Example(1-13):

The group (Z, +) has no a composition chain, since the normal subgroups of (Z, +) are the cyclic subgroups $(\langle n \rangle), +)$, n a nonnegative integer, Since the inclusion $\langle kn \rangle \subseteq \langle n \rangle$ holds for all $k \in Z_+$, there always exists a proper subgroup of any given group.

Definition(1-14):

A normal subgroup (H,*) is called a *maximal normal* subgroup of the group (G,*) if $H \neq G$ and there exists no normal subgroup (K,*) of (G,*) such that $H \subset K \subset G$.

Example(1-15):

In the group $(Z_{24}, +_{24})$, the cyclic subgroups $(\langle 2 \rangle, +_{24})$ and $(\langle 3 \rangle, +_{24})$ are both maximal normal with orders 12 and 8, respectively.

Example(1-16):

Determine the maximal normal subgroups in the group $(Z_{12}, +_{12})$.

Solution: The normal subgroups of $(Z_{12}, +_{12})$ are:

$$H_1 = (\langle 2 \rangle, +_{12}) = (\{0, 2, 4, 6, 8, 10\}, +_{12})$$

$$H_2 = (\langle 3 \rangle, +_{12}) = (\{0,3,6,9\}, +_{12})$$

$$H_3 = (\langle 4 \rangle, +_{12}) = (\{0,4,8\}, +_{12})$$

$$H_4 = (\langle 6 \rangle, +_{12}) = (\{0,6\}, +_{12})$$

The maximal normal subgroups of $(Z_{12}, +_{12})$ are H_1 and H_2 , since there is no normal subgroup in Z_{12} containing H_1 and H_2 .

Remark(1-17):

A chain $G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$ is a composition of a group (G,*), if each normal subgroup $(H_i,*)$ is a maximal normal subgroup of $(H_{i-1},*)$, for all $i=1,\ldots,n$.

Example(1-18);

In the group $(Z_{12}, +_{12})$ the chains $Z_{12} \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \{0\}$ is a composition of Z_{12} , since

 $\langle 2 \rangle$ is a maximal normal subgroup of Z_{12} ,

- $\langle 4 \rangle$ is a maximal normal subgroup of $\langle 2 \rangle$,
- $\{0\}$ is a maximal normal subgroup of $\langle 4 \rangle$, and

 $Z_{12} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \{0\}$ is a composition of Z_{12} , since

- $\langle 3 \rangle$ is a maximal normal subgroup of Z_{12} ,
- $\langle 6 \rangle$ is a maximal normal subgroup of $\langle 3 \rangle$,
- $\{0\}$ is a maximal normal subgroup of $\langle 6 \rangle$.

Theorem(1-19):

A normal subgroup (H,*) of the group (G,*) is a maximal if and only if the quotient $(G/H, \otimes)$ is a simple.

Proof:

- \Rightarrow) Let K be a normal subgroup of G with $H \subseteq K$ there corresponds between $({}^G/_H, \otimes)$ and $({}^K/_H, \otimes)$ such that this correspondence is one-to-one. Hence, H is a maximal normal in $K \Rightarrow H$ is a maximal normal in G (by correspondence) $\Rightarrow {}^G/_H$ is a simple.
- \Leftarrow) let G/H be a simple

Prof. Dr. Najm Al-Seraji, Applications of Group Theory, 2023

 \Rightarrow $^{G}/_{H}$ has two normal subgroups which are e * H and

$$G/_H$$
, but $e * H = H$

Therefore H is a maximal