Typical low spin square planar complexes are [Ni(CN)4]* [PACLy)* . [Pt(NH)4]*"

[PtCL]* . and [AuCL] . all d® species.
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Type of transition Typical &, /dm’ mol ™ cm™ | Example

Spin-forbidden ‘d-d" <l Ma(H, 0" (high-spin °) o

Laporte-forbidden, spin-gllowed ‘d-d" | 1-10 Centrosymmetric complexes, e.g. {Ti(H,0)™" (")
10-1000 Non-entrosymmetric compleses, e.g. [NiCL™

Charge transfer (ully allowed) 1060-30000 IMnO,j”

Types of Electronic Spectra of Complexes
1) Ligand Spectra

2) Charge-transfer Spectra
3) d-d Spectra
4) Counter-ion Spectra

1) Ligand Spectra




Most of the organic ligand have absorption bands that usually appear in UV region, especially
when these molecules contain 7 electron system.

All the (UV-Vis) spectra of the organic ligands show two absorption peaks:
1- m —m* these transitions found in the molecules that have double or triple bonds and without
atoms having nonbonding electrons. Examples olefins and aromatic system; benzene and diene.

2- n—m* These transitions found in the molecules that have a lone pair and a = bond. Examples
R— C= O (keton) , R—CHO (aldehyde) , C = N and pyridine.

ﬁ*(aﬁti -honding)

] ] &
4 I N i x (anti-bonding)
" . N=» O
. [ i -
% PN Ao oo
= n (non-bonding)
W T I?F
n (bonding)
o (bonding)

2) Charge-transfer Spectra
There are cases where the absorption bands in the visible or ultraviolet regions ranges between ¢
value of 1000 to 55,000 Lmol-1cm-1. For these cases such high value of absorption has been
suggested due to charge transfer bands which are so much intense since they are allowed
transitions that transmit exceptionally deep colors to the respective transition metal complex.
Examples include KMnO4, K2CrO4, [Fe(bipy)3]2+, Cr(CO)6, [Ir(Br)6]2-, [Ni(Cl)4]2-, etc. In
charge transfer transition either electron is donated from the low lying orbitals of the ligand to
the metal or from orbitals of the metal to the ligand.

Types of Charge Transfer Spectra

There are chiefly three types of charge transfer spectrum
(a) Ligand to metal charge transfer spectrum (LMCT)
(b) Metal to ligand charge transfer spectrum (MLCT)
(c) Metal to metal charge transfer spectrum (MMCT)

a) Ligand to Metal Charge Transfer Spectrum (LMCT)
In these type of transitions, the transfer of electron occurs from the orbitals that are ligand based
to the orbitals that are metal based. An example of these type of complexes includes



[Cr(NH3)6]3+, [Cr(CI)(NH3)5]2+. The LMCT charge transfer spectrum has been shown in
Figure below

LMCT

[CrCI(NH3)s]*

Log:

200 400 600

p(nm)

mostly in these cases the ligands are good ¢ or m donors. Generally, the transitions lead to metal
reduction takes place. Thus metal which is easily reduced combines with the ligand that is easily
oxidized giving rise to a transition low in energy. Therefore, anions that are easily oxidized like I-
often form complexes where charge transfer absorption in the visible region is quite appreciable.
The examples include Til4 which is bright violet, Hgl2 red and Agl that is vivid yellow in color.

b) Metal to Ligand Charge Transfer Spectrum (MLCT)

In these type of transitions basically the metal orbitals are involved that can easily supply their
electrons present in the low lying molecular orbital to the empty n* orbitals of the ligand.
Example of complexes showing these type of transitions is [Fe(CO)3(bipy)], [Ru(bipy)3]2+,
[W(CO)4(phen)] etc. in all these cases the n* empty orbital present on the ligand becomes the
receptor of electrons with the introduction of light and the absorption process.

In the process of charge relocation, the metal is oxidized and the ligand is reduced, therefore for
this type of charge transfer phenomenon, it is important that the metal oxidation as well as ligand
reduction is quite feasible. Easily reducible ligands are those which have a low lying, vacant ©*
orbital, such as pyridine, which then forms stable colored complexes with the metal ions that are
easily oxidized such as Fe2+ and Cu

¢) Metal to Metal Charge Transfer Spectrum (MMCT)



Some compounds possess metal ions in two different oxidation states. In these compounds, a
charge transfer transition may occur when the electron moves from one metal ion to the other,
with one metal ion acting as the reducing agent and the other acting as the oxidizing agent.
Compounds of this nature are generally very intensely colored, such as Prussian Blue,
KFelll[FelI(CN)6].

3) d-d Spectra

In case of transition metal complexes with octahedral geometry the most important type of
electronic transition taking place is the d-d transition where transition of an electron takes place
from the lower t2g level to the upper eg level. Mostly it is the transition which imparts the color
to the complex since it occurs in the visible or ultraviolet part of the spectrum. But the value of
molar extinction coefficient, € for these transitions is quite low since, these are Laporte forbidden
transitions. Hence for d-d transitions, the value of molar extinction coefficient, € ranges from 0.5
up to 20 Lmol-1cm-1.

4) Counter-ion Spectra

Counter ion is the ion (negative or positive) which bound to the complex ion to balance the
charge.

There are many ions that have high intensity absorption bands in UV region (250-390 nm) like
Oxyanions (NO*, NO*").

Most of ions do not have absorption peaks in UV region like SO4>", Cl- and ClO4™ thus there is no
interference with complex ion spectra, therefore these ions are preferred as counter- ions

Example: Identify all the expected electronic transitions in UV-Visible for the following
ions: 1- [Cr(C204)3]* 2- [Ti(H20)6]*

Solution:

1- [Cr(C204)3]*

Cri* [18Ar] 3d® 4s°

a) Weak absorption bands in the visible region 400-800 nm attributed to d-d transitions of Cr **
ion.

b) Very intensity absorption bands of charge transfer in the region 300-380 nm are attributed to
LMCT.

c¢) Absorption bands in the region 200-350 nm are assigned to the ligand spectra

m— m* and n — ¥,

2- [Ti (H20)6]*"

Ti*" [18Ar] 3d! 4s°

a) There are no transitions of electrons in UV region.

b) Electronic absorption in the visible region 400-800 nm is attributed to d-d of Ti*" ion.
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quantized, we observe absorption in bands. These bands can have determined from interactions
or coupling of electrons in terms of their orbital angular momenta (their ml value) and spin
angular momenta (their ms values).

This is called Russell-Saunders coupling (LS coupling).

In a free atom (one in absence of a ligand field) these interactions produce atomic states called
microstates which are the detailed electronic configuration of atom or ion.

Term is denoted by symbol, nLj, where

n = (2S+1) and called the spin multiplicity.
S is the total spin of the electrons.

L is the total orbital angular momentum.

L 0 1 2 3
Term S P D F

Q-
=
~

In the interpretation of spectra of coordination compounds, it is often important to identify the
lowest-energy term.

Example: [Cr(NH3)s]**

Cr3+[18Ar] 3d®  4s°

L =+2+1+0 = 3; therefore, F term

S=3/2

Spin multiplicity =2S+1 =4

Therefore, the ground term is 4F

The relationship between the number of unpaired electrons and multiplicity is shown in Table
below

No. of S Multiplicity | symbole
unpaired e 25+1

0 0 1 Singlet
1 1/2 2 Doublet
2 2/2 3 Triplet
3 3/2 4 Quartet
4 4/2 5 Quintet
5 5/2 6 Sextet




Arranging the terms in the increasing order of energy
Hund’s rules

Rule 1: Maximum multiplicity will have minimum energy, when we have 1S, 1D and 3P states,
3P state should be the ground state.

Rule 2: If two states have the same multiplicity, then the one with higher L value will have lower
energy.

Example: 3P and 3F

L =1 for P and 3 for F. Hence °F <P

For d2 configuration, these two rules allow us to order the terms according to increasing

energy: ‘F<*P<!G <D< S

We need a new way of writing electron configurations that allows us to not only describe the
ground state, but any possible excited states as well.

We can do this by describing the electronic state according to its orbital and spin degeneracy.
Splitting of d" Terms

Each of these free ion terms will be affected by the ligands in a complex and this will depend
upon the geometry of the complex. As an example, d orbitals will be split into t2g and eg orbitals
and in the same way, 2D terms will also be split into 2T2g and 2Eg terms in an octahedral

complex. In the same way, other terms arising from the free ion terms will be transformed and
split as follows in an octahedral field.
If

Splitting of Free-ion Terms In Octahedral Symmetry

Term Irreducible Representations
S Ag

P Tig

D E;, + Ty,

F "".llg | Tl# + T—:g

G "I1'|,[+ E;+T|g +T2|'i"

H Ee + 2T, + Ty,

! Alg + Agg + Eg + Tyg + 2Ty,




If the ligands cause large splitting between the terms, it is called strong field case. If they cause
small splitting between the terms, it is called weak field case. In strong field case, electrons will
try to pair whenever possible and in weak field case, the electrons will try to remain unpaired.

The ground state terms obtained from d/ and d2 configurations are split by octahedral field and
the resulting energy diagrams are shown below:

Spectra of Octahedral Complexes

Some important points shall be considered are that the electronic spectra of the complexes for the
first transition series exhibit bands depending on the electron configuration (number of electrons
of d orbital) as flow:

d, d&* d° and &° complexes consist of one broad absorption.

&, d° d’, and d® complexes consist of three broad absorptions.

d5 complexes consist of a series of very weak, relatively sharp absorptions.

The d’ electronic configuration gives rise to only one term, that of °D. On the other hand, d9
configuration gives 2D ground term. (the d9 configuration of Cu?" could be treated as an inverted
d1 configuration). Thus the spectrum of [Ti(H20)6]*" shows a single peak corresponding to the
>T2g — *Eg transition.

In octahedral Cu(Il) complexes we might expect a single absorption band in the visible region
corresponding to 2Eg — *T2g.

For a d2 configuration gives °F ground term, the spectra show three absorption bands
corresponding to the following transitions:

v1:3Tlg (F) — T2g(F)

v2: 3T1g(F) — 3T1g(P)

v3:3T1g(F) — 3A2g(F)

For a &® configuration the ground term is 4F, the spectra show three bands due to the following
transitions:

v1: *A2g(F) — *T2g(F)

v2: *A2g(F) — *T1g(F)

v3: *A2g(F) — *T1g(P)
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Pairing Energy ( P ) The electron-pairing energy is composed of two terms. One is the
coulombic repulsion that must be overcome when forcing two electrons to occupy the same
orbital. The second factor of importance is the loss of exchange energy that occurs as electrons
with parallel spins are forced to have the antiparallel spins.

The exchange energy for a given configuration is proportional to the number of pairs of
electrons having parallel spin
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'I'he relation between tetragonal fields and square planar fields in conjunction with
the effect of increased effectiveness of ligand fields is of value in rationalizing the chemistry
of the coinage metals, Group IB. For copper, the Cu(II) ion is the most stable, existing,
as we have seen, predominantly in tetragonal complexes. In contrast, gold is known
almost exclusively as Au(I) and Au(III). Since gold is a 54 element, it experiences a splitting
of the d orbitals some 80% greater than copper does. A d° Au(ll) complex would be
strongly distorted tetragonally and the ninth electron would occupy the highly unfavorable
x* — y? orbital, which will be raised correspondingly higher in energy (Fig. 9.34). It is
therefore much easier to ionize than the odd electron in Cu(Il). As a result, Au(II) dis-
proportionates into Au(I) and Au(III) species.

With respect to low-spin square planar complexes the valence bond theory and the
crystal field theory agree in assigning the nonbonding d® electrons on the metal to the

™
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Fig. 9.47 Tl bonds between a metal 4 orbital and ligand (a) p orbitals, (b) d orbitals, and (¢) =* anti-

bonding orbitals.

Molecular orbital theory thus contains the best aspects of both valence bond theory
and crystal field theory, and as shown by Van Vleck almost 50 years ago,®” the latter two
are but special cases of the more general molecular orbital theory.
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Spectrochemical series (strength of ligand interaction)

Increasing A

Cl- < F- < H,0 < NH, < en < NO," < CN-
T <[] L1
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%‘E Increasing A _
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i3
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[CrFg]* [Cr(HgO))** [Cr(NH3)e]** [Cr(CN)]*~
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Fig. 9.34 Comparison of Cu(Il) and Au(Il) in tetragonal and square planar fields to illustrate the

instability of Au{Il) toward the removal {oxidation) of the odd electron.
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Diagram of the HOMO and LUMO of a molecule. Each circle represents an electron in an
orbital; when light of a high enough frequency is absorbed by an electron in the HOMO, it jumps
to the LUMO.
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d® High spin (e.g [Mn(H,0).]*"

+ + - —T_ "_?"I' e,

Fail

AS = 0 Forbidden

Type of transition Typical €., /dm’ mol ™ cor™* | Example

Spin-forbidden ‘d-d" I [Ma(H,0)¢"" (high-spin &°) o

Laporte-forbidden, spin-cllowed ‘~d" | 1-10 Centrosymmetric complexes, ¢.g. [Ti{HyOll™* (d°)
10-1000 Non<entrosymmmetric complexes, e.¢. [NiCl™

Charge (ransfer (ully allowed) 1000-30000 [MnO,"

There is only one absorption near 500 nm, which indicates that there is only one
transition taking place in this complex. It means that the d orbitals are spilt into only two levels.
**Note: To express the value of the crystal field splitting parameter ( A ) for this ion in cm-1 :

Example (1) : [Ti(H20)6)?* ; its electronic spectrum is given in Figure below, which shows only

one Amax.
(3]
2 :
8 :
= :
| !
< !
v
500 nm
Wavelength, A
we know that:

Wave number = 1/ Wavelength = 1/ 500 nm
[1 nm =107 cm] =0.002 x 107 =20000 cm™'
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**Note : To obtain the crystal field splitting energy (A) of this complex compound from its
absorption spectrum:

The wave number of 20000 cm™ is associated with energy which is equal to 239.23 KJ mol-1 as
shown below:

We know that since 83.6 cm-1 = 1 KJ mol’!

20000/ 83.6 KJ mol™! = 239.23 KJ mol™!

This energy is the energy difference between t2g and eg sets of orbitals

Example (2): [Cr(en)3]3+, its electronic spectrum (Figure below) shows two Amax indicating
two transitions. This shows that d-orbitals are split into more than one energy level.

Absorbance

Example (3): [CrFs]*, the electronic spectrum of this complex (Figure below) Shows
three absorptions indicating three transitions. This shows the splitting of d orbitals in a different
way.

Absorbance

AVAYAN

Wavelength, A (nm)

the difference in the number of absorptions is due to the nature of the ligands. Similarly,
it can be shown that the number of absorptions will also vary depending up on the geometry of
the complex as well as the oxidation state.

Types of Electronic Spectra of Complexes
1) Ligand Spectra

2) Charge-transfer Spectra



3) d-d Spectra

4) Counter-ion Spectra
1) Ligand Spectra

Most of the organic ligand have absorption bands that usually appear in UV region, especially
when these molecules contain 7 electron system.

All the (UV-Vis) spectra of the organic ligands show two absorption peaks:

1- m —m* these transitions found in the molecules that have double or triple bonds and without

atoms having nonbonding electrons. Examples olefins and aromatic system; benzene and diene.
2- n—m* These transitions found in the molecules that have a lone pair and a = bond. Examples
R— C= O (keton) , R—CHO (aldehyde) , C = N and pyridine.

ﬁ*(aﬁti -honding)

] ] &
4 I N i x (anti-bonding)
" . N=» O
. [ i -
% PN Ao oo
= n (non-bonding)
W T I?F
n (bonding)
o (bonding)

2) Charge-transfer Spectra
There are cases where the absorption bands in the visible or ultraviolet regions ranges between ¢
value of 1000 to 55,000 Lmol-1cm-1. For these cases such high value of absorption has been
suggested due to charge transfer bands which are so much intense since they are allowed
transitions that transmit exceptionally deep colors to the respective transition metal complex.
Examples include KMnO4, K2CrO4, [Fe(bipy)3]2+, Cr(CO)6, [Ir(Br)6]2-, [Ni(Cl)4]2-, etc. In
charge transfer transition either electron is donated from the low lying orbitals of the ligand to
the metal or from orbitals of the metal to the ligand.

Types of Charge Transfer Spectra

There are chiefly three types of charge transfer spectrum
(a) Ligand to metal charge transfer spectrum (LMCT)
(b) Metal to ligand charge transfer spectrum (MLCT)

(c) Metal to metal charge transfer spectrum (MMCT)
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a) Ligand to Metal Charge Transfer Spectrum (LMCT)
In these type of transitions, the transfer of electron occurs from the orbitals that are ligand based

to the orbitals that are metal based. An example of these type of complexes includes
[Cr(NH3)6]3+, [Cr(Cl)(NH3)5]2+. The LMCT charge transfer spectrum has been shown in
Figure below

LMCT

[CrCI(NH3)s]*

Log:

200 400 600

r(nm)

mostly in these cases the ligands are good ¢ or m donors. Generally, the transitions lead to metal
reduction takes place. Thus metal which is easily reduced combines with the ligand that is easily
oxidized giving rise to a transition low in energy. Therefore, anions that are easily oxidized like I-
often form complexes where charge transfer absorption in the visible region is quite appreciable.
The examples include Til4 which is bright violet, Hgl2 red and Agl that is vivid yellow in color.

b) Metal to Ligand Charge Transfer Spectrum (MLCT)

In these type of transitions basically the metal orbitals are involved that can easily supply their
electrons present in the low lying molecular orbital to the empty n* orbitals of the ligand.
Example of complexes showing these type of transitions is [Fe(CO)3(bipy)], [Ru(bipy)3]2+,
[W(CO)4(phen)] etc. in all these cases the n* empty orbital present on the ligand becomes the
receptor of electrons with the introduction of light and the absorption process.

In the process of charge relocation, the metal is oxidized and the ligand is reduced, therefore for
this type of charge transfer phenomenon, it is important that the metal oxidation as well as ligand



reduction is quite feasible. Easily reducible ligands are those which have a low lying, vacant *
orbital, such as pyridine, which then forms stable colored complexes with the metal ions that are
easily oxidized such as Fe2+ and Cu

¢) Metal to Metal Charge Transfer Spectrum (MMCT)

Some compounds possess metal ions in two different oxidation states. In these compounds, a
charge transfer transition may occur when the electron moves from one metal ion to the other,
with one metal ion acting as the reducing agent and the other acting as the oxidizing agent.
Compounds of this nature are generally very intensely colored, such as Prussian Blue,
KFelll[Fell(CN)6].

3) d-d Spectra

In case of transition metal complexes with octahedral geometry the most important type of
electronic transition taking place is the d-d transition where transition of an electron takes place
from the lower t2g level to the upper eg level. Mostly it is the transition which imparts the color
to the complex since it occurs in the visible or ultraviolet part of the spectrum. But the value of
molar extinction coefficient, € for these transitions is quite low since, these are Laporte forbidden
transitions. Hence for d-d transitions, the value of molar extinction coefficient, € ranges from 0.5
up to 20 Lmol-1cm-1.

4) Counter-ion Spectra

Counter ion is the ion (negative or positive) which bound to the complex ion to balance the
charge.

There are many ions that have high intensity absorption bands in UV region (250-390 nm) like
Oxyanions (NO*, NO*).

Most of ions do not have absorption peaks in UV region like SO4>", Cl- and ClO4™ thus there is no
interference with complex ion spectra, therefore these ions are preferred as counter- ions

Example: Identify all the expected electronic transitions in UV-Visible for the following
ions: 1- [Cr(C204)3]* 2- [Ti(H20)6]*

Solution:

1- [Cr(C204)3]*

Cr’' [18Ar] 3d® 4s°

a) Weak absorption bands in the visible region 400-800 nm attributed to d-d transitions of Cr **
ion.

b) Very intensity absorption bands of charge transfer in the region 300-380 nm are attributed to
LMCT.

c¢) Absorption bands in the region 200-350 nm are assigned to the ligand spectra

m— m* and n — ¥,

2- [Ti (H20)6]*"

Ti*" [18Ar] 3d! 4s°

a) There are no transitions of electrons in UV region.

b) Electronic absorption in the visible region 400-800 nm is attributed to d-d of Ti*" ion.
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Term Symbol
Absorptions result in the excitation from lower to higher states energy. Because these states are
quantized, we observe absorption in bands. These bands can have determined from interactions
or coupling of electrons in terms of their orbital angular momenta (their ml value) and spin
angular momenta (their ms values).

This is called Russell-Saunders coupling (LS coupling).

In a free atom (one in absence of a ligand field) these interactions produce atomic states called
microstates which are the detailed electronic configuration of atom or ion.

Term is denoted by symbol, nLj, where

n = (2S+1) and called the spin multiplicity.
S is the total spin of the electrons.

L is the total orbital angular momentum.

L 0 1 2 3
Term S P D F

Q&
T
~

In the interpretation of spectra of coordination compounds, it is often important to identify the
lowest-energy term.

Example: [Cr(NH3)s]*"

Cr3+[18Ar] 3d®>  4s°

L = +2+1+0 = 3; therefore, F term

S=3/2

Spin multiplicity =2S+1 =4

Therefore, the ground term is 4F

The relationship between the number of unpaired electrons and multiplicity is shown in Table
below
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No. of S Multiplicity | symbole
unpaired e 25+1

0 0 1 Singlet
1 1/2 2 Doublet
2 2/2 3 Triplet
3 3/2 4 Quartet
4 4/2 5 Quintet
5 52 6 Sextet

Free-ITon Terms for d® Configurations

Configuration Free-ion Terms
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