Remark(3-12):

The group G has exactly one sylow p-subgroup H if and only if $H\Delta G$.

Example(3-13):

$$(S_3, \circ), H = \{f_1 = i, f_2 = (123), f_3 = (132)\}$$

 $H\Delta G \Rightarrow H$ is a sylow 3-subgroup of S_3 ,

So, there is one sylow 3-subgroup of S_3 .

Exercises(3-14);

- Show that there is no simple group of order 200.
- Show that there is no simple group of order 56.
- Show that there is no simple group of order 20.
- Show that whether (G_{ℓ}, \cdot) is a sylow.

1. Solvable Groups and Their Applications

Definition(4-1):

A group (G,*) is called a solvable group if and only if, there is a finite collection of subgroups of (G,*), $H_0, H_1, ..., H_n$ such that

$$1. G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\},\$$

$$2.H_{i+1}\Delta H_i \quad \forall i=0,\ldots,n-1,$$

3.
$$H_i/H_{i+1}$$
 is a commutative group $\forall i = 0, ..., n-1$.

Example(4-2):

Show that, every commutative group is a solvable group.

Solution:

Suppose that (G,*) is a commutative, to show that (G,*) is a solvable.

Let
$$G = H_0$$
 and $H_1 = \{e\}$

$$1. G = H_0 \supset H_1 = \{e\}$$

- 2. $H_1\Delta H_0$ satisfies, since $\{e\}\Delta G$, or (every subgroup of commutative group is a normal)
- 3. $G/\{e\} \cong G$ is a commutative group, or (the quotient of commutative group is a commutative)

So, (G,*) is a solvable group,

Example(4-3):

Show that (S_3, \circ) is a solvable group.

Solution: let $H_0 = S_3$, $H_1 = \{f_1 = i, f_2 = (123), f_3 = (132)\}$, $H_2 = \{f_1\}$

- $1. S_3 = H_0 \supset H_1 \supset H_2 = \{e\}$
- 2. $H_2\Delta H_1$ satisfies, since $\{f_1\}\Delta\{f_1, f_2, f_3\}$, $H_1\Delta H_0$ is true, since $[S_3: H_1] = 2 \Longrightarrow H_1\Delta S_3$
- 3. To prove H_i/H_{i+1} is a commutative group $\forall i = 0,1$

$$o(H_1/H_2) = \frac{o(H_1)}{o(H_2)} = \frac{3}{1} = 3 < 6 \Longrightarrow H_1/H_2$$
 is a

commutative group

$$o(H_0/H_1) = \frac{o(H_0)}{o(H_1)} = \frac{6}{3} = 2 < 6 \Longrightarrow H_0/H_1$$
 is a

commutative group

Therefore, (S_3, \circ) is a solvable group.

Example(4-4): (Homework)

Show that (G_s, \circ) is a solvable group.