
Modify MEMOIZED-CUT-ROD to return not only the value but the

actual solution.

14.1-6

The Fibonacci numbers are defined by recurrence (3.31) on page 69.

Give an O(n)-time dynamic-programming algorithm to compute the nth

Fibonacci number. Draw the subproblem graph. How many vertices

and edges does the graph contain?

14.2    Matrix-chain multiplication

Our next example of dynamic programming is an algorithm that solves

the problem of matrix-chain multiplication. Given a sequence (chain)

〈A1, A2, …, An〉 of n matrices to be multiplied, where the matrices aren’t

necessarily square, the goal is to compute the product

using the standard algorithm3 for multiplying rectangular matrices,

which we’ll see in a moment, while minimizing the number of scalar

multiplications.

You can evaluate the expression (14.5) using the algorithm for

multiplying pairs of rectangular matrices as a subroutine once you have

parenthesized it to resolve all ambiguities in how the matrices are

multiplied together. Matrix multiplication is associative, and so all

parenthesizations yield the same product. A product of matrices is fully

parenthesized if it is either a single matrix or the product of two fully

parenthesized matrix products, surrounded by parentheses. For

example, if the chain of matrices is 〈A1, A2, A3, A4〉, then you can fully

parenthesize the product A1A2A3A4 in five distinct ways:

(A1(A2(A3A4))),

(A1((A2A3)A4)),

((A1A2)(A3A4)),

((A1(A2A3))A4),



(((A1A2)A3)A4).

How you parenthesize a chain of matrices can have a dramatic

impact on the cost of evaluating the product. Consider first the cost of

multiplying two rectangular matrices. The standard algorithm is given

by the procedure RECTANGULAR-MATRIX-MULTIPLY, which

generalizes the square-matrix multiplication procedure MATRIX-

MULTIPLY on page 81. The RECTANGULAR-MATRIX-

MULTIPLY procedure computes C = C + A ·B for three matrices A =

(aij), B = (bij), and C = (cij), where A is p × q, B is q × r, and C is p × r.

RECTANGULAR-MATRIX-MULTIPLY(A, B, C, p, q, r)

1 for i = 1 to p

2 for j = 1 to r

3 for k = 1 to q

4 cij = cij + aik · bkj

The running time of RECTANGULAR-MATRIX-MULTIPLY is

dominated by the number of scalar multiplications in line 4, which is

pqr. Therefore, we’ll consider the cost of multiplying matrices to be the

number of scalar multiplications. (The number of scalar multiplications

dominates even if we consider initializing C = 0 to perform just C = A

·B.)

To illustrate the different costs incurred by different

parenthesizations of a matrix product, consider the problem of a chain

〈A1, A2, A3〉 of three matrices. Suppose that the dimensions of the

matrices are 10 × 100, 100 × 5, and 5 × 50, respectively. Multiplying

according to the parenthesization ((A1A2)A3) performs 10 · 100 · 5 =

5000 scalar multiplications to compute the 10 × 5 matrix product A1A2,

plus another 10 · 5 · 50 = 2500 scalar multiplications to multiply this

matrix by A3, for a total of 7500 scalar multiplications. Multiplying

according to the alternative parenthesization (A1(A2A3)) performs 100 ·

5 · 50 = 25,000 scalar multiplications to compute the 100 × 50 matrix



product A2A3, plus another 10 · 100 · 50 = 50,000 scalar multiplications

to multiply A1 by this matrix, for a total of 75,000 scalar

multiplications. Thus, computing the product according to the first

parenthesization is 10 times faster.

We state the matrix-chain multiplication problem as follows: given a

chain 〈A1, A2, …, An〉 of n matrices, where for i = 1, 2, …, n, matrix Ai

has dimension pi−1 × pi, fully parenthesize the product A1A2 ⋯ An in

a way that minimizes the number of scalar multiplications. The input is

the sequence of dimensions 〈p0, p1, p2, …, pn〉.

The matrix-chain multiplication problem does not entail actually

multiplying matrices. The goal is only to determine an order for

multiplying matrices that has the lowest cost. Typically, the time

invested in determining this optimal order is more than paid for by the

time saved later on when actually performing the matrix multiplications

(such as performing only 7500 scalar multiplications instead of 75,000).

Counting the number of parenthesizations

Before solving the matrix-chain multiplication problem by dynamic

programming, let us convince ourselves that exhaustively checking all

possible parenthesizations is not an efficient algorithm. Denote the

number of alternative parenthesizations of a sequence of n matrices by

P(n). When n = 1, the sequence consists of just one matrix, and

therefore there is only one way to fully parenthesize the matrix product.

When n ≥ 2, a fully parenthesized matrix product is the product of two

fully parenthesized matrix subproducts, and the split between the two

subproducts may occur between the kth and (k + 1)st matrices for any k

= 1, 2, …, n − 1. Thus, we obtain the recurrence

Problem 12-4 on page 329 asked you to show that the solution to a

similar recurrence is the sequence of Catalan numbers, which grows as



Ω(4n/n3/2). A simpler exercise (see Exercise 14.2-3) is to show that the

solution to the recurrence (14.6) is Ω(2n). The number of solutions is

thus exponential in n, and the brute-force method of exhaustive search

makes for a poor strategy when determining how to optimally

parenthesize a matrix chain.

Applying dynamic programming

Let’s use the dynamic-programming method to determine how to

optimally parenthesize a matrix chain, by following the four-step

sequence that we stated at the beginning of this chapter:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution.

4. Construct an optimal solution from computed information.

We’ll go through these steps in order, demonstrating how to apply each

step to the problem.

Step 1: The structure of an optimal parenthesization

In the first step of the dynamic-programming method, you find the

optimal substructure and then use it to construct an optimal solution to

the problem from optimal solutions to subproblems. To perform this

step for the matrix-chain multiplication problem, it’s convenient to first

introduce some notation. Let Ai:j, where i ≤ j, denote the matrix that

results from evaluating the product AiAi+1 ⋯ Aj. If the problem is

nontrivial, that is, i < j, then to parenthesize the product AiAi+1 ⋯ Aj,

the product must split between Ak and Ak+1 for some integer k in the

range i ≤ k < j. That is, for some value of k, first compute the matrices

Ai:k and Ak+1:j, and then multiply them together to produce the final

product Ai:j. The cost of parenthesizing this way is the cost of



computing the matrix Ai:k, plus the cost of computing Ak+1:j, plus the

cost of multiplying them together.

The optimal substructure of this problem is as follows. Suppose that

to optimally parenthesize AiAi+1 ⋯ Aj, you split the product between

Ak and Ak+1. Then the way you parenthesize the “prefix” subchain

AiAi+1 ⋯ Ak within this optimal parenthesization of AiAi+1 ⋯ Aj

must be an optimal parenthesization of AiAi+1 ⋯ Ak. Why? If there

were a less costly way to parenthesize AiAi+1 ⋯ Ak, then you could

substitute that parenthesization in the optimal parenthesization of

AiAi+1 ⋯ Aj to produce another way to parenthesize AiAi+1 ⋯ Aj

whose cost is lower than the optimum: a contradiction. A similar

observation holds for how to parenthesize the subchain Ak+1Ak+2 ⋯

Aj in the optimal parenthesization of AiAi+1 ⋯ Aj: it must be an

optimal parenthesization of Ak+1Ak+2 ⋯ Aj.

Now let’s use the optimal substructure to show how to construct an

optimal solution to the problem from optimal solutions to subproblems.

Any solution to a nontrivial instance of the matrix-chain multiplication

problem requires splitting the product, and any optimal solution

contains within it optimal solutions to subproblem instances. Thus, to

build an optimal solution to an instance of the matrix-chain

multiplication problem, split the problem into two subproblems

(optimally parenthesizing AiAi+1 ⋯ Ak and Ak+1Ak+2 ⋯ Aj), find

optimal solutions to the two subproblem instances, and then combine

these optimal subproblem solutions. To ensure that you’ve examined the

optimal split, you must consider all possible splits.

Step 2: A recursive solution

The next step is to define the cost of an optimal solution recursively in

terms of the optimal solutions to subproblems. For the matrix-chain

multiplication problem, a subproblem is to determine the minimum cost

of parenthesizing AiAi+1 ⋯ Aj for 1 ≤ i ≤ j ≤ n. Given the input



dimensions 〈p0, p1, p2, …, pn〉, an index pair i, j specifies a subproblem.

Let m[i, j] be the minimum number of scalar multiplications needed to

compute the matrix Ai:j. For the full problem, the lowest-cost way to

compute A1:n is thus m[1, n].

We can define m[i, j] recursively as follows. If i = j, the problem is

trivial: the chain consists of just one matrix Ai:i = Ai, so that no scalar

multiplications are necessary to compute the product. Thus, m[i, i] = 0

for i = 1, 2, …, n. To compute m[i, j] when i < j, we take advantage of

the structure of an optimal solution from step 1. Suppose that an

optimal parenthesization splits the product AiAi+1 ⋯ Aj between Ak

and Ak+1, where i ≤ k < j. Then, m[i, j] equals the minimum cost m[i, k]

for computing the subproduct Ai:k, plus the minimum cost m[k+1, j] for

computing the subproduct, Ak+1:j, plus the cost of multiplying these

two matrices together. Because each matrix Ai is pi−1 × pi, computing

the matrix product Ai:kAk+1:j takes pi−1 pk pj scalar multiplications.

Thus, we obtain

m[i, j] = m[i, k] + m[k + 1, j] + pi−1 pk pj.

This recursive equation assumes that you know the value of k. But

you don’t, at least not yet. You have to try all possible values of k. How

many are there? Just j − i, namely k = i, i + 1, …, j − 1. Since the

optimal parenthesization must use one of these values for k, you need

only check them all to find the best. Thus, the recursive definition for

the minimum cost of parenthesizing the product AiAi+1 ⋯ Aj becomes

The m[i, j] values give the costs of optimal solutions to subproblems,

but they do not provide all the information you need to construct an

optimal solution. To help you do so, let’s define s[i, j] to be a value of k

at which you split the product AiAi+1 ⋯ Aj in an optimal



parenthesization. That is, s[i, j] equals a value k such that m[i, j] = m[i, k]

+ m[k + 1, j] + pi−1 pk pj.

Step 3: Computing the optimal costs

At this point, you could write a recursive algorithm based on recurrence

(14.7) to compute the minimum cost m[1, n] for multiplying A1A2 ⋯

An. But as we saw for the rod-cutting problem, and as we shall see in

Section 14.3, this recursive algorithm takes exponential time. That’s no

better than the brute-force method of checking each way of

parenthesizing the product.

Fortunately, there aren’t all that many distinct subproblems: just one

subproblem for each choice of i and j satisfying 1 ≤ i ≤ j ≤ n, or 

 in all.4 A recursive algorithm may encounter each

subproblem many times in different branches of its recursion tree. This

property of overlapping subproblems is the second hallmark of when

dynamic programming applies (the first hallmark being optimal

substructure).

Instead of computing the solution to recurrence (14.7) recursively,

let’s compute the optimal cost by using a tabular, bottom-up approach,

as in the procedure MATRIX-CHAIN-ORDER. (The corresponding

top-down approach using memoization appears in Section 14.3.) The

input is a sequence p = 〈p0, p1, …, pn〉 of matrix dimensions, along with

n, so that for i = 1, 2, …, n, matrix Ai has dimensions pi−1 × pi. The

procedure uses an auxiliary table m[1 : n, 1 : n] to store the m[i, j] costs

and another auxiliary table s[1 : n − 1, 2 : n] that records which index k

achieved the optimal cost in computing m[i, j]. The table s will help in

constructing an optimal solution.

MATRIX-CHAIN-ORDER(p, n)

  1 let m[1 : n, 1 : n] and s[1 : n − 1, 2 : n] be new tables

  2 for i = 1 to n // chain length 1

  3 m[i, i] = 0

  4 for l = 2 to n // l is the chain length



  5 for i = 1 to n − l + 1 // chain begins at Ai

  6 j = i + l − 1 // chain ends at Aj

  7 m[i, j] = ∞

  8 for k = i to j − 1 // try Ai:kAk+1:j

  9 q = m[i, k] + m[k + 1, j] + pi−1pk pj

10 if q < m[i, j]

11 m[i, j] = q // remember this cost

12 s[i, j] = k // remember this index

13return m and s

In what order should the algorithm fill in the table entries? To answer

this question, let’s see which entries of the table need to be accessed

when computing the cost m[i, j]. Equation (14.7) tells us that to compute

the cost of matrix product Ai:j, first the costs of the products Ai:k and

Ak+1:j need to have been computed for all k = i, i + 1, …, j − 1. The

chain AiAi+1 ⋯ Aj consists of j − i + 1 matrices, and the chains AiAi+1

… Ak and Ak+1 Ak+2 … Aj consist of k − i + 1 and j − k matrices,

respectively. Since k < j, a chain of k − i + 1 matrices consists of fewer

than j − i + 1 matrices. Likewise, since k ≥ i, a chain of j − k matrices

consists of fewer than j − i + 1 matrices. Thus, the algorithm should fill

in the table m from shorter matrix chains to longer matrix chains. That

is, for the subproblem of optimally parenthesizing the chain AiAi+1 ⋯

Aj, it makes sense to consider the subproblem size as the length j − i + 1

of the chain.

Now, let’s see how the MATRIX-CHAIN-ORDER procedure fills in

the m[i, j] entries in order of increasing chain length. Lines 2–3 initialize

m[i, i] = 0 for i = 1, 2, …, n, since any matrix chain with just one matrix

requires no scalar multiplications. In the for loop of lines 4–12, the loop

variable l denotes the length of matrix chains whose minimum costs are

being computed. Each iteration of this loop uses recurrence (14.7) to

compute m[i, i + l − 1] for i = 1, 2, …, n − l + 1. In the first iteration, l =

2, and so the loop computes m[i, i + 1] for i = 1, 2, …, n − 1: the

minimum costs for chains of length l = 2. The second time through the



loop, it computes m[i, i + 2] for i = 1, 2, …, n − 2: the minimum costs

for chains of length l = 3. And so on, ending with a single matrix chain

of length l = n and computing m[1, n]. When lines 7–12 compute an m[i,

j] cost, this cost depends only on table entries m[i, k] and m[k + 1, j],

which have already been computed.

Figure 14.5 illustrates the m and s tables, as filled in by the

MATRIX-CHAIN-ORDER procedure on a chain of n = 6 matrices.

Since m[i, j] is defined only for i ≤ j, only the portion of the table m on or

above the main diagonal is used. The figure shows the table rotated to

make the main diagonal run horizontally. The matrix chain is listed

along the bottom. Using this layout, the minimum cost m[i, j] for

multiplying a subchain AiAi+1 ⋯ Aj of matrices appears at the

intersection of lines running northeast from Ai and northwest from Aj.

Reading across, each diagonal in the table contains the entries for

matrix chains of the same length. MATRIX-CHAIN-ORDER

computes the rows from bottom to top and from left to right within

each row. It computes each entry m[i, j] using the products pi−1 pk pj for

k = i, i + 1, …, j − 1 and all entries southwest and southeast from m[i, j].

A simple inspection of the nested loop structure of MATRIX-

CHAIN-ORDER yields a running time of O(n3) for the algorithm. The

loops are nested three deep, and each loop index (l, i, and k) takes on at

most n − 1 values. Exercise 14.2-5 asks you to show that the running

time of this algorithm is in fact also Ω(n3). The algorithm requires Θ(n2)

space to store the m and s tables. Thus, MATRIX-CHAIN-ORDER is

much more efficient than the exponential-time method of enumerating

all possible parenthesizations and checking each one.



Figure 14.5 The m and s tables computed by MATRIX-CHAIN-ORDER for n = 6 and the

following matrix dimensions:

matrix A1 A2 A3 A4 A5 A6

dimension 30 × 35 35 × 15 15 × 5 5 × 10 10 × 20 20 × 25

The tables are rotated so that the main diagonal runs horizontally. The m table uses only the

main diagonal and upper triangle, and the s table uses only the upper triangle. The minimum

number of scalar multiplications to multiply the 6 matrices is m[1, 6] = 15,125. Of the entries

that are not tan, the pairs that have the same color are taken together in line 9 when computing

Step 4: Constructing an optimal solution

Although MATRIX-CHAIN-ORDER determines the optimal number

of scalar multiplications needed to compute a matrix-chain product, it

does not directly show how to multiply the matrices. The table s[1 : n −

1, 2 : n] provides the information needed to do so. Each entry s[i, j]

records a value of k such that an optimal parenthesization of AiAi+1 ⋯

Aj splits the product between Ak and Ak+1. The final matrix

multiplication in computing A1:n optimally is A1:s[1,n]As[1,n]+1:n. The

s table contains the information needed to determine the earlier matrix



multiplications as well, using recursion: s[1, s[1, n]] determines the last

matrix multiplication when computing A1:s[1,n] and s[s[1,n] + 1, n]

determines the last matrix multiplication when computing As[1,n]+1:n.

The recursive procedure PRINT-OPTIMAL-PARENS on the facing

page prints an optimal parenthesization of the matrix chain product

AiAi+1 ⋯ Aj, given the s table computed by MATRIX-CHAIN-

ORDER and the indices i and j. The initial call PRINT-OPTIMAL-

PARENS(s, 1, n) prints an optimal parenthesization of the full matrix

chain product A1A2 ⋯ An. In the example of Figure 14.5, the call

PRINT-OPTIMAL-PARENS(s, 1, 6) prints the optimal

parenthesization ((A1(A2A3))((A4A5)A6)).

PRINT-OPTIMAL-PARENS(s, i, j)

1 if i == j

2 print “A”i

3 else print “(”

4 PRINT-OPTIMAL-PARENS(s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)

6 print “)”

Exercises

14.2-1

Find an optimal parenthesization of a matrix-chain product whose

sequence of dimensions is 〈5, 10, 3, 12, 5, 50, 6〉.

14.2-2

Give a recursive algorithm MATRIX-CHAIN-MULTIPLY(A, s, i, j)

that actually performs the optimal matrix-chain multiplication, given

the sequence of matrices 〈A1, A2, …, An〉, the s table computed by

MATRIX-CHAIN-ORDER, and the indices i and j. (The initial call is

MATRIX-CHAIN-MULTIPLY(A, s, 1, n).) Assume that the call

RECTANGULAR-MATRIX-MULTIPLY(A, B) returns the product

of matrices A and B.



14.2-3

Use the substitution method to show that the solution to the recurrence

(14.6) is Ω(2n).

14.2-4

Describe the subproblem graph for matrix-chain multiplication with an

input chain of length n. How many vertices does it have? How many

edges does it have, and which edges are they?

14.2-5

Let R(i, j) be the number of times that table entry m[i, j] is referenced

while computing other table entries in a call of MATRIX-CHAIN-

ORDER. Show that the total number of references for the entire table is

(Hint: You may find equation (A.4) on page 1141 useful.)

14.2-6

Show that a full parenthesization of an n-element expression has exactly

n − 1 pairs of parentheses.

14.3    Elements of dynamic programming

Although you have just seen two complete examples of the dynamic-

programming method, you might still be wondering just when the

method applies. From an engineering perspective, when should you look

for a dynamic-programming solution to a problem? In this section, we’ll

examine the two key ingredients that an optimization problem must

have in order for dynamic programming to apply: optimal substructure

and overlapping subproblems. We’ll also revisit and discuss more fully

how memoization might help you take advantage of the overlapping-

subproblems property in a top-down recursive approach.

Optimal substructure


	IV Advanced Design and Analysis Techniques
	14 Dynamic Programming
	14.2 Matrix-chain multiplication
	14.3 Elements of dynamic programming



