5 Some Applications of Group Theory

5.1 Cayley Theorem

Theorem(5-1-1): (Cayley Theorem)

Every group is an isomorphic to a group of permutations.

This means if (G,*) is any group, then $(G,*) \cong (F_G,\circ)$, where $F_G = \{f_a : a \in G\}, f_a : G \longrightarrow G \ni f_a(x) = a * x, \forall x \in G$.

Proof: define $g: G \to F_G$ by $g(a) = f_a, \forall a \in G$

To prove g is a homomorphism, one to one and onto.

1. g is a homomorphism, let $a, b \in G$

$$g(a * b) = f_{a*b} = f_a \circ f_b = g(a) \circ g(b) \Longrightarrow g$$
 is a homomorphism.

2. g is a one to one, $let g(a) = g(b), \forall a, b \in G$

$$\Rightarrow f_a = f_b \Rightarrow f_a(x) = f_b(x) \Rightarrow a * x = b * x \Rightarrow a = b$$

 \Rightarrow g is a one to one.

3. g is a onto, $g(G) = \{g(a) : a \in G\} = \{f_a : a \in G\} = F_G$ Therefore, $G \cong F_G \blacksquare$

Corollary(5-1-2):

Every finite group (G,*) of order n is an isomorphic to (S_n,\circ) .

Example(5-1-3):

Consider the following Cayley table of a group $(G = \{e, a, b, c\}, *)$

*	e	а	b	С
e	e	а	b	С
а	а	е	С	b
b	b	С	е	а
С	С	b	а	е

Show that (G,*) is an isomorphic to a subgroup of (S_4,\circ) .

Solution:

$$f_e = \begin{pmatrix} e & a & b & c \\ e & a & b & c \end{pmatrix}, \qquad f_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = (1)(2)(3)(4) = (1)$$

$$f_a = \begin{pmatrix} e & a & b & c \\ a & e & c & b \end{pmatrix}, \quad f_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = (12)(34)$$

$$f_b = \begin{pmatrix} e & a & b & c \\ b & c & e & a \end{pmatrix}, \quad f_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = (13)(24)$$

$$f_c = \begin{pmatrix} e & a & b & c \\ c & b & a & e \end{pmatrix}, \quad f_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = (14)(23)$$

Hence, (G,*) is an isomorphic to the subgroup of (S_4,\circ) :

$$\{(1), (12)(34), (13)(24), (14)(23)\}.$$

Example(5-1-4): (Homework)

Let $(G = \{1, -1, i, -i\}, \cdot)$ be a group, apply Cayley Theorem on G.

Example(5-1-5): (Homework)

Show that $(Z_3, +_3)$ is an isomorphic to a subgroup of (S_3, \circ) .

Exercises(5-1-6):

- Apply Cayley Theorem on $(Z_4, +_4)$.
- Apply Cayley Theorem on $(G = \{\pm 1, \pm i, \pm j, \pm k\}, \cdot)$.
- Apply Cayley Theorem on $(G = \{1, -1\}, \cdot)$.

Prof. Dr. Najm Al-Seraji, Applications of Group Theory, 2023

• Apply Cayley Theorem on $(G = \{A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, D = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \cdot).$

5.2 Direct Product

<u>Definition(5-2-1):</u>

Let (H,*) and (K,*) be two normal subgroups of (G,*), then (G,*) is called an internal direct product of H and K (G is a decomposition by H and K) if and only if G = H * K and $H \cap K = \{e\}$.

Example(5-2-2):

Consider the following Cayley table of a group $(G = \{e, a, b, c\}, *)$, $a^2 = b^2 = c^2 = e$

*	e	а	b	С
e	e	а	b	С
а	a	е	С	b
b	b	С	е	а
С	С	b	а	е

Let $H = \{e, a\}$ and $K = \{e, b\}$, show that $G = H \otimes K$ is a decomposition by H and K.

Solution: $H, K\Delta G$ since G is a commutative group

$$H * K = \{e, a, b, c\} \text{ and } H \cap K = \{e\}$$

Hence, $G = H \otimes K$ is decomposition by H and K.

Example(5-2-3):

Let (G,*) be any group with H=G and $K=\{e\}$, show that

 $G = H \otimes K$ is a decomposition by H and K.

Solution: H, $K\Delta G$

$$H * K = G * \{e\} = G$$

$$H \cap K = G \cap \{e\} = \{e\}$$

Therefore, $G = H \otimes K$ is a decomposition by H and K.

Example(5-2-4):

Let $(Z_4, +_4)$ be a group. Is Z_4 has a proper decomposition.

Solution: the subgroups of Z_4 are Z_4 , $\{0,2\}$, $\{0\}$

Let
$$H = Z_4$$
 and $K = \{0,2\}$

$$H \bigotimes_4 K = Z_4 \bigotimes_4 \{0,2\} = Z_4$$

$$H \cap K = \mathbb{Z}_4 \cap \{0,2\} = \{0,2\}$$

So,
$$Z_4 \neq Z_4 \otimes \{0,2\}$$

Let
$$H = \{0\}$$
 and $K = \{0,2\}$

$$H \otimes_4 K = K \neq \mathbb{Z}_4$$

Therefore, Z₄ has no proper decomposition.

<u>Theorem(5-2-5):</u>

Let H and K be two subgroups of G and $G = H \otimes K$, then $G/_H \cong K$ and $G/_K \cong H$.

Proof:

Since
$$G = H \otimes K \Longrightarrow H * K = G$$
 and $H \cap K = \{e\}$

$$G/_{H} = H * K/_{H}$$
 and $H * K/_{H} \cong K/_{H \cap K}$ (by second theorem of isomorphic)

$$G/_H \cong K/_{\{e\}} \Longrightarrow G/_H \cong K$$
 and

$$G/_K = H * K/_K$$
 and $H * K/_K \cong H/_{H \cap K}$

$$^{\mathrm{G}}/_{K}\cong ^{\mathrm{H}}/_{\{e\}}\Longrightarrow ^{\mathrm{G}}/_{K}\cong H\blacksquare$$

<u>Definition(5-2-6):</u>

Let $(G_1,*)$ and (G_2,\circ) be two groups, define $G_1 \times G_2 = \{(a,b): a \in G_1, b \in G_2\}$ such that $(a,b) \odot (c,d) = (a*c,b\circ d) \ni a,c \in G_1,b,d \in G_2$. Then $(G_1 \times G_2,\odot)$ is a group which is called an external direct product of G_1 and G_2 .

Example(5-2-7): (Homework)

Show that $(G_1 \times G_2, \odot)$ is a group.

Example(5-2-8):

Let
$$G_1 = (Z_3, +_3)$$
 and $G_2 = (Z_2, +_2)$. Find $G_1 \times G_2$.

Solution:

$$G_1 \times G_2 = Z_3 \times Z_2$$

= $\{(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)\}$
 $(1,1)\odot(2,1) = (0,0)$
 $o(Z_3 \times Z_2) = o(Z_3), o(Z_2) = 6.$

Theorem(5-2-9):

Let $(G_1,*)$ and (G_2,\circ) be two groups, then

- 1. $(G_1 \times G_2, \odot)$ is an abelian if and only if both G_1 and G_2 are abelian.
- $2. G_1 \times \{e_2\} \triangle G_1 \times G_2.$
- $3.\{e_1\} \times G_2 \triangle G_1 \times G_2.$
- $4. G_1 \cong G_1 \times \{e_2\}.$
- $5. G_2 \cong \{e_2\} \times G_2.$

Proof:

1. (\Longrightarrow) suppose that $G_1 \times G_2$ is an abelian, to prove G_1 and G_2 are abelian.

Let
$$(a, e_2), (b, e_2) \in G_1 \times G_2 \ni a, b \in G_1, e_2 \in G_2$$

Since $G_1 \times G_2$ is an abelian, then

$$(a, e_2) \odot (b, e_2) = (b, e_2) \odot (a, e_2)$$

$$(a*b,e_2) = (b*a,e_2) \Longrightarrow a*b = b*a$$

Hence, $(G_1,*)$ is an abelian.

Similarly that $(G_2,*)$ is an abelian.

 (\Leftarrow) suppose that $(G_1,*)$ and (G_2,\circ) are abelian, to prove $G_1 \times G_2$ is an abelian.

Let
$$(a,b), (c,d) \in G_1 \times G_2$$
, to prove $(a,b) \odot (c,d) =$
 $(c,d) \odot (a,b)$

$$(a,b)\odot(c,d) = (a*c,b*d)$$

$$(c,d)\odot(a,b) = (c*a,d*b)$$

$$a * c = c * a$$
 (G_1 is an abelian)

$$b * d = d * b$$
 (G_2 is an abelian)

$$\Rightarrow$$
 $(a,b)\odot(c,d) = (c,d)\odot(a,b)$

Therefore, $G_1 \times G_2$ is an abelian.

2. To prove
$$G_1 \times \{e_2\} \triangle G_1 \times G_2$$

$$G_1 \times \{e_2\} = \{(a, e_2) : a \in G_1\} \neq \emptyset$$

To prove $(G_1 \times \{e_2\}, \bigcirc)$ is a subgroup of $G_1 \times G_2$

Let
$$(a, e_2), (b, e_2) \in G_1 \times \{e_2\}$$

$$(a, e_2) \odot (b, e_2)^{-1} = (a, e_2) \odot (b^{-1}, e_2^{-1}) = (a * b^{-1}, e_2)$$

So, $(G_1 \times \{e_2\}, \odot)$ is a subgroup of $G_1 \times G_2$.

To prove
$$G_1 \times \{e_2\} \triangle G_1 \times G_2$$

Let
$$(x, y) \in G_1 \times G_2$$
 and $(a, e_2) \in G_1 \times \{e_2\}$

To prove
$$(x, y) \odot (a, e_2) \odot (x, y)^{-1} \in G_1 \times \{e_2\}$$

$$(x * a * x^{-1}, y * e_2 * y^{-1}) = (x * a * x^{-1}, e_2) \in G_1 \times \{e_2\}$$

Hence, $G_1 \times \{e_2\} \triangle G_1 \times G_2$.

3. (Homework).

4. To prove $G_1 \cong G_1 \times \{e_2\}$.

Proof:

Define
$$f: (G_1, *) \longrightarrow (G_1 \times \{e_2\}, \bigcirc) \ni f(a) = (a, e_2)$$

f is a map ? let $a_1, a_2 \in G_1$ and $a_1 = a_2 \Longrightarrow (a_1, e_2) =$ $(a_2, e_2) \Longrightarrow f(a_1) = f(a_2)$, so f is a map

f is an one to one ? let $f(a_1) = f(a_2) \Longrightarrow (a_1, e_2) =$ $(a_2, e_2) \Longrightarrow a_1 = a_2$, so f is a one to one.

f is a homomorphism ? $f(a*b) = (a*b, e_2) =$ $(a, e_2) \odot (b, e_2) = f(a) \odot f(b)$, so f is a homomorphism

f is an onto ? $R_f = \{f(a) : a \in G_1\} = \{(a, e_2) : a \in G_1\} = G_1 \times \{e_2\}$ so f is an onto.

Therefore, $(G_1,*) \cong (G_1 \times \{e_2\}, \odot)$

5. (Homework)

Theorem(5-2-10):

Let $(G_1,*)$ and (G_2,\circ) be two *p*-groups, then $(G_1 \times G_2, \odot)$ is a *p*-group.

Proof:

Since
$$G_1$$
 is p -group $\Longrightarrow o(G_1) = p^{k_1}$, $k_1 \in Z^+$

Since
$$G_2$$
 is p -group $\Longrightarrow o(G_2) = p^{k_2}$, $k_2 \in Z^+$

$$o(G_1 \times G_2) = o(G_2) \times o(G_1) = p^{k_1} \times p^{k_2}$$
$$= p^{k_1 + k_2}, k_1 + k_2 \in Z^+$$

Therefore, $G_1 \times G_2$ is a *p*-group

Exercises(5-2-11):

- Let $H = \{0,2,4\}$ and $K = \{0,3\}$ are subgroups of $(Z_6, +_6)$, show that $Z_6 = H \otimes K$ is a decomposition.
- Let $H = \{0\}$, show that $Z_7 = H \otimes Z_7$ is a decomposition.
- Find $Z_3 \times Z_7$.

- Is $S_3 \times Z_2$ an abelian?
- Is $G_s \times Z_2$ an abelian?
- Is $S_3 \times G_S$ an abelian?
- Is $\{\pm 1, \pm i\} \times Z_2$ an abelian?
- Is $Z_4 \times Z_8$ a *p*-group?
- Is $Z_5 \times Z_{25}$ a *p*-group?
- Is $Z_{11} \times Z_{121}$ a *p*-group?
- Is $Z_7 \times Z_{49}$ a *p*-group?
- Is $Z_{27} \times Z_3$ a *p*-group?
- Is $Z_5 \times Z_{125}$ a *p*-group?
- Is $Z_2 \times Z_{64}$ a *p*-group?
- Is $Z_4 \times Z_{128}$ a *p*-group?
- Is $Z_9 \times Z_{81}$ a *p*-group?
- Is $Z_{27} \times Z_{81}$ a *p*-group?
- Is $Z_{128} \times Z_8$ a *p*-group?
- Is $Z_2 \times Z_{256}$ a *p*-group?