"leb=arx?

= xl+brx=a= b~a

(3) transitive

Leta,b,c € G @ a~b and b~c, to prove a~c
a~b=3Ix€Ga3b=x*+rarx"1..1
b~c=3y€EG3c=y*b*xy 1.2
Substitute 1 in 2, we get
c=ysx(xvarx sy
c=(*x)rar(y*x)""
c=z+axz Y (wherez=y*x €G)

= a~c.
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Definition(7-6): Let (G,*) be a group and a € G, then the conjugate of a is
denoted by c(a) and defined as

cla) = {b € G:a~b}

orc(a)={beEG:a=x+a*b"'}

orc(a) ={x*a+b"',vx € G}

The set of all elements conjugate to a is called the conjugate class of a.
Examples(7-7): Find the conjugate class of each element in the following groups:

I. (55°) (Homework)
2. (Gs,2) (Homework)
3. (G={1,-1,i,-i})2i*=-1.

Solution: c(i) = {xi-x"', Vx € G}

={1-1-17%, =1+ i (1) % igd Y0 0 (DY)

= {i,i,i,i} = (i)
c(1) = {1} e(-1) = {1}, c(=i) = {-i}.
Example(7-8): Find c(3) in (Z,, +4).

Solution: ¢(3) = {0+,3+, 07, 1+,3+, 174, 24+,3 4,27, 3+,3+, 37"}
= {3} (by Remark if G is an abelian group and a~b , then a = b)

Note(7-9): Let (G,#) be a group and a € G, then c(a) need not be a subgroup of
(G,*), for example in (53,0), c(fz) = {f>, f3} is not a subgroup of $;.

Theorem(7-10): Let (G,*) be a group and a, b € G, then
l. a € c(a) Va € G.

Proof: since a~a Ya € G (~ is a reflexive)
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ac€cla)=c(a)# 0

2. c(a) = c(b) & a~bVa,b €.
Proof: (=) suppose that ¢(a) = c(b) . to prove a~b
By 1,a € ¢(a) = c(b) = a € c(b) = a~b
(&) suppose that a~b, to prove c(a) = c(b)
This means c(a) € c(b) and c(b) € c(a)
Let x € ¢(b) = x~a and a~b = x~b
= x Ec(b) = c(a) < c(b) ... 1
Let x € ¢(b) = x~b and a~b = x~a
= x€c(a)=c(b) Sc(a)..2
From 1, 2, we get c(a) = c(b)

3. cla) nc(b) =0 iff a + b (Homework)
4. cla)nc(b) =0 or c(a) = c(b) (Homework)
5. b€c(a) © cla) = c(b)

Proof: (=) letb € c(a) = b~a = c(a) = c(b) ( by Theorem)
(=) c(a) =c(b) = a~b = b~a = b € c(a).
6. c(a) = {a} Va € G < G is an abelian group.
Proof: c(a) = {a}Va€EG = x+a*x1=aVa€eG
& x*a=a=x < { is an abelian group.

7. c(a) = {a} = a € C(G) (Homework)
8. c(e) = {e} (Homework)
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Definition(7-11): Let (G,*) be a group and a € G, then the normalizer of a is
denoted by N(a) and defined as N(a) = {x € G:x*a = a * x}.

Example(7-12): In (Zg, +4). Find N(3).

Solution: N(3) = {x € Zg: x+43 = 3+4x}
= '[[},1,2,3,4,5,6J?} =Zg

Theorem(7-13): Let (G,*) be a group and a € G, then

. (N(a),*) is a subgroup of (G,*).
Proof: N(a) ={x€EG:x+a=a=*x}S G

Sincee*a=a+*xe=e€ N(a)=N(a) #0
Closure: let x,y € N(a), to prove x + y € N(a)
xEN(a)=x*a=a=*x
yEN(a) = y*a=axy
(xxy)ra=xx(y*ra)=x+(a*xy)=(x*a)*y=(axx)*y
=ax*(x*y)=x+y € N(a)
Let x € N(a), to prove x_ ' € N(a)
Sincex€E N(a) = x*a=a+rx=x*a*x '=a
=a*x=x"1+ra= x"! € N(a) = (N(a),*) is a subgroup.

2. C(G)=nN(a)¥ a € G (Homework)
3. N(a) =G VYa € G < (G,*) is an abelian.

Proof: (=) suppose that N(a) = G ¥a € G, to prove ( is an abelian

VxeEG=N(a) =>x€N(a) Vaes
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= xEN(a) Vx,a€EG=x+*a=a*x¥x,a€G

= (G,*) is an abelian

(<) suppose that (G,*) is an abelian, to prove N(a) = G
This means N(a) € G and G < N(a)

N(a) € G (by definition of N(a))

To prove G © N(a)

Let x € G and ( is an abelian

= x*a=a*x ¥Yx,a€el

= xEN(@)VaetG=GCENa)=6G=N(a@)Va el

4. N(a) =G < a € ¢ (Homework)
5. c(a) = [G:N(a)]

Proof: c(a) = {x +*a*x " V¥Vx € G}

[G:N(a)] = {x * N(a),Vx € G}

Define f:[G:N(a)] — c(a) 3 f(x*N(a)) =x*a*x"'Vx€G
To prove f is a map, f is an one to one, f is an onto (Homework)

0(6)
O(c(a))

6. If (G,*) is a finite group, then

Proof: by 1 = (N(a),*) is a subgroup of (G,*)

0(6)
O(N(a))

By Lagrange Theorem =

0(6 = 0(N(@)) - [6:N(@)] = 0(N(@)) - O(c(a))

0(6)
0(c(a))

=
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Definition(7-14): Let (H,+), (K,*) are two subgroups of (G,*), then H is a
conjugate subgroup of K iff 3x € G 3 K = x * H * x~ ' and denoted by H~K.

H+Ke=K+x+H+x"'¥xei

Example(7-15): In (S3,0), H = {f,. f.}, K = {fy. fc}. Is H~K?

Solution: this means, 3x € $3 3 xeHox™ ' = K?
x=fi=fiolfufdeim ={fichicfi ficfsofi'}
={fufs} =K

x=fa=ficlfufedo i ={hehefa Lfacfiofa '}
={fufs}=K

= 3Jdx=f; 3 H~K.

Example(7-16): In (Z;5,4+45),H = {0,4,8}, K = {0,3,6,9}. Is H~K?
Solution: this means, 3x € Z;5 3 x4+, H+:x 1=K
x=1=14+,,{048}+,,1" ' =H=K

Since x+4,H+,x ' = x+ x4+, H=H #K

= H + K.

Example(7-17): In (Gs,0), let H = {r, 174}, K = {ry, ). Is H~K?

(Homework)

Theorem(7-18): Let (H,+), (K,*) are two subgroups of (G,*) and H~K, then
O(H) = 0(K).

Proof: since H~K = 3x € G3K=x+H =x!

To prove O(H) = O(K) = 0(x + H « x™%)
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Definef: (H,*) > (x *H+*x"'2)3 f(h) =x+h+*x"'VYhe H
To prove f is amap ?

Let hy = h,, to prove f(h;) = f(hs)

Sincehy =hy = xshsx "'=xshy*x"" = f(h) = f(h)
= [ is a map.

Is f anone toone ?let f(hy) = f(hy)

= xehsx =y ext

= h; = h, = f is an one to one.

Is f anonto? Ry = {f(h):Vh € H} = {x = h & x~':¥h € H}
=x+*H+x"1 = f is an onto.

= 0O(H) = 0(x * H*x"1) = O(K).

Theorem(7-19): Let (H,*) be a subgroup of (G,*) and x € G, then (x + H *

x71,%) is a subgroup of (G,*).

Proof:eeGande*H+*e '=H+0=x+H+x"1#0
x*H+x"v={x+h=+x"1:Vh € H}
leta,bEx*H+x" toprovea*b™ Ex+H#+x"!
leta€Ex*H*sx ' =a=xshy*x '3h, €EH
lethex+sH+x'=b=x+h;*x "'2h,eH
geb r={xshis¥ ) e(xrhzrx )

= (xvhyxx™)w (e by vz

=(xrh)»(x7trx)x (b xx7Y)
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x*[hl *h{l)*x“IEItH*xhl
=> (x * H » x~1,%) is a subgroup of (G,*).

Note(7-20): The relation of conjugate is equivalent relation on the set of all

subgroups of ¢G. (Homework)

Definition(7-21): Let (H,*) be a subgroup of (G,#), then the conjugate class of
H is denoted by C(H ) and define as

C(H)={x+H+x"1:Vx € G}
Example(7-22) (S3,2), H = {fy, fi}:. find C(H).
Solution: C(H) = {x + H * x"1:¥x € 53}
={ficlfufaie i oo lfufio fo s foo {fu fid o ')
= {fu. il (fufe) o (fr S 1)

Example(7-23): (G = {e,a, b,c,d},*),a® = b? = ¢? = e, is the four-Klien
group.G is an abelian, H = {e,a} € G, find C(H).

Solution: C(H) = {x *H + x~1:¥x € G}
={x*x"1+«H:¥Yx€G}=H.

Deffinition(7-24): Let (H,+) be a subgroup of (G,+), then the normalizer of H
is denoted by N(H) and defined as

NH)={x€eG:x+H=H*=x}

Example(7-25): The group (Gg,2), H = {1y, 13}, find N(H).

Solution: N(H) = {x € Gs:x o H = H o x}
x=rp=ncsH=Hon

x=n=rneolH=Her,
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N(H) = {ryra,ra, 1, h,v, Dy, D3} = G
Examples(7-26): Find C(H), N(H) to each of the following:

I. The group (S3,2), Hy = {fi,fs}, Ha = {f1, fs}. (Homework)
2. The group (Gg,e), Hy = {ry,r,v,h}, H; = {ry, D;}. (Homework)
3. The group (Z;3,+12), H = {0,4,8}. (Homework)

Theorem(7-27): Let (H,*) be a subgroup of (G,*), then
1. (N(H),#) is a subgroup of (G,*) containing H.

Proof: sincee s H =H+e =e€NH)+ 0
NH)={x€EG3x+*H=H*x}S G

Leta,b € N(H),toprovea * b~ € N(H)

This means (a*b™ )« H=H+(a*b™")

Sincea E N(H)=a+H=H=+a
beENMH)=h+H=H=x*b
bxH+b™'=H=Hx+b'=b"'+H=b"1€N(H)
(asb™YxH=as+(b'+H)=a+«(H+b™") (b~! € N(H))
=(a*H)*b ' =(H=+a)*b ' =H=x(axb™)

= ax*b™' € N(H) = (N(H),*) is a subgroup of (G,*)
To prove H € N(H)

letaeH=a*H=H Hxa=H=a*xH=H=x*a
=>a€ N(H)= HC N(H)

2. If (G,*) is an abelian group, then N(H) = G.
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Proof: suppose that G is an abelian group, to prove N(H) = G
This means N(H) € G, G € N(H)

By definition of N(H) = N(H) S G
letxeEb=x+H=H+x=x€ENH)=0G< N(H)

= G=N(H)

3 G(C{H)] = 0(|G:N(H)]) (Homework)

0(G)
NC{H))

4. 1f (G,*) is a finite group, then

Note(7-28): If N(H) = @, then (G,#) is an abelian group. (Homework)

Definition(7-29): A subgroup (H,#) is called a self-conjugate iff C(H) = H,

thismeans x * H + x™1 = H ¥x € G.
Example(7-30): In (S3,0), Hy = {f1, fo, fal. Ha = {f1, f5}
C(H,) = H; = H, is a self-conjugate

C(H,) # H, = H, is not a self-conjugate.

Definition(7-31): A subgroup (H,#) is called a normal subgroup of (G,*)

denoted by HAG < H is a self-conjugate

Or HeGex+H+x'=HVx€EG

He G<=3IxeEGa3x+«H+x1+H
Example(7-32): The group (Gs,2), H = {ry, r, v, h}
C(H)=H = Hr Gg

Example(7-33): The group (S3,2), H = {fi1, f5}

CHH)#H=HuwS,
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Example(7-34): The group (Z,, +4), H = {0,4}
C(H)=H=HecZ,

Theorem(7-35): Let (H,+) be a subgroup of (G,+), then

. HeGe=x+H=H=+*x VYXEG.
Proof: HeG o x+H+x 1=HVYx€EG
= x+H=H+x VYx€G
2 HeGe NH) =G
Proof: (=) suppose that H & G, to prove N(H) = G
This means N(H) € G,G © N(H)
N(H) € G (by definition of N(H))
To prove G © N(H)
letxeEG=x*H=Hxx=x€EN(H)= G S N(H)
= G =N(H)
(=) suppose that G = N(H), to prove H & G
VXEG=xENH)=x+*H=H+*x=He G (by1l)
3. HeG<=cla) SHVa€eH
Proof: : (=) suppose that H & G, to prove c(a) € HVa € H
Since H & G by definitionx + H*x ' =H=x+H*x 'S H
cla)={x+a*x:YVa€e H}S H
(<) suppose that c(a) S HVa € H

Toprove H & G, thismeans x * H * x ™' = H
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Whichisx+*H+x 'S H, HS x+H +«x~!
cla)SH=x+H+»x"1CH..1
Toprove H S x + H+ x~1
letheH =b=e+xh=e
b=(xsx Debs{xsxVV=x+(xTebrx)sex?
h=xeshex LExsHex
= HCxeley" .2
From 1,2, wegetH=x+H+*x"'VaeEG=He

4 HeGe(x+H)«(y+H)=(x*y)*HYx,YyEG
Proof: (=) supposethat He G = H+x=x+H
(x+H)*(y*H)=(x+sH=+y)sH=x+*(H+v)+H
=x*(y+H)sH=(x+y)*(HrH)=(x+y)+H
() supposethat He G = Ix €G3 x+H*x'+H
(x+H)s(x *+H)#H+H= (x+*x")+H+H
= e * H # H, but this is contradiction = H e G

Theorem(7-36): Let (G,#) be a group, then

l. {e} =G (Homework)
2. GG (Homework)
3. C(G) =G (Homework)

Theorem(7-37): Every subgroup of an abelian group is a normal subgroup.

Proof: let (G,#) be an abelian group and (H,*) be a subgroup of (G,*),
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toprovex *Hxx ' =HVx€EG

x*rHxx '=(x+*x)+sH=esH=H= He{.

Note(7-38): The converse of above theorem is not true, for example

(G ={+1,4i,4j. 2k} 3 i*=j=k*=-1

ij =k

ji = =k = ij # ji = G is not an abelian.

The subgroups of G are {1}, G, {1}, {1, i}, {£1, +j}. {1, 1k}
Theorem(7-39): Let (H,*) be a subgroup of (G,*) 3 [G:H] = 2, then H & G.

Proof: since [G:H] = 2, then there are two distinct left (right) cosets of H in
G.H,a+*H 3 ae€ G- H (left cosets of H in (&)

H,H+H 3 a¢€ G — H (right cosets of H in ()

Hua*H=G HnasH=0_1

HuH*a=G HNnHxa=0_..2
faeH=a+*H=H=Hxa=a+xH=HxaVa€EH
HfaeG-H=a*xH=G-H=Hsa=a+xH=H=+*aVaeEH
—a*H=H+xaVaeG=Hrc(.

Note(7-40): The converse of above theorem is not true, for example
(Gg,0),H = {ri,1a},H & Gg, but [Gs: H] = 4 + 2.

Note(7-41): If He G, then HNG & G, (H * K) & G, where H, K are two subgroups
of the group (G,*).

Consider (S3,2),H = {fi}e S;and K = {f,.f,} & S,
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H*K ={f,f,} ® S3,since C(H*K) # H * K.
(Gg,0), H = {ry, 13, h, v}, K = {r, v}
HnK ={r,v} & Gg,since C(H+*K)#H=+K
He G, K & Gs.

Definition(7-42): A group (G,*) is called a simple group iff ¢ has no proper normal

subgroup.

Examples(7-43):

I. The group (55,2) is not a simple, since H = {f}, 5. f3} & Sa.

2. The group (Gg,°) is not a simple, since H = {ry, r3, h,v} & G.

3. The group (Z, +¢) is not a simple, since H = {0,3} & Z,.

4. The group (£, +4) is a simple group, since Z3 has no proper subgroup.

Definition(7-44): Let H & G and = = {x « H:x € G}. Define ® on = as follows:(x »

H@(y+«H)=(x+*y)+H Vx,y €0, (%,@) is called a quotient group of G by H.
Theorem(7-45): Let H & G, then (E,@) 1S a group.

Prnui':f—f: {x+*H:x € G)ysincee+*H =H Ef—}* @

Closure: leta « H, b+ H E%,{ﬂ*H)@'(h*H) =(a+b)+H E%

Associative: leta«H, b+ H,c » H E%

[(a+ H)R(b+* H)|®(c+H) = [(a+*h)+ HI@(c+ H)
=((a*b)*c)*H=(a*(b+c))*H =(a»H)®[(b*c)+H]
=(a+H)®[(b*H)®(c+H)|

Identity: e+ H = H € =
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(a+*H)®@(e+H)=(a*e)*sH=a+H Ya+H E%
(e+H)@(a+H)=(exa)* H=a+H

=» e * H 15 an identity element t:rl'%

Inverse: leta » H € fT toprove (a* H) ' =a™ '« H
(a+H)@@'1+H)=(a*a)*H=e+H=H
(@a'«+H)@a*H)=(a'+*a)+H=e+H=H

= Va+HE %3{1_1 «HE -E-=:~ (-E—,E-] is a group.
Example(7-46): In the group (Zg, +5), H = {0,3}, ﬁnd%‘-{ifexi:-‘.t].

; i
Solution: H = Z, = T;‘ exist

-D+5H =H
144H = (1,4}
2+46H = {2,5)

34+.H = {30} = H
4+ H = {41} = 1+ H

S4¢H = {52} = 244H

Zg

:‘-“F= {H,1+5H,2+5H}
Zg

0(7)=3

® H 14+4H 24.H
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! . T+eH 24 H
1+l’>H 1+ﬁH 2+ﬁH H
S¥ell 2+6H H 1+¢H
= (%:'@) is a quotient group, H is an identity.
(1+,E,H -1 — ]—1_|_'_JH — 5-|.-ﬁH — 2_1_'&11'_!!
(2‘1‘.5,H)_1 — —l_|_ﬁH = 4+ﬁH - 1+,5H
Example(7-47): In the group (Zz0, +20), H = (5), find 22 (if exist).(Homework)

Example(7-48): In the group (S3,2), H = {f1, f>, fz}. find % (if exist).

: : A
Solution: since H & §; = :_; exist

fioH=H
reH={fpfafi}=H
faicH={fs,fufa}=H
fao H = {fa. fo. fs}
foeH={fs.fafs}=fae H
foeH={fe.fs.fal=faoH

5'3
=5 = (H.fio H)

. Saix .
Butif H ={f}, i, H ¢ §3 = ﬁ is not exist.

Theorem(7-49): The quotient group of an abelian is an abelian.

Proof: suppose that (G,+) is an abelian group and (H,*) is a subgroup of (G,*) 3

He G :%isagmup
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L£[ﬂ*H,b*HE%=ﬁ(-:1*H)®(b*H)= (@a+b)+H

=(b*a)*H=(b+H)®(a+H)= (%, @) is an abelian group.

Theorem(7-50): If (G,*) is a cyclic group, then (%, ®) is a cyclic group.

Proof: suppose that (G,#) is a cyclic group, H is a subgroup of G.

= 3a € G 3G = (a) = {a*: k € L}, since G is a cyclic=> G is an abelian

=He (= % is a group. To prc-ve% is a cyclic group, this means thereisa + H €
% 3 f—f= {a+H)={(a+ H)*:k € Z}. to prove

%g {a*H},{a*H}E%,]etx*H E%::er G=(a)=x=a",rel
xtH=a"+H=(a*a=*..+a)*H(r-times)

=a+*H® ..Ra* H(r-times)

(H*H}rE{ﬁ*H}ﬂIE{ﬂ*H}:&f—JQ{E*H}

Tﬂprﬂve{a*H}E%,ie[y*HE{a*H}

y*rH=(a+H)*3s€el

)

y*H=a5*HE%=>}'*H E%#{H*H}E%:-{Q*H}:

Therefore, (f_.-"@) is a cyclic group.
Note(7-51): The converse of above theorem is not true, for example:

L Yy
(S3,°). H = {f1, fo, fa} & S3 = Zisa group, = = {H, fy o H}

0 (%) = 2 (prime order), 'j—':is a cyclic group, but (53,0) is not a cyclic
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2= (fyoH) = (oo H,(fy o H)2) = (fy o H.fy o H = H)

Theorem(7-52); Let (G,+) be a group and(%. ®) is a cyclic group, then (G,+) is
an abelian group.
Note(7-53): The converse of this theorem is not true, for example:

(G = {e,a,b,c,d},*),a®* = b* = ¢* = e, G is an abelian (not a cyclic)

G G G e
E(G}-G:m_ﬁ—{e,a.b,cld}=>mmnmuy¢.hu,

Definition(7-54): Let (G,#) be a group. If a, b € G, then the commutator of a, b is

[a,b] =a*bxa™'*b™",

The commutator [a,b]=e < a+b = b=a, this meansa,b are commute, the

identity element e = [e, e| is a commutator.

Example(7-55): In the group(Zy, +4).

[3.2] = 3+42+4,3714427 = 3+42441+,2=0

Example(7-56): In the group(Z, +).

[54] =5+4+5"'+47'=5+4-5-4=0

Note(7-57): The commutator is an identity iff (G,#) is an abelian group.

Definition(7-58): let (G,*) be a group, then the commutator subgroup of (G,*)
denoted by |G, G] is the collection of all the finite products of commutators in G.

16,6) = {] laibi):aibi € G} = (las, by] + [z, by ..+ [ax, bel)

Theorem(7-59): The group ([G, G],#) is a normal subgroup.

Proof: to prove [G, G] is a subgroup of G.
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|G,G] # @, since [e, e] € [G,G]l,e € G

Letx,y € [G,G],toprovex *y~' € [G,G]

x = [ay,by] *..+[a,b,]

y = [c,dy] *...% [c,,d,]

x*y~ ! =[a,by] *..% [a, b,] * ([ep, dq] * .. # [cn, dp])
= [ay, by] * ... # [an, by * [€1,dq] * ... % [cn,dy] € |G, G]
Thus, x * y~! € [G,G] = [G, G) is a subgroup of G.

To prove |G, (] is a normal subgroup, letx € [G,G)
Toprove x * [G,G) *x™* € [G,G],let a € x* [G,G] * x~"

a=x*c*x L,c€[GGCl=x*crx"txesxwcrx"trc" 2

1

ZI*C*{I_ *c_l)*c':[x,r:}*{f

Therefore, a € [G,G] = |G, G] is a normal subgroup of G.
Theorem(7-60); Let (H,+) be a normal subgroup of G, then (=, ®) is an abelian iff

[G,G] S H.

G

. ]
= and 7 is an abelian

Proof: suppose thata * H,b « H €
= (asbh)sH=(bsa)+He= H=+(a+b)=H+*(b+a)
asb*(bra)”  €H < |a,bleH

& [G,G] € H V[a,b] € [G,G],a,b € G.

Corollary(7-61): Prove that (;;FI'®] is an abelian group. (Homework)
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8. Homomorphism, Examples and Basic Concepts

Definition(8-1):Let (G,+),(G',») be two groups and f:(G,*) — (G',°) be a
mapping, then f is called a homomorphism iff f(a * b) = f(a) o f(b)Va,b € G.

Example(8-2): Let f: (R, +) — (R*,),3 f(a) = 29 Va € R. Is f a homo. ?
Solution: leta,b € R = f(a + b) = 29*? = 29. 2P = f(a)- f(b)
thus, f is a homo.
Example(8-3): Let f: (Z,4+) — (Z,+),2 f(x) =3x+2V¥x €Z. Is f a homo. ?
Solution: letx,yEZ = f(x+y)=3(x+y) + 2
=3x+3y+2..1
)+ fM=0CBx+2)+(3y+2)=3x+3y+4..2
Wehavel # 2= f(x+y) # f(x) + f(¥)
Therefore, f is not a homo.

Example(8-4): Let f:(S3°) = (53,2),3 f(x)=xVx€S;. Is f a homo. ?

(Homework)

Example(8-5): Let f: (Zg, +5) — (Zg,+6),2 f(x) = x Vx € Zg. Is f a homo. ?

{Homework)

Example(8-6): Let f: (R, +) — (Z,+),3 f(a) =2a-1Va € R.Is f ahomo. ?

Solution: f(a+b)=2(a+b)-1=2a+2b-1..1
fl@+f(b)=QRa-1)+@b-1)=2a+2b—-2..2
Wehavel #2 = f(a+b) # f(a) + f(b)

Therefore, f is not a homo.
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Example(8-7): Let f: (Z,+) — ({1,-1},"),

5 f(a) = { _11 @ €Ven Ya € 2.1 f ahomo. ?

Solution: leta,b € Z

. a,bEE
fla+b)=1 (a+bek),f(a):f(b)=1:1=1

2. a,beE0=a+b€E
fla+b)=1 (a+be€E)f(a): f(b)==-1--1=1

3. fa€E, bEO=a+be€D

fla+b)==1, (a+be€0)f(a) f(b)=1:--1=~1

Therefore, f(a 4+ b) = f(a) f(b) Ya,b € Z = f is a homo.

Example(8-8): Let f: (G,*) — (G,*) 3 f(a) =x+*a*x"" VYa € G. Is f a homo.

)
Solution: leta,b € G 3 fla*b) =x+(a*b) »x7'...1

fla)+ f()=(x*anx™)*(x*bxx"")

=x+(axb)sx71.2

We have 1 = 2 = therefore, f is a homo.

Example(8-9): Let f: (G,*) — (G';) 3 f(a) =e'Va € G.Is f ahomo. ?
Solution: leta, b e G 3 f(a*b)=e'=¢e"+¢e' = f(a) f(b)

= Therefore, f is a trivial homo.

Example(8-10): Let H & G and f:(G,*) — (%@) I f(a)=a+HYa€dG. Is

f ahomo. ?




Prof. Dr. Najm Al-Seraji, Abstract Algebra 1, 2023

Solution: leta,b €G3 f(a*b)=(a*b)*H .. 1
f(a)®@f(b)=(a+H)@(b+H)=(axb)+H..2
We have 1 = 2 = Therefore, f is a natural homo.

Definition(8-11): Let f: (G,*) — (G',°) be a mapping, then

1. f iscalled a monomorphism (mono.) iff f is a homo. and one to one.
2. f is called an epimorphism (epi.) itf f is a homo. and onto.

3. f is called an isomorphism (iso.) iff f is a homo., one to one and onto.

Definition(8-12): Any two groups (G,#),(G',°) are isomorphic iff there is an

isomorphism map between them and denoted by G = G'.

This means, G = G' < 3f:(G,+) — (G',2) and f is an isomorphism.
Example(8-13): Let (G = {2":n € Z},), show that (Z, +) = (G,).
Solution: define f: (Z,+) — (G,) 3 f(n) =2" Yne L
Homo.? let ny,ny € L= f(n; + n3)
= 2M¥M = 2™ . 2Mec f(n, ) f(nz) = f is a homo.

One to one? let f(n,) = f(n,), to proven, = n,

2" = 2™ = n, =n, = f is a one to one

Onto? Ry = {f(n):n€Z}={2"n€Z} =G = f isanonto

= [ is an isomorphism = (Z, +) = (G,)

Theorem(8-14): Let f: (G,*) — (G',’) be an isomorphism, then
1. f(e) = e’ such that e the identity of G.

Proof:leta€E G = a+*re=a= f(a+e) = f(a)
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f(a)- f(e) = f(a)

Letf(a) €G" = f(a) e’ = f(a) = f(a) - f(e) = f(a) - €’
= f(e) =e'.

2. f(@Y) = (f(a))"VaeG

Proof:leta €G = a+a'=e= f(axa')=f(e)=¢
f@-f@)=fle)=e

let f(a) €6’ = f(a) - (f(@)) =e

f@-f@M=f@ f@) =@ = @)™

3. If (H,+) is a subgroup of a group (G,*), then (f(H),") is a subgroup of
@".

Proof: f(H) = {f(x):x € H} S G’

e €H= f(e) €f(H) = e €f(H) 0

Leta,b € f(H).toprove a-b~! € f(H)

a€f(Hy=a=f(x)3x€H

bef(H)y=b=f(y)3y€eH

SxsyleH=a-bl=fx)-(fO)  =f@ - fOor™)

=flrsy ) =a b =flx+y) € f(H)

4. If (K,?) is a subgroup of (G’,). then (f ~*(K),*) is a subgroup of (G,*).

Proof: f"Y(K) = {x €G: f(x) EK} S G

fley=e' =e€f(K)=f(K)#0
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Letx,y € f~1(K), to prove x * y~* € f~1(K)
x€fHK)=f(x) EK

yEfTHK)= f(y) €K

) (fO)) €EK=fx) frHeEK=flxry ™) eEK
= x*y~" € fTH(K) = (f7(K),*) is a subgroup of (G,*).

5. If H & G and f an onto, then f(H) & G'.

Proof: lety € G',a € f(H),toprove y-a-y™ ' € f(H)
YEG and fisanonto=3xEG 3 f(x) =y
a€f(H)y=a=f(h)3heH

x€EGheHandHe G=x+h+xY€EH

= fx*h+x"") € f(H) = f(x): f(h) f(x™") € f(H)
=y ay~ €f(H)= fEH)=C"

6. If K & G', then f"(K) & G.

Proof: (f ' (K),#) is a subgroup of (G,#), to prove f " Y(K) & G
letx€G = f(x) =y €’

a€f(K)= f(a) €K

f(x)EG', f(a) EK and K & G’

f@)f@- (fG) " €K=fl) f(@) fx™) €K

= f(x*xa*x"VEK=x*a*x '€ f'(K)= f"(K) > G.

Theorem(8-15): The relation of isomorphic is an equivalent.
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Proof: Reflexive: to prove (G,*) = (G,*),3i:(G,*) — (G,*) 2i(x) =xVx €
G and i is a homomorphism, one to one and onto, thus { is an isomorphism =

(G#) = (G.»).

Symmetric: let (G,*) = (G',’), to prove (G',) = (G,*), 3 f:(G,*) — (G',;) 3

f 1s an isomorphism, f is a bijective

= 3f~1(G';) — (G,*) = f~! is an one to one and onto, to prove f~!is a

homomorphism, let a,b € G',fis an onto=3x,yE€EG 3 f(x) =a,.f(y) =
bfa-b)=f(fG)fO)=f(fxxy)=x=y=fa)x
f(b)

Thus, flisa homomorphism, £~ is an isomorphism,
= (G',’) = (G,*).
Transitive: let (G,#) = (G',) and (G',") = (G, @), to prove

(G,*) = (G",®),3f:(G,*) — (G',r) 3 f is an isomorphism, 3 g: (G',;) —
(G",®)3 g is an isomorphism.3ge f:(G,*) — (G",®)3 gof is a
bijective. Let a,b€G,(gef)la=h) =g(f(a+b))=g(f(a) f(b))=
9(f@)eg(fB) = (g° (@O f)(b)

Hence, g o f is a homomorphism= g o f is an isomorphism
= (G,*) = (G",®) == is an equivalent relation.

Theorem(8-16): Prove that

1. Every two finite cyclic group of the same order are isomorphic.
Proof: let (G,+), (G',") are two finite cyclic groups, 3 0(G) = 0(G') =n
Gisacyclic=3a € G 3G ={a) = {a* k € Z} = {a',a? ...,a*" = e}

G'isacyclic=3b€G' 3G =(b)={b",n€ L} = {b,b? ..,b" = ¢}
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Define f:(G,*) — (G',) 3 f(a*) = b*Vk e Z let a" =a* = r = s(modn) =
r—s=ng3g€l=r=ng+s=>b"=b""=(b")7-b°* = b" = b*, thus

f is a map.

Let f@)=f@)=b =P =2r=s(modn) =r—-s=ng=r=ng+

s=a =(@")?:a* =a" =a®* = f is aone to one.
Ry = {f(a"):vk € Z} = {b*:Vk € Z} = G = f is an onto.

f(ﬂr * HS) = f(ar+5) — br+5 — b?’ . bs — f(ﬂr) . f(ﬂs} — f iS a

homomorphism=> f is an isomorphism= G = G'.

2. Every finite cyclic group is an isomorphism to(Z,,, +,).
Proof: let (G,*) be a finite cyclic group 3 0(G) =m
G = {a) = [a', 2, ..a™ = ¢)

(1) fm<n=0(06)<0(Z,) = fisnotanonto= G £ Z,,
2) fm=n=6=2,

define f:(G,%) — (Z,,+n) 3 f(a®) = k vk € Z*, let a’=a*=r=

s(modn) =r =5= f(a") = f(a®) = f is a map.

let f(a")=f(a®’) =>r=s(modn)=r=ng+s=a" =a®*= [ is an one to

one.
f(a"xa®) = f(a"*°) =r +s5=r+,5 = f(a")+,f(a*) = f is a homomorphism.

Ry ={f(a"*):vk€eZ*}={k:Vk€L*}=2Z,=f is an onto=f is an

isomorphism=> (G,*) = (Z,,+,).
3. Every two infinite cyclic group are isomorphic.

Proof: let (G,*),(G',) are infinite cyclic groups.
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G'={b)={...b%b 1, b° b1 b2 ..)
Define f: (G,+) — (G',) 3 f(a*) = b*Vk € Z

e fisamap (Homework)

e [ isanone to one (Homework)

e [ isanonto (Homework)

e [ is a homomorphism (Homework)

4. Every infinite cyclic group is an isomorphic to (Z, +).

Proof: since G is acyclic= G = {a) = {...,a %,a™%,a%a’,a?,...}

Define f:(G,*) — (Z,+) 3 f(a*) = kVk € Z (check)

Definition(8-17): Let (G,*) be a group, define

(1) Hom(G) ={f:f:(G,*) — (G,*) 3 f is a homomorphism}
(2)  Aut(G) ={f:f:(G*) — (G,*) 3 f is an isomorphism]}

Theorem(8-18): Let (G,*) be a group, then

(1) (Aut(G),=) is a group.
Proof: 1,2 and 3 (check)

Inverse: let f:(G,*) — (G,*), f is an isomorphism, since f is a bijective =
3f 1 (G,*) — (G,#) and since f is an isomorphism = f~! is an isomorphism =

fFleAut(G)and feo f™ = f~1of =i= (Aut(G),°) is a group.
(2)  (Aut(G),) is a subgroup of (Symm(G),e).

Proof: Aut(G) = {f: f:(G,*) — (G,*) 3 f is an isomorphism}
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Symm(G) = {f: f:(G,*) — (G,*) 3 [ is a bijective}
Aut(G) # @, since 3i: (G,*) — (G,#) 3 i is an isomorphism
Aut(@) € Symm(G) and (Aut(G),o) is a group

=5 (Aut(),e) is a subgroup of (Symm((G),?).

Definition(8-19): Let (G,*) be a group and x € G. Define f,:(G,*) — (G,*) 2
fela) =x+a+x"'Va€G, then f, is called an inner automorphism of G and
Inn(G) = {f:¥x € GYor I(G) = {f.:Vx € G}.

Theorem(8-20): Let (G,*) be a group and x € G, then:
(1) [, is an isomorphism map.

Proof: f.(a) * fe(b) = (x *axx"")* (x*b*»x7")

1 1

=xsa*r(x"tex)ebhrx'=xsarbrx = f.(a*h)
Thus, f, is a homomorphism.
Let fi(a) = fe(b) = x+a+*x'=x+b*x"' = a= b= f,is an one to one.
R, = {fi(a):Va € G} = G = f, is an isomorphism map.
(2)  (1(G),) is a subgroup of (Aut(G),?).
Proof: 1(G) = {f,: f;: (G,*) — (G,*) 3 [, is an isomorphism}
Aut(G) = {f: f:(G.,*) — (G,*) 3 f is an isomorphism}
a€EG=f,el(G)+ 0
f.(a) =exa*e™ =a= |(G) S Aut(G)

Closure: let fi, fy €1(6), (fx* f,)(@) = fi(fy(@) = fy *a*y ™) =x+(y+a»
y ext=@ey)ras @y = fry(@)

13
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Inverse: let f € (G),x 1 €G = f,-1 € I(G), frofy1=fruxt =fe = fy1°
fe = Fytax = fo = ()" = f-1+ = (1(G),°) is a subgroup of (Aut(G),).

(3) IG) & Aut(G)
Proof: 1(G) = {fy: fi: (G,*) — (G,*) 3 f; is an isomorphism}
Aut(G) = {f: f:(G,+) — (G,*) 3 f is an isomorphism}

Let g€ Aut(G),fy € (G),(geficg™)(a)=g-° fi(g7(a)) = g(filg () =

gixrg i@ *x ) =gx)*asglx?) =gx)+as+(gx) " = fa(a) €
I(G) = I(G) &= Aut(G).

Definition(8-21): Let f: (G,*) — (G',:) be a group homomorphism, then the kernel
of f denoted by kerf and defined by kerf = {x € G: f(x) = e}

Example(8-22): let f: (R, +) — (R™,") 3 f(x) = 3%, find kerf Vx € R.
Solution: f is a homomorphism (cheek) = kerf an exist,
kerf ={xeR:f(x)=1}={xER:3* =1} = {x = 0}

Example(8-23): Let f:(G,*) — (G';)3f is a trivial homomorphism, find
kerf ¥x €G.

Solution:f(x) = e’ Vx € G, f is a homomorphism = kerf is an exist.

kerf ={x €G:f(x) =e'} =G.

Example(8-24):let f: (Z,4+) — (Z3,+3) 3 f(x) = [x] Vx € Z, find kerf ¥Vx € Z.
Solution:f is a homomorphism (check)

Kerf ={x€Z:f(x)=[0]}={x€Z:[x] =[0]} = {x € Z: x = O(mod 3)} =
{(x €EZ:x=3kVk€Z} ={0,13,16,..} < Z

Theorem(8-25): Let f:(G,*) — (G',’) be a group homomorphism, then:
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(1) ( Kerf,*) is a subgroup of (G ,*).
Proof: kerf = (x € G: f(x) =e'} S G, f(e) = e’ = e Ekerf # 0.

Let a,b ekerf, f(a*b™) = f(a) - f(b™1) = f(a) (b)) P =’ (e) 1 = ¢' =
fla*b™) =¢' = axb™" €kerf = ( Kerf,*) is a subgroup of (G,*).

(2) KerfeG
Proof: (Kerf,#) is a subgroup of (G,+).

Let x€G,acKerf,f(x*axx)=f(x) f(a) fXx)=71(x) e
(f(x)) " =e' = x+a+x! eKerf =Kerf & G.

(3)  Kerf = {e}iff f is an one to one.
Proof: (=) suppose that Kerf = {e}
Let f(a) = f(b) = f(a)- (f(B))
=fb): (f(B) " = f(@)- fbH) = ¢’
= fla*b™)=e'=a*xb ' €EKerf =a+*b™'=e =a=b
(&) let a € Kerf

f(a) = f(e) = a = e =Kerf = {e}.
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9. Fundamental Theorems of Homomeorphism
The First Fundamental Theorem of Isomorphism:

Theorem(9-1):Let f: (G,*) — (G',’) be an onto, homomorphism, then

[
(ker f

. ®) = (G',)).
Proof: f is an onto = Ry = {f(a):a € G} =G’

G .
kerfe G :mmagmup.

Define (ﬁ ®) — (G'2) 3 g(avkerf) = f(a) Va €6
Letaskerf=hbskerf = a'sbekerf= f(ash)=¢
= @) fb) =¢' = (f(@) - fb) =e = f(b) = f(a)
= g(a~kerf) = g(b+ker f) = gis amap.

Let g(a +ker f) = g(b » ker f) = f(a) = f(b)

=e' =(f(@) - f®) =fa")-f(b) =e = f(a+b)

= a'sbekerf = arkerf =b=xkerf = gisanone to one.
R, ={g(ax*kerf):a€G ={f(a):a € G} =G = gisonto.
gl(a = ker f)@(b * ker f)] = g((a * b) * ker f)
=fla=b)=f(a)- f(b) = g(a=kerf)- g(a=kerf)

= g 1s a homomorphism, hence g 1s an isomorphism

.f; I
= W,Q} =(G'".)
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Example(9-2); Let f: (Z,+) — ({1,-1},) 3 f(a) = [-11 aaEEEU

Ya € Z, show that (Z,, +,) = ({1,—1},') by two ways.

(1) Since 0(Z;)=0({1,-1}) =2 and (Z;,+;),({1,—1}:) are cyclic
groups = (23, +;) = ({1,-1},)
(2) By use the first theorem of isomorphism if is clear that f is a

homomorphism. R, = {f(a):a € Z} = {1,-1} = Cod f
= f is an onto = (%,@) = ({1,-1}))
kerf={a€eZ:f(a)=1}=E= (%,@) = ({1,-1})
(Z, +) is a cyclic group = {%.@) is a cyclic

Z Z
0(3)=2= Zot2) = 3.8) = Zat) = (L-1))

Corollary(9-3): Let (G,+) be a group, then (%.@) = (1(G),°), where Z(G) is a

center of G.

Proof: define g: (G,*) — (I1(G),°) 2 g(x) = VX EG

I(G) = {f::x € G)

letx=y =x+a=y+a=x*asx '=ysaxy’’

= fi(a) = fy(a) = g(x) = g(¥) = g is a map.

gx*y) = froy = fro fy = 9(x) e g(¥) = g is a homomorphism.

Ry = {g(x):x € G} = {f,:Vx € G} = [(G) = g is an onto.

By the first theorem of isomorphism = (H:—'rf.®) = (I(G),?)
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kerf ={x€ G:g(x) =e'} ={x € G:f(a) = fe(a)
={x€EG:x*a*x '=aVa€eG}={x€EG:x+a=a+*xVa€ G}

E{G] 1'@] = (I(G)!Q)

The Second Theorem of Isomorphism:

Theorem(9-4): Let (H,+), (K,*) be two subgroups of (G,*) 3 K &= H, then

(1) (H = K,*) is a subgroup of (G,*)
(2) Ke H=K
3) (HNK) o H

@ E0) = (e, ®)

Proof: since K o H+K = (}Z—HQ) 1S @ group.

Andsince(HNK)e H = (’;—K,E] IS @ group.

H
HNK

Define f: (H +K.+) — (z=.®) 3 f(a+b) =a+(HNK)Va € H

a*rb=c*d=c'sa=d+bh '=c'sa€eHc'+a€kK
=clraeHnK=c+«+(HNnK)=a+(HNK)

= f(c*d) = f(a+b) = f is a map.

Rr={f(a*b):‘b'aEH}={ﬂ*(HnH):uEH}=HﬁH

Thus, f is an onto.
flaxb)*(c+d)] = fl[(a*c+c™' +b) *(c = d)]
=f[|:u*c)*(c_1*b*c]td]

SinceceEGbeEK,KeeG=c+b+xc" €K
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letcsb*xc”l=rek
flla*b) * (c+d)] = flla*c)*(r+d)] = (a*c)*(HnNK)

=la*(HNnK)]®[c+* (HnK)] = f(a*b)®f(c +d) = f is a homo.

" i : H+K "
st theo of 1somc SIN == s X m——
By the first theorem of isomorphism kerf = AnK

kerf ={a+*b€EH=*K3 f(axb) =e'}
={a*beEH+*K3a+(HnK)=HnK)
={a*bEH+*K3a€ HnNK}
={a*bEH+K3a€ Hac€EK}
={a*beH*K3a€KbeK}=K

H

. HeK
Therefore, — = —
K HNK

The Third Fundamental Theorem of Isomorphism:

Theorem(9-5): Let (H,*), (K,*) be two normal subgroups of (G,+) 3 H € K, then:
(1) He K
@ ¢.e)e . 8)

3 #e=E.0)
H

Proof: 1. Since (H,#), (K *) are subgroups and H € K
= (H,*) i1s a subgroup of (K,*)
letxeEK,aeEHxEKSG=x€G,aEHHeG=x*a*xx"*EH

Thus, H & K.

Proof: 2. since H & K = (%,@) is a group
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Since He G = (%,@) is a group

G
={a*H:aEK}E[a*H:aEG}zE

S

Ko B K oo G
— & == (=, ®) is a subgroup of (-, ®)
LE[I*HEE,E*HEE
H H
(x+*H)®(a+* H)®(x + H)™?

=((x*a)*H)®(x*+«H)=(x*+a*x"1)+H
= ( = HEK=} 2 > ¢
x*a*x 1) = 7 (H,Ei} (H.@)
E G -
Proof: 3. — & — = (-%—,@) is a group.

KeG= (%JQ] is a group.

Deﬁnef:(%,@)—s(%,@)E}f(ﬂ*H)zﬁ*KVﬁEG
arH=b+H=a'sbeHCK=a'+beK=a+K=b+K
= f(a*H) = f(b * H) = f is amap.

Ry = {f(a+ H):a € G} ={a +K:a € G} = == f is an onto.
fllaxH)@MD +H)] = fl[la*b)*H =(axb)*K = (a+K)®( *K)

= f(a+* H)®@f(b+ H) = f is a homomorphism.

&
H
kerf "

® = (3.®)

By the first theorem of isomorphism =

kerf ={a*H:f(axH)=e'={a+*H:a* K =K}
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G K
=a*HE—:a€EK}=—
H H

'
Therefore, (E—,@) = (%.@)-

H
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10.The Jordan-Holder Theorem and Related Concepts.
Definition(10-1):
By a chain for a group (G,*) is meant any finite sequence of subsets of

G=HyoH,D>---DH,_, D H,={e} descending from G to {e} with the
property that all the pairs (H;,*) are subgroups of (G,*).

Remark(10-2):

The integer n is called the length of the chain. When n = 1, then the chain in

definition (1-1) will called the trivial.

Example(10-3):

Find all chains in a group (Z,, +4).
Solution: The subgroups of a group (Zy, +4) are :

& H1 = (th +4)
» H; = ({0}, +4)
. H3 = '::{2}- +4J - ({U,Z},+4)

The chains of a group (Z4, +,4) are

Z4 2 {0} is a chain of length one
Z4 O (2) o {0} is a chain of length two.

Example(10-4):

In the group (Z;z,+:2) of integers modulo 12, the following chains are

normal chains:
Z,, 2 (6) o {0},

Z12 2 (2) D (4) 2 {0},
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Z12 2 (3) 2 {6) 2 {0},
Z4s 2 {2) 2 (6) 2 {0}-
All subgroups are normal, since (Z;,, +,5) 18 a commutative group.

Definition(10-5): (Normal Chain)

If (H;,*) is a normal subgroup of a group (G,#) for all i = 1, ..., n, then the chain G =

Hy 2 Hy 2 - 2 Hy_ 1 D Hy, = {e} is called a normal chain.

Example(10-6):

Find all chains in the following groups and determine their length and type.

» {ZEJ +6)1
g (EE: +H)1
o (Z,3 +,5) (Homework);

e (Z31,+2:) (Homework).
Solution: The subgroups of a group (£, +¢) are :
Hy = (Ze, +6)
H; = ({0}, +¢)
Hy = ((2), +4) = ({0,2.:4}, +¢)
Hy = ({3), +¢) = (10,3}, +6)
Then the chains in (Zg, +4) are:
Zg D {0} is a trivial chain of length one
Zg 2 (2) o {0} is a normal chain of length two
Zs 2 (3) o {0} is a normal chain of length two.

The subgroups of a group (Zg, +g) are :
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Hy = (Zg, +a)
H, = ({0}, +¢)
Hy = ((2), +5) = ({0,2,4,6}, +4)
Hy = ((4), +6) = ({04}, +5)
Then the chains in (Zg, +4) are:
Zg D {0} is a trivial chain of length one
Zg 2 (2) o {0} is a normal chain of length two
Zg 2 (4) D {0} is a normal chain of length two
Zg O (2) o (4) o {0} is a normal chain of length three.

Definition(10-7): (Compeosition Chain)

In the group (G,*), the descending sequence of sets
G=HyoH,2--2H, , ODH, = {e}
forms a composition chain for (G,*) provided

. (H;*)is a subgroup of (G,*),
2. (Hj#)is a normal subgroup of (H;_q,*),
3. The inclusion H;_, 2 K 2 H;, where (K,*) is a normal subgroup of (H;_,,#),

implies either K = H;_, or K = H;.

Remark(10-8):

Every composition chain 1s a normal, but the converse 18 not true in general, the

following example shows that.

Example(10-9):

In the group (Z,4, +24), the normal chain

Bl
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Z24 2 {2) 2(12) 2 {0}

is not a composition chain, since it may be further refined by inserting of the set(4)

or {6). On other hand,

Z,4 2 (2) 2 (4) D (8) o {0}
and

Z34 2 (3) 2 (b) 2 (12) 2 {0}
are both composition chains for (Zz4, +24).

Example(10-10):

Find all chains in the following groups and determine their length and type.

» (EHJ +H);
* (Zy3,+12):
e (Z,4,+,5) (Homework).

Solution: The subgroups of a group (Zg, +4) are :
Hy = (Zg, +4)

H, = ({0}, +5)

Hi = ({2), +4) = ({0,2,4,6}, +¢)

Hy = ((4), +g) = ({04}, +4)

Then the chains in (Zg, +4) are:

Zg D {0} is a trivial chain of length one.

Zg 2 (2) o {0} is a normal chain of length two, but it is not composition chain, since

there is a normal subgroup (4) in Zg, such that (2) D (4).
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Zg D {(4) o {0} is a normal chain of length two, but it is not composition chain, since

there is a normal subgroup {2) in Zg, such that {2) D (4).
Zg 2 (2) 2 (4) D {0} is a composition chain of length three.
The subgroups of a group (Z,,, +,2) are :
Hy = (Zy2, +12)
Hy = ({0}, +12)
Hy = ((2), +12) = ({0,2,4,6,8,10}, +12)
Hy = ((3), +12) = ({0,3,6,9}, +,2)
Hs = ({(4), +12) = ({0,4,8}, +12)
Hg = ({6), +12) = ({0,6}, +,2)
Then the chains in (Z,,, +,,) are:
Zy2 © {0} is a trivial chain of length one.
Zy2 O (2) O {0} is a normal chain of length two.
Zy2 2 (3) o {0} is a normal chain of length two.
Z12 2 (4) o {0} is a normal chain of length two.
Z,5, 2 (6) o {0} is a normal chain of length two.
Zy, 2 (2) 2 (4) D {0} is a composition chain of length three.
2415 2 (3) D (6) o {0} is a composition chain of length three.
Example(10-11):
Let ((,*) be the group of symmetries of the square.

A normal chain for (G,*) which fails to be a composition chain is
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G D {R1g0. Rago} 2 {Raeo}-

Example(10-12): (Homework)

Determine the following chain whether normal, composition:

G D {Rgq, Rigo. R270. R3s0} 2 {R1s0: Raso} 2 {R3s0}-

Example(10-13):

The group (Z,+) has no a composition chain, since the normal subgroups of (Z, +)
are the cyclic subgroups ({n}),+), n a nonnegative integer, Since the inclusion
(kn) € (n) holds for all k € Z,, there always exists a proper subgroup of any given

group.

Definition( 10-14):

A normal subgroup (H,#) is called a maximal normal subgroup of the group (G ,#) if

H # @ and there exists no normal subgroup (K,#) of (G,*) suchthat H c K c (.

Example(10-15):

In the group (Z,4,+54). the cyclic subgroups ({2),+,,) and ((3),+,,) are both

maximal normal with orders 12 and 8, respectively.

Example(10-16):

Determine the maximal normal subgroups in the group (Z,5, +,5).
Solution: The normal subgroups of (Z,,, +45) are:

Hy = ({2), +12) = ({0,2,4,6,8,10}, +1,)

Hy = ((3), +12) = ({0,3,6,9}, +12)

Hy = ({(4), +12) = ({0,4,8}, +12)
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Hy = ((6), +12) = (10,6}, +12)

The maximal normal subgroups of (Z,,, +4,) are H; and H,, since there is no normal

subgroup in Z;, containing H, and H,.

Remark(10-17):

AchainG=H, o H; > 2 H,_, O H, ={e}is acomposition of a group (G,*), if
each normal subgroup (Hj,*) is a maximal normal subgroup of (H;_1,#), forall { =

| R— ¥

Example(10-18);

In the group (Z;2, +12) the chains Z;5, 2 (2) 2 (4) 2 {0} is a composition of Z;, ,

since

(2) 1s a maximal normal subgroup of Z,,,

(4) is a maximal normal subgroup of (2),

{0} is a maximal normal subgroup of {4), and

212 2 (3) 2 (6) o {0} is a composition of Z,,, since
(3) is a maximal normal subgroup of Z;,,

(6) is a maximal normal subgroup of (3),

{0} is a maximal normal subgroup of (6).
Theorem(10-19):

A normal subgroup (H,#) of the group (G,#) is a maximal if and only if the quotient

(G,fH ,@) 1s a simple.
Proof:

=)Let He K=a§a%=>ff=ﬁmg=a
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: . : K K & G. ;
Since H is a maximal, = = = H or-==— =>—isa simple

<) let G/H be a simple
= Gf g has two normal subgroups which are e * H and Gf y-bute+H =H
Therefore H is a maximal m

Corollary(10-20):

The group {'G;'H ,®) is a simple, if EG/‘H] is a prime number.

Examples(10-21);

1. Show that ({2), +13) is a maximal normal subgroup of (Z,2, +12).
2. Show that ({3), +15) is a maximal normal subgroup of (Z;s, +15).

(Homework)
Solution(1): ({2}, +12) = ({0,2,4,6,8,10}, +45)

G 16] _ 12s] _ 12 _ -
| /H[ =T e = 2 is a prime = Zu {2} = is a simple (by Corollary (10-20)).

From Theorem (10-19), we get that {(2) is a maximal normal subgroup of Z;,.

Corollarv(10-22):
A normal chainG = Hy D Hy 2 - 2 H,,_, D H,, = {e} is a composition of a group

(G,*), if (Hi/'H. ,®) is a simple group foralli =1, ...,n
R

Example(10-23):

Show that Zg, 2 (3) o (6) 2 (12) o {0} is a composition chain of a group
(Z'ﬁﬂl +6|}}'

1Zgol _ 80

Solution:
S — I{B}I 21]

: : Haos :
= 3 is a prime = ﬁxsa simple.

So, we get that {3) is a maximal normal subgroup of Zgg.
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I3y 20 . ) (3) . ;
— = — = 2 is a prime = — is a simple.
el 10 P ®) p

So, we get that (6) is a maximal normal subgroup of (3}.

I8 10 ) ; (6} . .
—— = — = 2 is a prime = — is a simple.
{123 5 P (12) P

So, we get that (12} is a maximal normal subgroup of {6).

{12} s . . (12} . .
_=-=5153 rinie = —— 15 a siin ]e.
o - 1 P 0 P

So, we get that {0} is a maximal normal subgroup of (12).

By corollaries (10-19) and (1-21), we have that Zgy D (3) D (6) 2 (12) o {0} is a

composition chain of a group (Zg,, +¢0)-

Theorem(10-24):

Every finite group (G,*) with more than one element has a composition chain.

Theorem(10-25): (Jordan-Holder)

In a finite group (G,*) with more than one element, any two composition chains are

equivalent.

Example(10-26):

In a group (Zgg, +s0). show that the two chains
Zeo 2 (3) 2 (6) > (12) > {0}
Zgo 2 (2) o {6) 2 (30) o {0},
are compositions and equivalent.

Solution:

(250/{3} ®) = ((2},1{6} ®). since |EE‘“/{3}| ===3= ]{Z}f{a}l =%
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/6y ®) = (" 30 @) since [V | = 2= 2= [Po0/ | =2

(12 ®) = B0y, @).since | O )| = 5 =220/ | =

1

D10y @ = (V30 @) since [ [ = 2= 5 =[OV 5 [ = 2
Therefore, by Jordan-Holder theorem the two chains

Zeo 2 (3) 2 (6) 2 (12) > {0}

Zgo 2 (2) 2 (6) 2 (30) > {0},
are compositions and equivalent.

Exercises(10-27):

e Check that the following chains represent composition chains for the indicated

group.
a. For (Z3g, +35), the group of integers modulo 36:

Z3s 2 (3).2 (9) o (18} > {0}.
b. For (Gg,*), the group of symmetries of the square:
G 2 {R1g0, R360, D1, D2} 2 {R360, D1} 2 {Ras0}-
¢. For ({a),*), a cyclic group of order 30:
(a) 2 (a®) 2 (a'®) > {e}.
d. For (S3,0), the symmetric group on 3 symbols:
§3 2 {1,(123),(132)} > {i}.

¢ Find a composition chain for the symmetric group (S4.2).
e Prove that the cyclic subgroup ({n),+) is a maximal normal subgroup of

(Z,+) if and only if n is a prime number.
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e Establish that the following two composition chains for (Zig, +35) are

equivalent:
Z24 2 (3) 2 (6) 2 (12) o {0},
2,4, 2(2) 2 (4) 2 (12) 2 {0}

¢ Find all composition chains for (Zzg, +36).

e Find all composition chains for (G;,*).

11. P- Groups and Related Concepts.

Definition(11-1): (p- Group)

A finite group (G,#*) 1s said to be p- group if and only if the order of each element of

G is a power of fixed prime p.

Definition(11-2): (p- Group)

A finite group (G,*) is said to be p- group if and only if |G| = p*, k € Z, where p is

a prime number.

Example(11-3):

Show that (Z,, +,) is a p- group.
Solution: Z, = {0,1,2,3} and | Z,| = 4 = 22

= Z, is a 2- group, with

0(0) =1 =29,
o(l) = 4 = 22,
o(2) =2 =21,

0(3) = 4 =22,
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Example(11-4):

Determine whether (Zg, +¢) is a p- group.
Solution: Z, = {0,1,2,3,45}and | Z;| =6 # Pk
= Zg 1s not p- group.

Example(11-5): (Homework)

Determine whether (G.,2) is a p- group.

Examples(11-6):

o (Zg, +3g) is a 2- group, since |Zg] = 8 = 27,
e (Zg,+g) is a 3- group, since |Zg] = 9 = 32,
o (Z,5, +,c) is a 5- group, since |Z,¢| = 25 = 52.

Theorem(11-7):

Let HAG, then G is a p- group if and only if H and G/H are p- groups.

Proof: (=) Assume that G is a p- group, to prove that H and G/ j are p- groups.
Since G is a p- group = o(a) = p*, forsome x € Z*,Va € G.

Since H € G = Va € H group = o(a) = p*, for some x € Z*,

So, H is a p- group.

To prove G/' jy 1s a p- group.

Let a+H € G/H, to prove o(a * H) is a power of p.

(a*HP =aP" +H=e+H=H,(a” = e since G is a p- group

=> o(a* H) = p*
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(=) Suppose that H and GXH are p- groups, to prove G is a p- group.
Let a € @G, to prove o(a) is a power of p.
(ax H)P" = H..(1) {GXH is a p- group)
(@+*HP =a” «H..(2)
From (1) and (2), we have a? sH=H=a" e Hand H isa p- group,
= u(apx) =ph.rel’
=ﬁ(ﬂﬁﬂ=e=:mwT=ax+rEEﬂ
= o(a) = p**"
Therefore, G is a p- group m
Examples(11-8):
Apply theorem(2-7) on (Z45, +32)-
Solution:
|Z4,| = 32 = 25 is a 2- group.
By theorem (2-7), H and G/H are 2- groups.

o(G)

o(H) = o(H)=2%0< x<5.

o(H)=2%r 2Y or 22 or 2% or 2% or 25,

o(H) = 2% is a 2- group = G(G/H] = 0(0) o(H) = 2—; = 25 is a 2- group.

o(H) = 21 isa 2- group = n(G)/ﬂ(HJ =2t
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o(H) = 2% is a 2- group = ﬂ(ﬂ)/ﬂ(h,) =22

. o(G

o(H) = 2% is a 2- group = (©) o (i) ™ 2
. o(G

o(H) = 2* is a 2- group = ( )G(H)=2
. G

o(H) = 2% isa 2- group = o(G) o(H) = T

Remark(11-9);

If G is a non-trivial p- group, then Cent(G) # e.
Theorem(11-10):

Every group of order p? is an abelian.

Proof: Let G be a group of order p?, to prove G is an abelian.
Let Cent(G) is a subgroup of G.

By Lagrange Theorem o(G) o(Cent(G) )’

= pz/a(Cent{G) )

=> o(Cent(G)) = p® or p' or p?

If G(Cent(ﬂ]) = p® = Cent(G) = {e}, but this is contradiction with remark(2-9),
so o(Cent(G)) # p°.

If o(Cent(G)) = p* = 0(G) = Cent(G) =G

=» ( is an abelian,

p*

10(Cent(©) = 0 = 0 (Y gane(cy) =5 =

e
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G /c ent(G) is a cyclic.

Therefore, G 1s an abelian m

Remark(11-11):

The converse of theorem(2-10) is not true in general, for example (Zg, +g) 1s an

abelian, but 0((Zg) = 23 # pZ.

Exercises(11-12):

Let P and @ be two normal p-subgroups of a finite group G. Show that P() is a
normal p-subgroup of G.

Determine whether (Z,55, +125) 1s a p-group.
Determine whether (Z,54, +121) is a p-group.
Determine whether (Z,4, +4,) 1s a p-group.
Determine whether (Z,¢, +1¢) is a p-group.
Determine whether (Zg25, +625) 1s a p-group.
Determine whether (Zg5, +1g5) 15 a p-group.
Determine whether (Z,,5, +125) 15 a p-group.
Determine whether (Z354, +255) 15 a p-group.
Determine whether (Z1g0, +100) 15 2 p-group.

Show that G, = {+1, +i, +j, +k},") is a p-group.

12.Sylow Theorems

Definition(12-1): (Sylow p- Subgroup)

Let (G,*) be a finite group and p is a prime number, a subgroup (H,*) of a group G is

called sylow p- subgroup if

L

(H,*) is a p- group,

2. (H,) is not contained in any other p- subgroup of G for the same prime

number p.
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Example(12-2);

Find sylow 2- subgroups and sylow 3- subgroup of the group (Z;4, +24)-
Solution: The proper subgroups of the group (Z,,, +,.) are

1. ({2),+24) = 0({(2)) = 12 # P* = (2) is not p- subgroup.
2. ({3),+,4) = 0({3)) = 8 = 2? = (3) is a 2- subgroup.

. ({4), +24) = 0({4)) = 6 # P* = (4) is not p- subgroup.
4. ({6),+24) = 0({6)) = 4 = 22 = (6) is a 2- subgroup.

5. ({8),+24) = 0({8)) = 3 = 3! = (B) is a 3- subgroup.

6. ({(12), +24) = 0({12)) = 2 = 2! = (12) is a 2- subgroup.

Lad

Theorem(12-3): (First Sylow Theorem)

Let (G,*) be a finite group of order p*g, where p is a prime number is not dividing q,

then G has sylow p- subgroup of order p*.

Example(12-4):

Find sylow 2- subgroup of the group (Z;5, +12)-

Selution: 0(Z,,) = 12 = (4)(3) = (2?)(3),and 2 } 3

= by first sylow theorem, the group (Z,2, +12) has sylow 2- subgroup of order 2°.
= ((3), +13) is a sylow 2- subgroup.

Example(12-5):

Find sylow 7- subgroup of the group (Z,5, +45)-

Solution: 0(Z;;) =42 =(7)(6),and 7 { 6

= by first sylow theorem, the group (Z,,, +4,) has sylow 7- subgroup of order 7.

= ((6), +42) is a sylow 7- subgroup.
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Example(12-6):

Find sylow 3- subgroup of the group (Z24, +24).

Solution: 0(Z;4) = 24 = (3)(8) = (3')(8),and 3 { 8

=> by first sylow theorem, the group (Z;4, +24) has sylow 3- subgroup of order 3*,
= ((8), +34) is a sylow 3- Subgroup.

Theorem(12-7):

Let p a prime number and G be a finite group such that p*\o(G),x = 1, then G has a

subgroup of order p* which is called sylow p- subgroup of G.

Example(12-8):

Are the following groups (S3,¢) and (Gg,e) have sylow p- subgroups.

Solution:

(83,2), 0(S3) = 6 = (2)(3),

2\ 6 = 3 a subgroup H such that o(H) = 2 which is called sylow 2- subgroup.

Also, 3\ 6 =3 a subgroup K such that o(K) = 3 which is called sylow 3-
subgroup.

(Gs,2), 0(Gg) = 23 is 2- subgroup.
Every subgroup of G is 2- subgroup, o(H) = 2° or 2* or 2% or 2%.

Theorem(12-9): (Second Sylow Theorem)

The number of distinct sylow p-subgroups 1s k =1+ tp,t = 0,1, ... which 1s divide
the order of G.

Example(12-10):

Find the distinct sylow p-subgroups of (S3,2).

g8
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Solution:

0(S3) = 6= (2)(3),

2\ 6 = 3 a subgroup H such that o(H) = 2.

The number of sylow 2-subgroupsisk; =1+ 2t,t =01,...and k; \ 6
ift=0=k;=1and 1\ 6

ift=1=k;=3and 3\ 6

ift=2=k;=5and 56

ift=3=k;=7and 7§ 6

s0, there are two sylow 2-subgroups.

3\ 6 = 3 a subgroup K such that o(K) = 3.

The number of sylow 3-subgroupsisk, =1+ 3t,t =0,1,..and k; \ 6
ift=0=k;=1and 1\ 6

ift=1=k; =4and 4+6

ift=2=k,=7and 7}6

So, there i1s one sylow 3-subgroup.

Example(12-11):

Find the number of sylow p-subgroups of G such that o(G) = 12.
Solution: 0o(G) = 12 = (3)(22)

3\ 12 = 3 a subgroup H such that o(H) = 3.

The number of sylow 3-subgroupsis k, =1+ 3t,t =0,1,...and k, \ 12

ift=0=k;=1and 1\ 12
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ift=1=k;=4and 4\ 12

ift=2=k,=7and 7412

ift=3=k;=10and 10 } 12

So, there are two sylow 3-subgroups of G.

The number of sylow 2-subgroupsisk, =1+ 2t,t =0,1,...and k, \ 12
ift=0=k;=1and 1\12

ift=1=vk, =3and 3\ 12

ift=2=k,=5and 5}12

ift=3=p k=7 and 7} 12

So, there are two sylow 2-subgroups of G.

Remark(12-12):

The group G has exactly one sylow p-subgroup H if and only if HAG.

Example(12-13):

(Sze)H={fi = i,f =(123), fz = (132)}
HAG = H is a sylow 3-subgroup of 55,

So, there is one sylow 3-subgroup of 5;.

Exercises(12-14):

e Show that there is no simple group of order 200.
e Show that there is no simple group of order 56.
e Show that there is no simple group of order 20.

e Show that whether (G,,") 1s a sylow.
13. Solvable Groups and Their Applications
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Definition(13-1):

A group (G,*) 1s called a solvable group if and only if, there is a finite collection of

subgroups of (G,*), Hy, H,, ..., H,, such that

1. G =Hy>HyD-DH, 1 DH, ={e},
2. Hi4AH; Vi=0,...,.n—-1,

H; : ; ;
. s tativ Vi=20,..,n—1.
xHHl 15 4 commutanve gl'{]llp n

Theorem(13-2):

Every commutative group is a solvable group.

Proof:

Suppose that (G,*) is a commutative, to show that (G,#) is a solvable.
Let G = Hy and H; = {e}

i G=HUDH1={E}
2. H,AH, satisfies, since {e}AG, or ( every subgroup of commutative group is a
normal)

G S 3 363 - : : : e
3.4 (e} = (G is a commutative group, or (the quotient of commutative group is a

commutative)
So, (G,*) is a solvable group,
Example(13-3):
Show that (S5,0) is a solvable group.
Solution: let Hy = S3,H; = {f; =i, f; = (123), 3 = (132)}, H; = {f1}

1. 53=H03H13H2 ={E}
2. H,AH, satisfies, since { f1}A{fy, f2, [z}, H1AH} is true,
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3. To prove Hile . 1s a commutative group ¥i = 0,1
i+

0 (Hlsz) = ZE%:E: =% =3<6= Hl{h’z is a commutative group

0 (HB/HI) = % =§ =2<6= H“le is a commutative group

Therefore, (S3,0) is a solvable group.

Example(13-4): (Homework)

Show that (Gg,e) is a solvable group.

Theorem(13-5):

Every subgroup of a solvable group is a solvable.

Proof: let (H,*) be a subgroup of (G,*) and (G,*) is a solvable group.
To prove (H,*) is a solvable.

Since G is a solvable =

there is a finite collection of subgroups of (G,*), Gy, Gy, ..., G, such that

1. G =05 261 582 Ba-1 2 Gy =1}
2. Gi41AG; ¥i=0,..,n-1,

G; . : '
3. *[G is a commutative group Vi = 0, ...,n — 1.

i+1
LetHi=HnG;, i=0,..,n

Hy=HnNGyH, =HNG,,.. H,=HNG, ={e}
Each H; is a subgroup of (G,*).

l. H=Hy D Hy D +* D Hp-q1 2 Hy, = {e} is hold
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2. Hl-'l‘lﬂH[ Yi= U,.u,ﬂ. — 1.. H! = H (] Gf-’ Hf‘l’l _— H M GH‘I ; Hiﬂcc
Gi+14G; = Hyy14H;

3. To prove HVHHI is a commutative group ¥i = 0,...,n = 1.

Let fi: Hi — G‘/G i =0,..,n—1suchthat fi(x) = x * G+, Vx € H; € G;.

i+1’
To prove f; is a homomorphism,

filx *y) = fi(x) @ fi(y) ?

filx xy) = x xy * Gipq = (x * Gi41) @ (¥ * Gi41) = fi(x) B fi(y)
So. f; is a homomorphism

fi is onto ?
Ry = {fi(x):x € H} = {x * Giyy:x € H} = fi(H;) # G"/-::m

fi(H) € GVGIH = f; is not onto

Hi! kerf, = fi(H;) ( by theorem of homomorphism)

kerfi={x € Hp fi(x) =e'}={x € Hi:x *Gi+y = Gi41} = {x € Hi: x € G441}
= {x EH:XxEHN GH—I} = Hi41q

H
0, (g, ®) = FilH),®)
G Gi oo .
fi(H) < ’}GE-H and /G[H is @ commutative
Hence, fi(H;) is a commutative

H . .
Therefore, ! /‘ .. 1s a commutative
i+1

S0, (H,*) is a solvable m

103 *‘
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Theorem(13-6):

Let HAG and G is a solvable, then Gf y is a solvable.

Theorem(13-7):

Let HAG and both H, G,/H are solvable, then (G,#) is a solvable.
Proof: since (H,*) is a solvable =
there is a finite collection of subgroups of (G,*). Hy, Hy, ..., H, such that

l. G=HyoH;>---DH,_; o H, ={e},
2. Hi1AH; Vi=0,...,n—1,

H; : . :
L WS 1s a commutative group Vi =0, ...,n — 1.
KHEH group

Since (G/'H.®) is a solvable =

there is a finite collection of subgroups of (G,*). oy

G
, oo ,— such that
H

],E=ﬂ3ﬂ:ﬁ---:~&={e}=h'.,
H H H H
Gigr 5 Gi 2 L

. Hﬂ; Yi=0..,r-1,

Gisy 1S @ cOmmutative group Vi = 0, ...,r — 1.

-
= iy
‘-.__\_\--

H

To prove (G,*) is a solvable group.

G Gy fom

— T — —

H H o

GT

F:H:G,:{E} or o, = H

HAG, = HES G, = G, = H
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So, there is a finite collection G, Gy, ..., G, = Hy, Hy, ..., H,, such that

=626, 326, =H=H;oH, 2--2H,={¢}
2. Toprove G;, ,AG; Vi=0,..,r—1

letx€G; and a € G4+, to prove X+a*x '€ Gijyq
G

lf-r":'+1

Gi+1ﬂﬂi T H -1 Giyq
o F=(x* )®(@+*H)@ (x=H)™ €

'G:'+1

:(xtatx_l}*HE

3. To prove £

i¥1

1s a commutative group Vi =0,...,r—1

- . 6Gi .7 .G
H_: . Hives 8 (H o
T, IS 4 commutative group and T 5, , ['E = K)

H H H
Gy: . :
— 15 a commutative group

i+1
Therefore, (G,*) is a solvable group m
Exercises(13-8):

e Show that every p-group is a solvable group.
e Show that (S,,°) is a solvable group.

e Show that (Z4, +,) 1s a solvable group.

e Show that (Zg, +g) is a solvable group.

e Show that (Zs, +5) is a solvable group.

e Show that (Zg, +¢) 1s a solvable group.

¢ Show that (Z;,, +;5) is a solvable group.

1 -l:".'h
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e Show that (Z,,, +54) is a solvable group.

14. Applications of Group Theory
14-1 Cayley Theorem
Theorem(14-1-1): (Cayley Theorem)
Every group is an isomorphic to a group of permutations.

This means if (G,*) is any group, then (G,*) = (Fg,°), where F; = {f;:a €
Ghfa:G— G 3 falx) =ax=x,Vx €EG.

Proof: define g: G — F; by gla) = f,YVa € G
To prove g 1s a homomorphism, one to one and onto.
1. g is a homomorphism, leta,b € G
gla+b) = foun = fae fo = g(a) e g(b) = g is a homomorphism.
2. gisaonetoone, letg(a) = g(b), Ya,b e G
=Lh=h=2&@=fr(x)=arx=bsx=a=b
= g is a one to one.
3. gisaonto, g(G) ={gla):a€ G} =1{f,a € G} =F;
Therefore, G = F;m
Corollary(14-1-2):
Every finite group (G,*) of order n is an isomorphic to (5,,2).

Example(14-1-3):

Consider the following Cayley table of a group (G = {e,a, b, c},*)
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* e a b
e e a b
a 1} e C
b b c e
C c b a

Show that(G,*) is an isomorphic to a subgroup of (S4,0).
Solution:

e a
e a

C

i=]  a=(] 2 3 )=0OQE®=®

o o

=(Eﬁb

=
m
3

) R=( | 1 3)=0239
)=a3)29)

)
0 oo b=l g
C3P9 =N

Hence, (G,*) is an isomorphic to the subgroup of (S4,0):

Ja
fo
Je

(14)(23)

{(1),(12)(34), (13)(24), (14)(23)}.

Example(14-1-4): (Homework)

Let (G = {1,—1,i,—i},) be a group, apply Cayley Theorem on G.

Example(14-1-5): (Homework)

Show that (Z3, +3) is an isomorphic to a subgroup of (S3,e).

Exercises(14-1-6):

o Apply Cayley Theorem on (Z4, +,).
e Apply Cayley Theorem on (G = {+1, +i, %j, £k},").
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e Apply Cayley Theorem on (G = {1, —1},").

e Apply Cayley Theorem on (G={A= (é '::D,B = (é 0 ),C =

-1
(g )l .

14-2 Direct Product

Definition(14-2-1):

Let (H,*) and (K,*) be two normal subgroups of (G,*), then (G,*) is called an
internal direct product of H and K (& is a decomposition by H and K ) if and only if
G=H=+=Kand HNK = {e}.

Example(14-2-2):

Consider the following Cayley table of a group (G = {e,a,b,c},*), a*> =b*=c¢* =

e
* e a b &
e e a b &
a a e C b
b c € a
c c b a e

Let H = {e,a} and K = {e, b}, show that G = H @ K is a decomposition by H and
K.

Solution: H, KAG since G is a commutative group
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H+K ={e,a,b,cland HNn K = {e}
Hence, G = H @ K is decomposition by H and K.

Example(14-2-3):

Let (G,*) be any group with H = G and K = {e}, show that
r = H ® K is a decomposition by H and K.

Solution: H, KAG

H+xK=G=+{e} =G

HNnK =G n{e} ={e}

Therefore, ¢ = H ® K is a decomposition by H and K.

Example(14-2-4):

Let (Z,, +4) be a group. Is Z, has a proper decomposition.
Solution: the subgroups of Z, are Z,,{0,2},{0}

Let H=12, and K = {0,2}

H®4+K =7, ®,{02} = Z,

HnK = Z,n{0,2} ={0,2}

So, Zy # 2, ® {02}

Let H = {0} and K = {0,2}

HR,K=K=+ Z,

Therefore, Z, has no proper decomposition.

Theorem(14-2-5):
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Let H and K be two subgroups of G and G = H @ K. then G/H = K and G/K =H.
Proof:
SinceG=H®K=H+*K=Gand HNn K = {e}

G/ =H*K/ ang H=*K/ =K/ o (by second theorem of isomorphic)
G/H ” K/{e} = G/H = K and

G/ =H*Kfp and H*K/ =H/ o

G,/K = H:"{{e} = G-',K =Hm

Definition(14-2-6):

Let (G1,*) and (G3,2) be two groups, define G; X G> = {(a,b):a € G1,b € G5} such
that (a,b)®(c,d) =(a*c,bed)>a,c€ G,,b,d €G,. Then (G, XG,,@) is a

group which 1s called an external direct product of (; and G-.

Example(14-2-7): (Homework)

Show that (G; x G,,®) 1s a group.

Example(14-2-8):

Let Gy = (Zg, +5) and G, = (Z,, +,). Find G, X G,.
Solution:

Gy X Gy = Zy X Z, = {(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)}
(1L,1)O(2,1) = (0,0)

o(Z3 % Z) = 0(Zs).0(Z;) = 6.

Theorem(14-2-9):
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Let (G4,*) and (G5,0) be two groups, then

1. (G, % G;,®) is an abelian if and only if both &, and G, are abelian.
2. O x{ex} & Gy X Gs.

3. {e1} X Gz A Gy X Gs.

4. G = 6y X {e1}.

5. G ={e} X G-.

Proof:
1. (=) suppose that (; X G is an abelian, to prove Giand G, are abelian.
Let (a,e;), (b,e;) EG, XG; 3 a,b€EGy,e;, €EG,
Since (; X G, is an abelian, then
(a,e2)O(b, e2) = (b,e2)O(a, e2)
(a*b,e)=(b*xa,e;)=a+xb=b=+a
Hence, (G;,*) 1s an abelian.
Similarly that (G,,*) is an abelian.
(=) suppose that (G,,*) and (G2,°) are abelian, to prove &, X G5 is an abelian.
Let (a, b), (c,d) € G, % G, to prove (a, b))®O(c,d) = (c,d)®O(a, b)
(a,b)®(c,d) =(a*c,bod)
(c,d)®(a,b) = (c*a,d o b)
a+*c = c*a ({,is an abelian)
bed = deb (G,is an abelian)
= (a,b)O(c,d) = (¢, d)®(a, b)

Therefore, (1 % (> is an abelian.
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2. Toprove G, x {e;} A G, X G,
Gy % {e;} = {(a,e;):a €G,} + @
To prove (G, % {ez}, ®) is a subgroup of G; X G
Let (a,e;), (b,e;) € Gy X {e3}
(a,e2)®(b,e2)™! = (a,e2)O(b7 1, e;7) = (ax b7}, ez)
So, (G x {ez}, ®) is a subgroup of Gy % G;.
To prove G, X {e;} A Gy X G,
Let (x,v) € Gy X G, and (a,e;) € Gy X {e;}
To prove (x,¥)®(a, e;)®(x,y) ' € Gy % {e3}
(x*xaxx"'yxe;xy )= (x*axx"",e) € Gy % {e;}
Hence, Gy X {e;} & Gy X Gs.

3. (Homework).

4. To prove G, = G, % {e;}.
Proof:
Define f: (G,,*) = (G; X {€;},®) 3 f(a) = (a,e;)

fisamap?let a;,a; € G, and a; = a; = (ay,€;) = (az,e;) = f(a,) = f(az),

so f 18 a map

f is an one to one ? let f(a,) = f(a,) = (a,.e,) = (a,e,) =>a, =a, sofisa

one o one,

f is a homomorphism ? f(a *b) = (a * b,e;) = (a,e;)O(b,e;) = f(a)Of (b), so

[ is a homomorphism

fisanonto? Ry = {f(a):a € Gy} = {(a,e;):a € G,} = G, x {ez} so f is an onto.
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Therefore, (G;,*) = (G; x{e;},®)m
5. (Homework)

Theorem(14-2-10):

Let (G4,*) and (G2,2) be two p-groups, then (G X G2, ®) is a p-group.
Proof:

Since G,is p-group = 0(G;) = p*1,k, € Z*

Since Gis p-group = o(G,) = p*2,k, € Z*

0(G;, X G3) = 0(G;) % 0(G,) = p*r x p*2 = p*r¥ka, k, + k, € ZF
Therefore, G X (5 is a p-group B

Exercises(14-2-11):

o letH ={0,2,4} and K = {0,3} are subgroups of (Zg, +¢), show that Zg =
H & K is a decomposition.

e let H = {0}, showthat Z, = H & Z, is a decomposition.

e Find Z; x Z,.

e Is S5 X Z, an abelian?

o [sG; X Z; an abelian?

e Is 53 X Gg an abelian?

e Is{+1,4i}x Z, an abelian?

o IsZ; X Z;ap-group?

o IsZ: X Z,: a p-group?

o IsZyy X Zy5, a p-group?

o IsZ; X Z49 a p-group?

o IsZ,; xZ; ap-group?

o IsZ: X Z,5c ap-group?
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e IsZ, X Z., ap-group?
e IsZy X Ziz5 ap-group?
e [s 79 X Zgy a p-group?
e IsZy; X Lgy a p-group?

e IsZ,5 X Zg a p-group?

® Is7Z; X Zy56 a p-group?




