Corollary(1-20):

The group $(^G/_H, \otimes)$ is a simple, if $|^G/_H|$ is a prime number.

Examples(1-21);

- 1. Show that $(\langle 2 \rangle, +_{12})$ is a maximal normal subgroup of $(Z_{12}, +_{12})$.
- 2. Show that $(\langle 3 \rangle, +_{15})$ is a maximal normal subgroup of $(Z_{15}, +_{15})$. (**Homework**)

Solution(1):
$$(\langle 2 \rangle, +_{12}) = (\{0, 2, 4, 6, 8, 10\}, +_{12})$$

 $|G/H| = \frac{|G|}{|H|} = \frac{|Z_{12}|}{|\langle 2 \rangle|} = \frac{12}{6} = 2$ is a prime $\Rightarrow \frac{Z_{12}}{\langle 2 \rangle}$ is a simple (by Corollary (1-20)). From Theorem (1-19), we get that $\langle 2 \rangle$ is a maximal normal subgroup of Z_{12} .

Corollary(1-22):

A normal chain $G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$ is a composition of a group (G,*), if $\binom{H_i}{H_{i-1}}, \otimes$ is a simple group for all $i=1,\ldots,n$.

Example(1-23);

Show that $Z_{60} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$ is a composition chain of a group $(Z_{60}, +_{60})$.

Solution: $\frac{|Z_{60}|}{|\langle 3 \rangle|} = \frac{60}{20} = 3$ is a prime $\Rightarrow \frac{Z_{60}}{\langle 3 \rangle}$ is a simple.

So, we get that $\langle 3 \rangle$ is a maximal normal subgroup of \mathbb{Z}_{60} .

$$\frac{|\langle 3 \rangle|}{|\langle 6 \rangle|} = \frac{20}{10} = 2$$
 is a prime $\Rightarrow \frac{\langle 3 \rangle}{\langle 6 \rangle}$ is a simple.

So, we get that $\langle 6 \rangle$ is a maximal normal subgroup of $\langle 3 \rangle$.

$$\frac{|\langle 6 \rangle|}{|\langle 12 \rangle|} = \frac{10}{5} = 2$$
 is a prime $\Rightarrow \frac{\langle 6 \rangle}{\langle 12 \rangle}$ is a simple.

So, we get that $\langle 12 \rangle$ is a maximal normal subgroup of $\langle 6 \rangle$.

$$\frac{|\langle 12 \rangle|}{|\{0\}|} = \frac{5}{1} = 5$$
 is a prime $\Rightarrow \frac{\langle 12 \rangle}{\{0\}}$ is a simple.

So, we get that $\{0\}$ is a maximal normal subgroup of $\langle 12 \rangle$.

By corollaries (1-19) and (1-21), we have that $Z_{60} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$ is a composition chain of a group $(Z_{60}, +_{60})$.

Theorem(1-24):

Every finite group (G,*) with more than one element has a composition chain.

Theorem(1-25): (Jordan-Holder)

In a finite group (G,*) with more than one element, any two composition chains are equivalent.

Example(1-26):

In a group $(Z_{60}, +_{60})$, show that the two chains

$$Z_{60} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$$

$$Z_{60} \supset \langle 2 \rangle \supset \langle 6 \rangle \supset \langle 30 \rangle \supset \{0\},$$

are compositions and equivalent.

Solution:

$$({}^{Z_{60}}/_{\langle 3\rangle}, \otimes) \cong ({}^{\langle 2\rangle}/_{\langle 6\rangle}, \otimes), \text{ since } \left|{}^{Z_{60}}/_{\langle 3\rangle}\right| = \frac{60}{20} = 3 = \left|{}^{\langle 2\rangle}/_{\langle 6\rangle}\right| = \frac{30}{10},$$

$$(\langle 3 \rangle / \langle 6 \rangle, \otimes) \cong (Z_{60} / \langle 2 \rangle, \otimes), \text{ since } |\langle 3 \rangle / \langle 6 \rangle| = \frac{20}{10} = 2 =$$

$$|Z_{60} / \langle 2 \rangle| = \frac{60}{30},$$

Prof. Dr. Najm Al-Seraji, Applications of Group Theory, 2023

$$(\langle 6 \rangle / \langle 12 \rangle, \otimes) \cong (\langle 30 \rangle / \langle 0 \rangle, \otimes), \text{ since } |\langle 6 \rangle / \langle 12 \rangle| = \frac{10}{5} = 2 = |\langle 30 \rangle / \langle 0 \rangle| = \frac{2}{1},$$

$$(\langle 12 \rangle / \langle 0 \rangle, \otimes) \cong (\langle 6 \rangle / \langle 30 \rangle, \otimes), \text{ since } |\langle 12 \rangle / \langle 0 \rangle| = \frac{5}{1} = 5 = |\langle 6 \rangle / \langle 30 \rangle| = \frac{10}{2}.$$

Therefore, by Jordan-Holder theorem the two chains

$$Z_{60} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$$

$$Z_{60} \supset \langle 2 \rangle \supset \langle 6 \rangle \supset \langle 30 \rangle \supset \{0\},$$

are compositions and equivalent.