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Chapter One 

Some Types of Functions 

1. Inverse Function and Its Properties  

We start this section by restate some basic and useful concepts. 
 

Definition 1.1.1. (Inverse of a Relation) 

Suppose 𝑅 ⊆ 𝐴 × 𝐵 is a relation between 𝐴 and 𝐵 then the inverse relation 𝑅−1 ⊆
𝐵 × A is defined as the relation between 𝐵 and 𝐴 and is given by 

𝑏𝑅−1𝑎      if and only if       𝑎𝑅𝑏. 

That is, 𝑅−1 = {(𝑏, 𝑎)  ∈  𝐵 × 𝐴 ∶  (𝑎, 𝑏)  ∈  𝑅}. 
Definition 1.1.2. (Function)  

 (i) A relation 𝑓 from 𝐴 to 𝐵 is said to be function iff 

∀𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 such that (𝑥, 𝑦) ∈ 𝑓 

(ii) A relation 𝑓 from 𝐴 to 𝐵 is said to be function iff 

∀𝑥 ∈ 𝐴 ∀𝑦, 𝑧 ∈ 𝐵, if (𝑥, 𝑦) ∈ 𝑓 ⋀ (𝑥, 𝑧) ∈ 𝑓, then 𝑦 = 𝑧. 

(iii) A relation 𝑓 from 𝐴 to 𝐵 is said to be function iff 

(𝑥1 , 𝑦1) and (𝑥2 , 𝑦2 ) ∈ 𝑓 such that if  𝑥1 = 𝑥2, then 𝑦1 = 𝑦2 . 

This property called the well-defined relation. 

Notation 1.1.3. We write 𝑓 (𝑎) = 𝑏 when (𝑎, 𝑏) ∈ 𝑓 where 𝑓 is a function; that is, 

(𝑎, 𝑓(𝑎)) ∈ 𝑓. We say that 𝑏 is the image of 𝑎 under 𝑓, and 𝑎 is a preimage of 𝑏.  

Question 1.1.4. From Definition 1.1 and 1.2 that if  𝑓 ∶  𝑋 →  𝑌 is a function, does 

𝑓−1: 𝑌 →  𝑋  exist? If Yes, does 𝑓−1: 𝑌 →  𝑋 is a function? 

Example 1.1.5.  

(i) Let 𝐴 = {1,2,3}, 𝐵 = {𝑎, 𝑏} and 𝑓1  be a function from 𝐴 to 𝐵 defined bellow. 

𝑓1 = {(1, 𝑎), (2, 𝑎), (3, 𝑏)}. Then  𝑓1
−1

 is ------------------------ . 

(ii) Let 𝐴 = {1,2,3}, 𝐵 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑓2  be a function from 𝐴 to 𝐵 defined 

bellow. 𝑓2 = {(1, 𝑎), (2, 𝑏), (3, 𝑑)}. Then  𝑓2
−1

 is ------------------------ . 
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(iii) Let 𝐴 = {1,2,3}, 𝐵 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑓3  be a function from 𝐴 to 𝐵 defined 

bellow. 𝑓3 = {(1, 𝑎), (2, 𝑏), (3, 𝑎)}. Then  𝑓3
−1

is ------------------------ . 

(iv) Let 𝐴 = {1,2,3}, 𝐵 = {𝑎, 𝑏, 𝑐, } and 𝑓4  be a function from 𝐴 to 𝐵 defined 

bellow. 𝑓4 = {(1, 𝑎), (2, 𝑏), (3, 𝑐)}. Then 𝑓4
−1

 is ------------------------ . 

(v) Let 𝐴 = {1,2,3}, 𝐵 = {𝑎, 𝑏, 𝑐, } and 𝑓5  be a relation from 𝐴 to 𝐵 defined bellow. 

𝑓5 = {(1, 𝑎), (1, 𝑏), (3, 𝑐)}. Then 𝑓5  is -------------------- and 𝑓5
−1

 is ----------------- .  

Definition 1.1.6. (Inverse Function) 

The function 𝑓: 𝑋 → 𝑌 is said to be has inverse if the inverse relation 𝑓−1: 𝑌 → 𝑋  

is function. 

Example 1.1.7.  

(i) 𝑓 ∶  ℝ → ℝ, 𝑓(𝑥) = 𝑥 + 3, that is, 

           𝑓 = {(𝑥, 𝑦) ∈ ℝ × ℝ: 𝑦 = 𝑥 + 3} 

𝑓 = {(𝑥, 𝑓(𝑥)):𝑥 ∈ ℝ } 

𝑓 = {(𝑥, 𝑥 + 3) ∈ ℝ × ℝ}. 

Then  

𝑓−1 = {(𝑥, 𝑦) ∈ ℝ × ℝ: (𝑦, 𝑥) ∈ 𝑓} 

𝑓−1 = {(𝑥, 𝑦) ∈ ℝ × ℝ: 𝑥 = 𝑦 + 3} 

𝑓−1 = {(𝑥, 𝑦) ∈ ℝ × ℝ: 𝑦 = 𝑥 − 3} 

𝑓−1 = {(𝑥, 𝑓−1(𝑥)):𝑥 ∈ ℝ} 

𝑓−1 = {(𝑥, 𝑥 − 3) ∈ ℝ × ℝ}.  

That is 𝑓−1(𝑥) = 𝑥 − 3. 

𝑓−1  is function as shown below.  

Let (𝑦1 , 𝑓−1(𝑦1)) and (𝑦2 , 𝑓−1(𝑦2)) ∈ 𝑓−1 such that 𝑦1 = 𝑦2 , T. P. 𝑓−1(𝑦1) =

𝑓−1(𝑦2).  
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Since 𝑦1 = 𝑦2 , then 𝑦1 − 3 = 𝑦2 − 3 (By add −3 to both sides) 

⟹ 𝑓−1(𝑦1) = 𝑓−1(𝑦2). 

 (ii) 𝑔: ℝ → ℝ, 𝑔(𝑥) = 𝑥2; that is, 

𝑔 = {(𝑥, 𝑦) ∈ ℝ × ℝ: 𝑦 = 𝑥2} 

𝑔 = {(𝑥, 𝑔(𝑥)):𝑥 ∈ ℝ} 

𝑔 = {(𝑥, 𝑥2) ∈ ℝ × ℝ}. 

Then  

𝑔−1 = {(𝑥, 𝑦) ∈ ℝ × ℝ: (𝑦, 𝑥) ∈ 𝑔} 

𝑔−1 = {(𝑥, 𝑦) ∈ ℝ × ℝ: 𝑥 = 𝑦2} 

𝑔−1 = {(𝑥, 𝑦) ∈ ℝ × ℝ: 𝑦 = ±√𝑥} 

𝑔−1 = {(𝑥, ±√𝑥) ∈ ℝ × ℝ}, that is 𝑔−1(𝑥) = ±√𝑥. 

𝑔−1  is not function since 𝑔−1(4) = ±2.  

Remark 1.1.8: If 𝑓 is a function, then 𝑓(𝑥) is always is an element in the 𝑅𝑎𝑛(𝑓) 

for all 𝑥 in 𝐷𝑜𝑚(𝑓) but 𝑓−1(𝑦) may be a subset of 𝐷𝑜𝑚(𝑓) for all 𝑦 in 𝐶𝑜𝑑(𝑓). 

Definition 1.1.9. Let 𝑓 ∶  𝑋 →  𝑌 be a function and 𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑦. 

(i) The set 𝑓(𝐴) = {𝑓(𝑥) ∈ 𝑌: 𝑥 ∈ 𝐴} = {𝑦 ∈ 𝑌: ∃𝑥 ∈ 𝐴 such that 𝑦 = 𝑓(𝑥)} is 

called the direct image of 𝑨 by 𝒇. 

(ii) The set 𝑓−1(𝐵) = {𝑥 ∈ 𝑋: 𝑓(𝑥) ∈ 𝐵} = {𝑥 ∈ 𝑋: ∃𝑦 ∈ 𝐵 such that 𝑓(𝑥) = 𝑦} 

is called the inverse image of 𝑩 with respect to 𝒇. 

 (iii) A function 𝑓: 𝐴 → 𝐵 is one-to-one (1-1) or injective if each element of 𝐵 

appears at most once as the image of an element of 𝐴. That is, a function 𝑓: 𝐴 → 𝐵 

is injective if  ∀𝑥, 𝑦 ∈  𝐴, 𝑓 (𝑥) = 𝑓 (𝑦)  ⇒  𝑥 = 𝑦 or ∀𝑥, 𝑦 ∈  𝐴, 𝑥 ≠ 𝑦 ⇒

𝑓 (𝑥) ≠ 𝑓 (𝑦). 
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(iv) A function 𝑓: 𝐴 → 𝐵  is onto or surjective if 𝑓(𝐴) = 𝐵, that is, each element of 

𝐵 appears at least once as the image of an element of 𝐴. That is, a function 𝑓: 𝐴 →

𝐵 is surjective if  ∀𝑦 ∈  𝐵, ∃𝑥 ∈  𝐴 such that  𝑓 (𝑥) =  𝑦. 

(v) A function 𝑓 ∶ 𝐴 → 𝐵 is bijective iff it is one-to-one and onto. 

Remark 1.1.10: Let 𝑓 ∶  𝑋 →  𝑌 be a function and 𝐴 ⊆ 𝑋. If 𝑦 ∈ 𝑓(𝐴), then 

𝑓−1(𝑦) ⊆ 𝐴. 

Example 1.1.11.  

(i) Let 𝑓: ℝ → ℝ, 𝑓(𝑥) = 𝑥4 − 1. 𝑓−1(15) = {𝑥 ∈ ℝ: 𝑥4 − 1 = 15} 

                                                                       = {𝑥 ∈ ℝ: 𝑥4 = 16} = {−2,2}. 

 (ii) Let 𝑓: ℝ → ℝ, 𝑓(𝑥) = {

−1, −1 ≤ 𝑥 < 0
0, 0 ≤ 𝑥 < 1
1,
2,

1 ≤ 𝑥 < 2
2 ≤ 𝑥 < 3

. 

 𝐷(𝑓) = [−1,3), 𝑅(𝑓) = {−1,0,1,2}. 

 𝑓([−1, − 1 2⁄ ]) = −1. 𝑓([−1,0]) = {−1,0}.  

 𝑓−1(0) = [0,1).  𝑓−1([1, 3 2]⁄ ) = [1,2). 
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(iii)  

 

 

(iv) Let 𝑓 ∶  ℤ →  ℤ be a function defined as 𝑓 (𝑥)  =  3𝑥 +  7. 

𝑓 =  {. . . , (−3, −2), (−2, 1), (−1, 4), (0, 7), (1, 10), (2, 13), . . . }. 

(a)  𝑓 is injective. Suppose otherwise; that is, 

 𝑓 (𝑥)  =  𝑓 (𝑦)  ⇒  3𝑥 +  7 =  3𝑦 +  7  ⇒  3𝑥 =  3𝑦  ⇒  𝑥 =  𝑦  

(b) 𝑓 is not surjective. For 𝑏 =  2 there is no 𝑎 such that 𝑓 (𝑎)  =  𝑏; that is, 2 =

 3𝑎 +  7 holds for 𝑎 =  −  
5

3
   which is not in ℤ = 𝐷(𝑓). 

 (v) Show that the function 𝑓: ℝ − {0} → ℝ defined as 𝑓(𝑥) = (1 𝑥⁄ ) + 1 is 

injective but not surjective. 

Solution: 

We will use the contrapositive approach to show that 𝑓 is injective. 

Suppose 𝑥, 𝑦 ∈ ℝ − {0} and 𝑓(𝑥) = 𝑓(𝑦). This means 
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1

𝑥
+ 1 =

1

𝑦
+ 1 ⟶ 𝑥 = 𝑦. Therefore, 𝑓 is injective. 

Function 𝑓 is not surjective because there exists an element 𝑏 = 1 ∈ ℝ for which 

𝑓(𝑥) = (1 𝑥⁄ ) + 1 ≠ 1  for every 𝑥 ∈ ℝ. 

(vi) Show that the function 𝑓: ℤ × ℤ ⟶ ℤ × ℤ defined by the 

formula 𝑓(𝑚, 𝑛) =  (𝑚 + 𝑛, 𝑚 + 2𝑛), is both injective and surjective. 

Solution: 

Injective: Let (𝑚, 𝑛), (𝑟, 𝑠) ∈ ℤ × ℤ = 𝐷𝑜𝑚(𝑓) such that 𝑓(𝑚, 𝑛) = 𝑓(𝑟, 𝑠). To 

prove (𝑚, 𝑛) = (𝑟, 𝑠). 

1-𝑓(𝑚, 𝑛) = 𝑓(𝑟, 𝑠) ⟹ (𝑚 + 𝑛, 𝑚 + 2𝑛) = (𝑟 + 𝑠, 𝑟 + 2𝑠)   Hypothesis 

2-  𝑚 + 𝑛 = 𝑟 + 𝑠                                                                      Def. of  × 

3-  𝑚 + 2𝑛 = 𝑟 + 2𝑠                                                                  Def. of  × 

4- 𝑚 = 𝑟 + 2𝑠 − 2𝑛                                                                   Inf. (3) 

5- 𝑛 = 𝑠 and 𝑚 = 𝑟                                                                    Inf. (2),(4) 

6- (𝑚, 𝑛) = (𝑟, 𝑠)                                                                       Def. of  × 

Surjective: Let (𝑥, 𝑦) = ℤ × ℤ = 𝑅𝑎𝑛(𝑓). To prove ∃(𝑚, 𝑛) ∈ ℤ × ℤ =

𝐷𝑜𝑚(𝑓) ∋ 𝑓(𝑚, 𝑛) = (𝑥, 𝑦). 

1-𝑓(𝑚, 𝑛) = (𝑚 + 𝑛, 𝑚 + 2𝑛) = (𝑥, 𝑦)                         Def. of 𝑓 

2-  𝑚 + 𝑛 = 𝑥                                                                  Def. of  × 

3-  𝑚 + 2𝑛 = 𝑦                                                                Def. of  × 

4- 𝑚 = 𝑥 − 𝑛                                                                   Inf. (2) 

5- 𝑛 = 𝑦 − 𝑥                                                                    Inf. (3),(4) 

6- 𝑚 = 2𝑥 − 𝑦                                                                 Inf. (2),(5) 

7- (2𝑥 − 𝑦, 𝑦 − 𝑥) ∈ ℤ × ℤ = 𝐷𝑜𝑚(𝑓), 𝑓(2𝑥 − 𝑦, 𝑦 − 𝑥) = (𝑥, 𝑦)  
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Theorem 1.1.12. Let 𝑓: 𝐴 →  𝐵 be a function. Then 𝑓 is bijective iff the inverse 

relation 𝑓−1  is a function from 𝐵 to 𝐴. 

Proof: 

Suppose 𝑓: 𝐴 →  𝐵 is bijective. To prove 𝑓−1  is a function from 𝐵 to 𝐴. 

𝑓−1 ≠ ∅ since 𝑓 is onto. 

(∗) Let (𝑦1 , 𝑥1) and (𝑦2 , 𝑥2) ∈ 𝑓−1 such that 𝑦1 = 𝑦2 ,  to prove 𝑥1 = 𝑥2. 

(𝑥1 , 𝑦1) and (𝑥2 , 𝑦2 ) ∈ 𝑓                    Def. of 𝑓−1  

(𝑥1 , 𝑦1) and (𝑥2 , 𝑦1) ∈ 𝑓                    By hypothesis (∗) 

𝑥1 = 𝑥2                                              Def. of 1-1 on 𝑓 

∴ 𝑓−1  is a function from 𝐵 to 𝐴. 

Conversely, suppose 𝑓−1  is a function from 𝐵 to 𝐴, to prove 𝑓 ∶  𝐴 →  𝐵 is 

bijective, that is, 1-1 and onto. 

1-1: Let 𝑎, 𝑏 ∈ 𝐴 and 𝑓(𝑎) = 𝑓(𝑏). To prove 𝑎 = 𝑏. 

(𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)) ∈ 𝑓                          Hypothesis (𝑓is function) 

(𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑎)) ∈ 𝑓                          Hypothesis (𝑓(𝑎) = 𝑓(𝑏)) 

(𝑓(𝑎), 𝑎) and (𝑓(𝑎), 𝑏) ∈ 𝑓−1                      Def. of  inverse relation 𝑓−1  

𝑎 = 𝑏                                                             Since 𝑓−1 is function 

∴ 𝑓 is 1-1. 

onto: Let 𝑏 ∈ 𝐵. To prove ∃𝑎 ∈ 𝐴 such that 𝑓(𝑎) = 𝑏. 

(𝑏, 𝑓−1(𝑏)) ∈ 𝑓−1                                 Hypothesis ( 𝑓−1  is a function from 𝐵 to 𝐴) 

(𝑓−1(𝑏), 𝑏) ∈ 𝑓                                     Def. of  inverse relation 𝑓−1  

Put 𝑎 = 𝑓−1(𝑏). 

 𝑎 ∈ 𝐴 and  𝑓(𝑎) = 𝑏                             Hypothesis ( 𝑓 is function)  

∴ 𝑓 is onto. 
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Definition 1.1.13. 

(i) A function 𝐼𝐴 ∶  𝐴 →  𝐴 defined by 𝐼𝐴(𝑥) = 𝑥, for every 𝑥 ∈ 𝐴 is called the 

identity function on 𝐴. 𝐼𝐴 = {(𝑥, 𝑥):𝑥 ∈ 𝐴}. 

(ii) Let 𝐴 ⊆ 𝑋. A function 𝑖𝐴 ∶  𝐴 →  𝑋 defined by 𝑖𝐴(𝑥) = 𝑥, for every 𝑥 ∈ 𝐴 is 

called the inclusion function on 𝐴. 

Theorem 1.1.14.  

If 𝑓 ∶  𝑋 →  𝑌 is a bijective function, then 𝑓 ∘ 𝑓−1 = 𝐼𝑌  and 𝑓−1 ∘ 𝑓 = 𝐼𝑋. 

Proof: Exercise. 

Example 1.1.15. Let 𝑓: ℤ × ℤ → ℤ × ℤ be a function defined as 

𝑓(𝑚, 𝑛) = (𝑚 + 𝑛, 𝑚 + 2𝑛). 

𝑓 is bijective (Exercise). 

To find the inverse 𝑓−1  formula, let 𝑓(𝑛, 𝑚) = (𝑥, 𝑦). Then  

(𝑚 + 𝑛, 𝑚 + 2𝑛) = (𝑥, 𝑦). So, the we get the following system 

𝑚 + 𝑛 = 𝑥 … . (1)
𝑚 + 2𝑛 = 𝑦 … . (2)

 

From (1) we get 𝑚 = 𝑥 − 𝑛     … . (3) 

𝑛 = 𝑦 − 𝑥                 Inf (2) and (3)  … . (4) 

𝑚 = 2𝑥 − 𝑦             Rep (𝑛: 𝑦 − 𝑥) or sub(4) in (3) 

Define 𝑓−1 as follows  

𝑓−1(𝑥, 𝑦) = (2𝑥 − 𝑦, 𝑦 − 𝑥). 

We can check our work by confirming that 𝑓 ∘ 𝑓−1 = 𝐼𝑌 . 

(𝑓 ∘ 𝑓−1)(𝑥, 𝑦) = 𝑓(2𝑥 − 𝑦, 𝑦 − 𝑥) 

                          = ((2𝑥 − 𝑦) + (𝑦 − 𝑥), (2𝑥 − 𝑦) + 2(𝑦 − 𝑥)) 

                          = (𝑥, 2𝑥 − 𝑦 + 2𝑦 − 2𝑥) = (𝑥, 𝑦) = 𝐼𝑌(𝑥, 𝑦) 
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Remark 1.1.16. If 𝑓: 𝑋 →  𝑌 is oneto-one but not onto, then one can still define an 

inverse function 𝑓 −1 ∶  𝑅𝑎𝑛(𝑓)  →  𝑋 whose domain in the range of 𝑓.   

Theorem 1.1.17. Let  𝑓 ∶  𝑋 →  𝑌 be a function. 

(i) If {𝑌𝑗   ⊆  𝑌 ∶  𝑗 ∈ 𝐽}  is a collection of subsets of  𝑌, then  

   𝑓−1(⋃ 𝑌𝑗𝑗∈𝐽 )= ⋃ 𝑓−1
𝑗∈𝐽 (𝑌𝑗 ) and   𝑓−1(⋂ 𝑌𝑗𝑗∈𝐽 ) = ⋂ 𝑓−1(𝑌𝑗)𝑗∈𝐽   

(ii) If {𝑋𝑖 ⊆ 𝑋: 𝑖 ∈ 𝐼} is a collection of subsets of 𝑋, then 

 𝑓( ⋃ 𝑋𝑖𝑖∈𝐼 ) = ⋃ 𝑓(𝑋𝑖)𝑖∈𝐼   and  𝑓(⋂ 𝑋𝑖) ⊆ ⋂ 𝑓(𝑋𝑖)𝑖∈𝐼𝑖∈𝐼 . 

(iii) If 𝐴 and 𝐵 are subsets of 𝑋 such that 𝐴 = 𝐵, then 𝑓(𝐴) = 𝑓(𝐵). The converse 

is not true. 

(iv) If 𝐶 and 𝐷 are subsets of 𝑌 such that 𝐶 = 𝐷, then 𝑓−1(𝐶) = 𝑓−1(𝐷). The 

converse is not true. 

(v) If 𝐴 and 𝐵 are subsets of 𝑋, then 𝑓(𝐴) − 𝑓(𝐵) ⊆ 𝑓(𝐴 − 𝐵). The converse is 

not true. 

(vi) If 𝐶 and 𝐷 are subsets of 𝑌, then 𝑓−1(𝐶) − 𝑓−1(𝐷) = 𝑓−1(𝐶 − 𝐷).  

Proof:  

(i) Let  𝑥 ∈ 𝑓−1(⋃ 𝑌𝑗𝑗∈𝐽 ). 

 ∃𝑦 ∈ ⋃ 𝑌𝑗𝑗∈𝐽  such that 𝑓(𝑥) = 𝑦                                Def. of inverse image  

𝑦 ∈ 𝑌𝑗  for some 𝑗 ∈ 𝐽 (𝑓(𝑥) ∈ 𝑌𝑗  for some 𝑗 ∈ 𝐽)         Def. of ⋃ 

 𝑥 ∈ 𝑓−1(𝑌𝑗 )                                                                 Def. of inverse image  

so 𝑥 ∈ ⋃ 𝑓−1
𝑗∈𝐽 (𝑌𝑗 )                                                     Def. of ⋃ 

It follow that 𝑓−1(⋃ 𝑌𝑗𝑗∈𝐽 ) ⊆ ⋃ 𝑓−1
𝑗∈𝐽 (𝑌𝑗 )                 Def. of ⊆  … . . (∗) 

Conversely,  

If 𝑥 ∈ ⋃ 𝑓−1
𝑗∈𝐽 (𝑌𝑗 ), then 𝑥 ∈ 𝑓−1(𝑌𝑗), for some 𝑗 ∈ 𝐽          Def. of ⋃ 



Foundation of Mathematics 2 Ch.1  Dr. Bassam AL-Asadi, Dr. Emad Al-Zangana and Dr. Amer Ismal  

Mustansiriyah University                       College of Science    Dept. of  Sci. Math.                 (2022-2023) 

11 

Dr. Bassam AL-Asadi, Dr. Emad Al-Zangana and Dr. Amer Ismal 

 

So 𝑓(𝑥) ∈ 𝑌𝑗  and 𝑓(𝑥) ∈ ⋃ 𝑌𝑗𝑗∈𝐽                                       Def. of inverse and ⋃ 

 𝑥 ∈ 𝑓−1(⋃ 𝑌𝑗 )𝑗∈𝐽                                                               Def. of inverse 𝑓−1  

 It follow that  ⋃ 𝑓−1
𝑗∈𝐽 (𝑌𝑗 ) ⊆ 𝑓−1(⋃ 𝑌𝑗𝑗∈𝐽 )                     Def. of ⊆  … . . (∗∗) 

∴ 𝑓−1(⋃ 𝑌𝑗𝑗∈𝐽 ) = ⋃ 𝑓−1
𝑗∈𝐽 (𝑌𝑗 )                                    From  (∗), (∗∗) and Def. of = 

Example 1.1.18.  Let 𝑓: ℤ ⟶ ℤ be a function defined as 𝑓(𝑥) = 1. 

ℤ𝑒 ⋂ℤ𝑜 = ∅. 𝑓(ℤ𝑒 ⋂ℤ𝑜) = 𝑓(∅) = ∅. But 𝑓(ℤ𝑒 )⋂𝑓(ℤ𝑜) = {1}. 
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2. Types of Function 

Definitions 1.2.1.  

(i) (Constant Function) 

The function 𝑓: 𝑋 ⟶ 𝑌 is said to be constant function if there exist a unique 

element 𝑏 ∈ 𝑌 such that 𝑓(𝑥) = 𝑏 for all 𝑥 ∈ 𝑋. 

(ii) (Restriction Function) 

Let 𝑓: 𝑋 ⟶ 𝑌 be a function and 𝐴 ⊆ 𝑋. Then the function 𝑔: 𝐴 ⟶ 𝑌 defined by 

𝑔(𝑥) = 𝑓(𝑥) all 𝑥 ∈ 𝑋 is said to be restriction function of 𝑓and denoted by 𝑔 =

𝑓|𝐴. 

(iii) (Extension Function) 

Let 𝑓: 𝐴 ⟶ 𝐵 be a function and 𝐴 ⊆ 𝑋. Then the function 𝑔: 𝑋 ⟶ 𝐵 defined by 

𝑔(𝑥) = 𝑓(𝑥) all 𝑥 ∈ 𝐴 is said to be extension function of 𝑓 from 𝐴 to 𝑋. 

(iv) (Absolute Value Function) 

The function 𝑓: ℝ ⟶ ℝ which defined as follows  

𝑓(𝑥) = |𝑥| = {
𝑥, 𝑥 ≥ 0

−𝑥 𝑥 < 0
 

is called the absolute value function.   

(v) (Permutation Function) 

Every bijection function 𝑓 on a non empty set 𝐴 is said to be permutation on 𝐴. 

(vi) (Sequence)  

Let 𝐴 be a non empty set. A function 𝑓: ℕ ⟶ 𝐴 is called a sequence in 𝐴 and 

denoted by {𝑓𝑛 }, where 𝑓𝑛 = 𝑓(𝑛). 

(vii) (Canonical Function) 

Let 𝐴 be a non empty set, 𝑅 an equivalence relation on 𝐴 and 𝐴 𝑅⁄  be the set of all 

equivalence class. The function 𝜋: 𝐴 ⟶ 𝐴 𝑅⁄  defined by 𝜋(𝑥) = [𝑥] is called the 

canonical function. 
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(viii) (Projection Function) 

Let 𝐴1, 𝐴2 be two sets. The function 𝑃1: 𝐴1 × 𝐴2 ⟶ 𝐴1  defined by 𝑃1 (𝑥, 𝑦) = 𝑥 

for all (𝑥, 𝑦) ∈ 𝐴1 × 𝐴2  is called the first projection.  

The function 𝑃2 : 𝐴1 × 𝐴2 ⟶ 𝐴2  defined by 𝑃2 (𝑥, 𝑦) = 𝑦 for all (𝑥, 𝑦) ∈ 𝐴1 × 𝐴2  

is called the second projection. 

(ix) (Cross Product of Functions) 

Let 𝑓: 𝐴1 ⟶ 𝐴2 and 𝑔: 𝐵1 ⟶ 𝐵2   be two functions. The cross product of 𝑓 with 𝑔, 

𝑓 × 𝑔: 𝐴1 × 𝐵1 ⟶ 𝐴2 × 𝐵2 is the function defined as follows:  

(𝑓 × 𝑔)(𝑥, 𝑦) = (𝑓(𝑥), 𝑔(𝑦)) for all (𝑥, 𝑦) ∈ 𝐴1 × 𝐵1. 

Examples 1.2.2. 

(i)(Constant Function). 𝑓: ℝ ⟶ ℝ, 𝑓(𝑥) = 2, ∀𝑥 ∈ ℝ.  𝐷𝑜𝑚(𝑓) = ℝ, 𝑅𝑎𝑛(𝑓) =

{2}, 𝐶𝑜𝑑(𝑓) = ℝ.  

 

(ii) (Restriction Function). 𝑓: ℝ ⟶ ℝ, 𝑓(𝑥) = 𝑥 + 1, ∀𝑥 ∈ ℝ.  

𝐷𝑜𝑚(𝑓) = ℝ, 𝑅𝑎𝑛(𝑓) = ℝ, 𝐶𝑜𝑑(𝑓) = ℝ. Let 𝐴 = [−1,0].  

𝑔 = 𝑓|𝐴: 𝐴 ⟶ ℝ. 𝑔(𝑥) = 𝑓(𝑥) = 𝑥 + 1, ∀𝑥 ∈ 𝐴.   
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𝐷(𝑔) = 𝐴, 𝑅(𝑔) = [0,1], 𝐶𝑜𝑑(𝑔) = ℝ. 

                                                                      

(iii) (Extension Function). 𝑓: [−1,0] ⟶ ℝ, 𝑓(𝑥) = 𝑥 + 1, ∀𝑥 ∈ [−1,0]. 

𝐷𝑜𝑚(𝑓) = [−1,0], 𝑅(𝑓) = [0,1], 𝐶𝑜𝑑(𝑓) = ℝ.  

Let 𝐴 = ℝ.  𝑔: 𝐴 ⟶ ℝ. 𝑔(𝑥) = 𝑓(𝑥) = 𝑥 + 1, ∀𝑥 ∈ 𝐴.  

 𝐷(𝑔) = 𝐴,  𝑅(𝑔) = ℝ, 𝐶𝑜𝑑(𝑔) = ℝ.  

(iv) (Absolute Value Function ) 𝑓: ℝ ⟶ ℝ,  𝑓(𝑥) = |𝑥| = {
𝑥, 𝑥 ≥ 0

−𝑥 𝑥 < 0
. 

𝐷𝑜𝑚(𝑓) = ℝ, , 𝑅(𝑓) = [0, ∞), 𝐶𝑜𝑑(𝑓) = ℝ.  

 

(v) (Permutation Function). 𝑓: ℕ ⟶ ℕ, 𝑓(𝑥) = −𝑥, ∀𝑥 ∈ ℕ. The function is 

bijective, so it is permutation function. 𝐷𝑜𝑚(𝑓) = ℕ, , 𝑅𝑎𝑛(𝑓) = ℕ, 𝐶𝑜𝑑(𝑓) = ℕ.  
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(vi) (Sequence).𝑓: ℕ ⟶ ℚ, 𝑓(𝑛) =
1

𝑛
 , ∀𝑥 ∈ ℕ.  {𝑓𝑛} = {

1

𝑛
 }𝑛=1

∞ . 

(vii) (Canonical Function). Let 𝑅 be an equivalence relation defined on ℤ as 

follows: 

𝑥𝑅𝑦 iff 𝑥 − 𝑦 is even integer, that is, 𝑅 = {(𝑥, 𝑦) ∈ ℤ × ℤ: 𝑥 − 𝑦 even}.  

[0] = {𝑥 ∈ ℤ: 𝑥 − 0 even} = {… , −4, −2,0,2,4, … } = [2] = [−2] = ⋯.  

[1] = {𝑥 ∈ ℤ: 𝑥 − 1 even} = {… , −5, −3, −1,1,3,5, … } = [−1] = [3] = ⋯. 

ℤ 𝑅⁄ = {[0], [1]}. 

𝜋(0) = [0] = 𝜋(2) = 𝜋(−2) = ⋯. 

𝜋(1) = [1] = 𝜋(−1) = 𝜋(−3) = ⋯. 

(viii) (Projection Function) 

 𝑃1: ℤ × ℚ ⟶ ℤ, 𝑃1(𝑥, 𝑦) = 𝑥 for all (𝑥, 𝑦) ∈ ℤ × ℚ. 𝑃1 (2,
2

5
) = 2. 𝑃1(ℤ,

2

5
) = ℤ. 

 𝑃1
−1(3) = {3} × ℚ.   

 (ix) (Cross Product of Functions) 

 𝑓: ℕ ⟶ ℚ, 𝑓(𝑛) =
1

𝑛
, ∀𝑛 ∈ ℕ  and 𝑓: ℕ ⟶ ℕ, 𝑓(𝑥) = −𝑥, ∀𝑥 ∈ ℕ   
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𝑓 × 𝑔: ℕ × ℕ ⟶ ℚ × ℕ, (𝑓 × 𝑔)(𝑥, 𝑦) = (𝑓(𝑥), 𝑔(𝑦))  

                                                                = (
1

𝑥
, −𝑦) for all (𝑥, 𝑦) ∈ ℕ × ℕ. 

(x) (Involution Function)  

Let 𝑋 be a finite set and let 𝑓 be a bijection from 𝑋 to 𝑋 (that is, 𝑓: 𝑋 ⟶ 𝑋). 

The function 𝑓 is called an involution if  𝑓 = 𝑓−1  . An equivalent way of stating 

this is 

𝑓(𝑓(𝑥))  =  𝑥     for all      𝑥 ∈  𝑋.  

  
The figure below is an example of an involution on a set 𝑋 of five elements. In the 

diagram of an involution, note that if 𝑗 is the image of 𝑖 then 𝑖 is the image of 𝑗. 
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Exercise 1.2.3. 

(i) Let 𝑅 be an equivalence relation defined on ℕ as follows:  

𝑅 = {(𝑥, 𝑦) ∈ ℕ × ℕ:𝑥 − 𝑦  divisble by 3}. 

1- Find ℕ 𝑅⁄ .   

2-  Find 𝜋([0]), 𝜋([1]), 𝜋−1([2]). 

(ii) Prove that: the Projection function is onto but not injective. 

(iii) Prove that: the Identity function is bijective. 

(iv) Prove that: the inclusion function is bijective onto its image. 

(v) Let 𝑓: 𝐴1 ⟶ 𝐴2 and 𝑔:𝐵1 ⟶ 𝐵2  be two functions. If 𝑓 and 𝑔 are both 1-1 

(onto), then  𝑓 × 𝑔 is 1-1(onto). 

(vi) If 𝑓: 𝑋 ⟶ 𝑌 is a bijective function, then 𝑓−1  is bijective function. 

(vii) If 𝑓: 𝑋 ⟶ 𝑌 is a bijective function, then 

1- 𝑓 ∘ 𝑓−1 = 𝐼𝑌 is bijective function.               2- 𝑓−1 ∘ 𝑓 = 𝐼𝑋 is bijective function. 

(viii) Let 𝑓: 𝑋 ⟶ 𝑌 and 𝑔: 𝑌 ⟶ 𝑋 be functions. If  𝑔 ∘ 𝑓 = 𝐼𝑋, then 𝑓 is injective 

and 𝑔 is onto. 

(ix) Let 𝑓: ℝ × ℝ ⟶ ℝ be a function defined as follows: 

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2. 

1- Find the 𝑓(ℝ × ℝ) (image of 𝑓). 

2- Find 𝑓−1([0,1]). 

3- Does 𝑓 1-1 or onto? 

4- Let 𝐴 = {(𝑥, 𝑦) ∈ ℝ × ℝ:𝑥 = √2 − 𝑦2}. Find 𝑓(𝐴). 


