1. Sylow Theorem

<u>Definition(3-1):</u> (Sylow p- Subgroup)

Let (G,*) be a finite group and p is a prime number, a subgroup (H,*) of a group G is called *sylow p- subgroup* if

- 1. (*H*,*) is a p- group,
- 2. (*H*,*) is not contained in any other p- subgroup of *G* for the same prime number p.

Example(3-2);

Find sylow 2- subgroups and sylow 3- subgroup of the group $(Z_{24}, +_{24})$.

Solution: The proper subgroups of the group $(Z_{24}, +_{24})$ are

- 1. $(\langle 2 \rangle, +_{24}) \Longrightarrow o(\langle 2 \rangle) = 12 \neq P^k \Longrightarrow \langle 2 \rangle$ is not p-subgroup.
- $2.(\langle 3 \rangle, +_{24}) \Longrightarrow o(\langle 3 \rangle) = 8 = 2^3 \Longrightarrow \langle 3 \rangle$ is a 2-subgroup.
- $3.(\langle 4 \rangle, +_{24}) \Longrightarrow o(\langle 4 \rangle) = 6 \neq P^k \Longrightarrow \langle 4 \rangle$ is not p-subgroup.

Prof. Dr. Najm Al-Seraji, Applications of Group Theory, 2023

 $4. (\langle 6 \rangle, +_{24}) \Rightarrow o(\langle 6 \rangle) = 4 = 2^2 \Rightarrow \langle 6 \rangle$ is a 2-subgroup.

- $5.(\langle 8 \rangle, +_{24}) \Rightarrow o(\langle 8 \rangle) = 3 = 3^1 \Rightarrow \langle 8 \rangle$ is a 3-subgroup.
- 6. $(\langle 12 \rangle, +_{24}) \Rightarrow o(\langle 12 \rangle) = 2 = 2^1 \Rightarrow \langle 12 \rangle$ is a 2-subgroup.

Theorem(3-3): (First Sylow Theorem)

Let (G,*) be a finite group of order p^kq , where p is a prime number is not dividing q, then G has sylow p- subgroup of order p^k .

Example(3-4):

Find sylow 2- subgroup of the group $(Z_{12}, +_{12})$.

Solution:
$$o(Z_{12}) = 12 = (4)(3) = (2^2)(3)$$
, and $2 \nmid 3$

- \Rightarrow by first sylow theorem, the group $(Z_{12}, +_{12})$ has sylow 2- subgroup of order 2^2 .
- \Rightarrow ($\langle 3 \rangle$, $+_{12}$) is a sylow 2- subgroup.

Example(3-5):

Find sylow 7- subgroup of the group $(Z_{42}, +_{42})$.

Solution: $o(Z_{42}) = 42 = (7)(6)$, and $7 \nmid 6$

- \Rightarrow by first sylow theorem, the group $(Z_{42}, +_{42})$ has sylow 7- subgroup of order 7^1 .
- \Rightarrow ((6), +₄₂) is a sylow 7- subgroup.

Example(3-6):

Find sylow 3- subgroup of the group $(Z_{24}, +_{24})$.

Solution:
$$o(Z_{24}) = 24 = (3)(8) = (3^1)(8)$$
, and $3 \nmid 8$

- \Rightarrow by first sylow theorem, the group $(Z_{24}, +_{24})$ has sylow 3- subgroup of order 3^1 .
- \Rightarrow ((8), +₂₄) is a sylow 3- Subgroup.

Theorem(3-7):

Let p a prime number and G be a finite group such that $p^x \setminus o(G), x \ge 1$, then G has a subgroup of order p^x which is called sylow p- subgroup of G.